1
|
Houchen CJ, Ghanem S, Kaartinen V, Bumann EE. TGF-β signaling in the cranial neural crest affects late-stage mandibular bone resorption and length. Front Physiol 2024; 15:1435594. [PMID: 39473613 PMCID: PMC11519526 DOI: 10.3389/fphys.2024.1435594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/19/2024] [Indexed: 11/06/2024] Open
Abstract
Malocclusions are common craniofacial malformations that cause quality of life and health problems if left untreated. Unfortunately, the current treatment for severe skeletal malocclusion is invasive surgery. Developing improved therapeutic options requires a deeper understanding of the cellular mechanisms responsible for determining jaw bone length. We have recently shown that neural crest mesenchyme (NCM) can alter jaw length by controlling the recruitment and function of mesoderm-derived osteoclasts. Transforming growth factor beta (TGF-β) signaling is critical to craniofacial development by directing bone resorption and formation, and heterozygous mutations in the TGF-β type I receptor (TGFBR1) are associated with micrognathia in humans. To identify the role of TGF-β signaling in NCM in controlling osteoclasts during mandibular development, the mandibles of mouse embryos deficient in the gene encoding Tgfbr1, specifically in NCM, were analyzed. Our laboratory and others have demonstrated that Tgfbr1 fl/fl ;Wnt1-Cre mice display significantly shorter mandibles with no condylar, coronoid, or angular processes. We hypothesize that TGF-β signaling in NCM can also direct late bone remodeling and further regulate late embryonic jaw bone length. Interestingly, analysis of mandibular bone based on micro-computed tomography and Masson's trichrome revealed no significant difference in bone quality between the Tgfbr1 fl/fl ;Wnt1-Cre mice and controls, as measured by the bone perimeter/bone area, trabecular rod-like diameter, number and separation, and gene expression of collagen type 1 alpha 1 (Col1α1) and matrix metalloproteinase 13 (Mmp13). Although there was not a difference in localization of bone resorption within the mandible indicated by tartrate-resistant acid phosphatase (TRAP) staining, Tgfbr1 fl/fl ;Wnt1-Cre mice had approximately three-fold less osteoclast number and perimeter than controls. Gene expression of receptor activator of nuclear factor kappa-β (Rank) and Mmp9, markers of osteoclasts and their activity, also showed a three-fold decrease in Tgfbr1 fl/fl ;Wnt1-Cre mandibles. Evaluation of osteoblast-to-osteoclast signaling revealed no significant difference between Tgfbr1 fl/fl ;Wnt1-Cre mandibles and controls, leaving the specific mechanism unresolved. Finally, pharmacological inhibition of Tgfbr1 signaling during the initiation of bone mineralization and resorption significantly shortened jaw length in embryos. We conclude that TGF-β signaling in NCM decreases mesoderm-derived osteoclast number, that TGF-β signaling in NCM impacts jaw length late in development, and that this osteoblast-to-osteoclast communication may be occurring through an undescribed mechanism.
Collapse
Affiliation(s)
- Claire J. Houchen
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, MO, United States
| | - Saif Ghanem
- Department Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Vesa Kaartinen
- Department Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Erin Ealba Bumann
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, MO, United States
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Wang Z, Xue H, Sun Y, Wang Q, Sun W, Zhang H. Deciphering the Biological Aging Impact on Alveolar Bone Loss: Insights From α-Klotho and Renal Function Dynamics. J Gerontol A Biol Sci Med Sci 2024; 79:glae172. [PMID: 38995226 DOI: 10.1093/gerona/glae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Indexed: 07/13/2024] Open
Abstract
Alveolar bone loss is generally considered a chronological age-related disease. As biological aging process is not absolutely determined by increasing age, whether alveolar bone loss is associated with increasing chronological age or biological aging remains unclear. Accurately distinguishing whether alveolar bone loss is chronological age-related or biological aging-related is critical for selecting appropriate clinical treatments. This study aimed to identify the relationship between alveolar bone loss and body aging. In total, 3 635 participants from the National Health and Nutrition Examination Survey and 71 living kidney transplant recipients from Gene Expression Omnibus Datasets were enrolled. Multivariate regression analysis, smooth curve fittings, and generalized additive models were used to explore the association among alveolar bone loss, age, serum α-Klotho level, renal function markers, as well as between preoperative creatinine and renal cortex-related α-Klotho gene expression level. Meanwhile, a 2-sample Mendelian randomization (MR) study was conducted to assess the causal relationship between α-Klotho and periodontal disease (4 376 individuals vs 361 194 individuals). As a biological aging-related indicator, the α-Klotho level was negatively correlated with impaired renal function and alveolar bone loss. Correspondingly, accompanied by decreasing renal function, it was manifested with a downregulated expression level of α-Klotho in the renal cortex and aggravated alveolar bone loss. The MR analysis further identified the negative association between higher genetically predicted α-Klotho concentrations with alveolar bone loss susceptibility using the IVW (odds ratio [OR] = 0.999, p = .005). However, an inversely U-shaped association was observed between chronological age and alveolar bone loss, which is especially stable in men (the optimal cutoff values were both 62 years old). For men above 62 years old, increasing age is converted to protective factor and is accompanied by alleviated alveolar bone loss. Alveolar bone loss that is directly associated with decreased renal function and α-Klotho level was related to biological aging rather than chronological age. The renal-alveolar bone axis could provide a new sight of clinical therapy in alveolar bone loss.
Collapse
Affiliation(s)
- Zifei Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Hao Xue
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuqiang Sun
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Qing Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Wansu Sun
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Houchen CJ, Ghanem S, Kaartinen V, Bumann EE. TGF-β Signaling in Cranial Neural Crest Affects Late-Stage Mandibular Bone Resorption and Length. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595783. [PMID: 38826301 PMCID: PMC11142237 DOI: 10.1101/2024.05.24.595783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Malocclusions are common craniofacial malformations which cause quality of life and health problems if left untreated. Unfortunately, the current treatment for severe skeletal malocclusion is invasive surgery. Developing improved therapeutic options requires a deeper understanding of the cellular mechanisms responsible for determining jaw bone length. We have recently shown that neural crest mesenchyme (NCM) can alter jaw length by controlling recruitment and function of mesoderm-derived osteoclasts. Transforming growth factor beta (TGF-β) signaling is critical to craniofacial development by directing bone resorption and formation, and heterozygous mutations in TGF-β type I receptor (TGFBR1) are associated with micrognathia in humans. To identify what role TGF-β signaling in NCM plays in controlling osteoclasts during mandibular development, mandibles of mouse embryos deficient in the gene encoding Tgfbr1 specifically in NCM were analyzed. Our lab and others have demonstrated that Tgfbr1fl/fl;Wnt1-Cre mice display significantly shorter mandibles with no condylar, coronoid, or angular processes. We hypothesize that TGF-β signaling in NCM can also direct later bone remodeling and further regulate late embryonic jaw bone length. Interestingly, analysis of mandibular bone through micro-computed tomography and Masson's trichrome revealed no significant difference in bone quality between the Tgfbr1fl/fl;Wnt1-Cre mice and controls, as measured by bone perimeter/bone area, trabecular rod-like diameter, number and separation, and gene expression of Collagen type 1 alpha 1 (Col1α1) and Matrix metalloproteinase 13 (Mmp13). Though there was not a difference in localization of bone resorption within the mandible indicated by TRAP staining, Tgfbr1fl/fl;Wnt1-Cre mice had approximately three-fold less osteoclast number and perimeter than controls. Gene expression of receptor activator of nuclear factor kappa-β (Rank) and Mmp9, markers of osteoclasts and their activity, also showed a three-fold decrease in Tgfbr1fl/fl;Wnt1-Cre mandibles. Evaluation of osteoblast-to-osteoclast signaling revealed no significant difference between Tgfbr1fl/fl;Wnt1-Cre mandibles and controls, leaving the specific mechanism unresolved. Finally, pharmacological inhibition of Tgfbr1 signaling during the initiation of bone mineralization and resorption significantly shortened jaw length in embryos. We conclude that TGF-β signaling in NCM decreases mesoderm-derived osteoclast number, that TGF-β signaling in NCM impacts jaw length late in development, and that this osteoblast-to-osteoclast communication may be occurring through an undescribed mechanism.
Collapse
Affiliation(s)
- Claire J. Houchen
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, MO, USA
| | - Saif Ghanem
- Department Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Vesa Kaartinen
- Department Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Erin Ealba Bumann
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, MO, USA
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Schuh A, Heuzé Y, Gunz P, Berthaume MA, Shaw CN, Hublin JJ, Freidline S. A shared pattern of midfacial bone modelling in hominids suggests deep evolutionary roots for human facial morphogenesis. Proc Biol Sci 2024; 291:20232738. [PMID: 38628118 PMCID: PMC11022013 DOI: 10.1098/rspb.2023.2738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Midfacial morphology varies between hominoids, in particular between great apes and humans for which the face is small and retracted. The underlying developmental processes for these morphological differences are still largely unknown. Here, we investigate the cellular mechanism of maxillary development (bone modelling, BM), and how potential changes in this process may have shaped facial evolution. We analysed cross-sectional developmental series of gibbons, orangutans, gorillas, chimpanzees and present-day humans (n = 183). Individuals were organized into five age groups according to their dental development. To visualize each species's BM pattern and corresponding morphology during ontogeny, maps based on microscopic data were mapped onto species-specific age group average shapes obtained using geometric morphometrics. The amount of bone resorption was quantified and compared between species. Great apes share a highly similar BM pattern, whereas gibbons have a distinctive resorption pattern. This suggests a change in cellular activity on the hominid branch. Humans possess most of the great ape pattern, but bone resorption is high in the canine area from birth on, suggesting a key role of canine reduction in facial evolution. We also observed that humans have high levels of bone resorption during childhood, a feature not shared with other apes.
Collapse
Affiliation(s)
- Alexandra Schuh
- CNRS, Ministère de la Culture, PACEA, UMR 5199, Université de Bordeaux, Bât. B2, Allée Geoffroy Saint-Hilaire, Pessac 33615, France
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Yann Heuzé
- CNRS, Ministère de la Culture, PACEA, UMR 5199, Université de Bordeaux, Bât. B2, Allée Geoffroy Saint-Hilaire, Pessac 33615, France
| | - Philipp Gunz
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Michael A. Berthaume
- Department of Engineering, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, London, UK
| | - Colin N. Shaw
- Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - Jean-Jacques Hublin
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
- Chaire de Paléoanthropologie, Collège de France, Paris, France
| | - Sarah Freidline
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
- Department of Anthropology, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
5
|
Cheng Y, Lei F. Avian lower beak is always overlooked: its coordinate role in shaping species-specific beak should not be underestimated. Integr Zool 2024; 19:339-342. [PMID: 37794566 DOI: 10.1111/1749-4877.12769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Affiliation(s)
- Yalin Cheng
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
6
|
Houchen CJ, Bergman‐Gonzalez M, Bumann EE. A novel qPCR-based technique for identifying avian sex: An illustration within embryonic craniofacial bone. Genesis 2024; 62:e23530. [PMID: 37353984 PMCID: PMC11457736 DOI: 10.1002/dvg.23530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023]
Abstract
Sex is a biological variable important to consider in all biomedical experiments. However, doing so in avian embryos can be challenging as sex can be morphologically indistinguishable. Unlike humans, female birds are the heterogametic sex with Z and W sex chromosomes. The female-specific W chromosome has previously been identified in chick using a species-specific polymerase chain reaction (PCR) technique. We developed a novel reverse transcription quantitative PCR (RT-qPCR) technique that amplifies the W chromosome gene histidine triad nucleotide-binding protein W (HINTW) in chick, quail, and duck. Accuracy of the HINTW RT-qPCR primer set was confirmed in all three species using species-specific PCR, including a novel quail-specific HINTW PCR primer set. Bone development-related gene expression was then analyzed by sex in embryonic lower jaws of duck and quail, as adult duck beak size is known to be sexually dimorphic while quail beak size is not. Trends toward sex differences were found in duck gene expression but not in quail, as expected. With these novel RT-qPCR and PCR embryo sexing methods, sex of chick, quail, and duck embryos can now be assessed by either/both RNA and DNA, which facilitates analysis of sex as a biological variable in studies using these model organisms.
Collapse
Affiliation(s)
- Claire J. Houchen
- Department of Oral and Craniofacial Sciences, School of DentistryUniversity of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Maria Bergman‐Gonzalez
- Department of Oral and Craniofacial Sciences, School of DentistryUniversity of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Erin E. Bumann
- Department of Oral and Craniofacial Sciences, School of DentistryUniversity of Missouri‐Kansas CityKansas CityMissouriUSA
| |
Collapse
|
7
|
Nagra A, Katsube M, Gao W, Rosin JM, Vora SR. Embryonic inhibition of colony-stimulating factor 1 receptor impacts craniofacial morphogenesis. Orthod Craniofac Res 2023; 26 Suppl 1:20-28. [PMID: 37231583 DOI: 10.1111/ocr.12671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/27/2023]
Abstract
OBJECTIVES Colony-stimulating factor-1 receptor (CSF1R) is vital for the recruitment of monocytes, and their proliferation and differentiation into functional osteoclasts. Mouse studies, where CSF1R and its cognate ligand are absent, have significant craniofacial phenotypes, but these have not been studied in detail. MATERIALS AND METHODS Pregnant CD1 mice were fed diets laced with CSF1R inhibitor-PLX5622 starting at embryonic day 3.5 (E3.5) up to birth. Pups were collected at E18.5 to study CSF1R expression using immunofluorescence. Additional pups were studied at postnatal day 21 (P21) and P28 using microcomputed tomography (μCT) and Geometric Morphometrics, to evaluate craniofacial form. RESULTS CSF1R-positive cells were present throughout the developing craniofacial region, including the jaw bones, surrounding teeth, tongue, nasal cavities, brain, cranial vault and base regions. Animals exposed to the CSF1R inhibitor in utero had severe depletion of CSF1R-positive cells at E18.5 and had significant differences in craniofacial form (size and shape) at postnatal timepoints. Centroid sizes for the mandibular and cranio-maxillary regions were significantly smaller in CSF1R-inhibited animals. Proportionally, these animals had a domed skull, with taller and wider cranial vaults and shortening of their midfacial regions. Mandibles were smaller vertically and anterio-posteriorly, with proportionally wider inter-condylar distances. CONCLUSIONS Embryonic inhibition of CSF1R impacts postnatal craniofacial morphogenesis, with significant influences on the mandibular and cranioskeletal size and shape. These data indicate that CSF1R plays a role in early cranio-skeletal patterning, likely through osteoclast depletion.
Collapse
Affiliation(s)
- Ashina Nagra
- Oral Health Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Motoki Katsube
- Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Wade Gao
- Oral Health Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica M Rosin
- Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Siddharth R Vora
- Oral Health Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Brandon AA, Almeida D, Powder KE. Neural crest cells as a source of microevolutionary variation. Semin Cell Dev Biol 2023; 145:42-51. [PMID: 35718684 PMCID: PMC10482117 DOI: 10.1016/j.semcdb.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Vertebrates have some of the most complex and diverse features in animals, from varied craniofacial morphologies to colorful pigmentation patterns and elaborate social behaviors. All of these traits have their developmental origins in a multipotent embryonic lineage of neural crest cells. This "fourth germ layer" is a vertebrate innovation and the source of a wide range of adult cell types. While others have discussed the role of neural crest cells in human disease and animal domestication, less is known about their role in contributing to adaptive changes in wild populations. Here, we review how variation in the development of neural crest cells and their derivatives generates considerable phenotypic diversity in nature. We focus on the broad span of traits under natural and sexual selection whose variation may originate in the neural crest, with emphasis on behavioral factors such as intraspecies communication that are often overlooked. In all, we encourage the integration of evolutionary ecology with developmental biology and molecular genetics to gain a more complete understanding of the role of this single cell type in trait covariation, evolutionary trajectories, and vertebrate diversity.
Collapse
Affiliation(s)
- A Allyson Brandon
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Daniela Almeida
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Kara E Powder
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
9
|
Houchen CJ, Castro B, Hahn Leat P, Mohammad N, Hall-Glenn F, Bumann EE. Treatment with an inhibitor of matrix metalloproteinase 9 or cathepsin K lengthens embryonic lower jaw bone. Orthod Craniofac Res 2023; 26:500-509. [PMID: 36680416 PMCID: PMC11508777 DOI: 10.1111/ocr.12635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/26/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Skeletal malocclusions are common, and severe malocclusions are treated by invasive surgeries. Recently, jaw bone length has been shown to be developmentally controlled by osteoclasts. Our objective was to determine the effect of inhibiting osteoclast-secreted proteolytic enzymes on lower jaw bone length of avian embryos by pharmacologically inhibiting matrix metalloproteinase-9 (MMP9) or cathepsin K (CTSK). METHODS Quail (Coturnix coturnix japonica) embryos were given a single dose of an inhibitor of MMP9 (iMMP9), an inhibitor CTSK (iCTSK), or vehicle at a developmental stage when bone deposition is beginning to occur. At a developmental stage when the viscerocranium is largely calcified, the heads were scanned via micro-computed tomography and reproducible landmarks were placed on 3D-reconstructed skulls; the landmark coordinates were used to quantify facial bone dimensions. RESULTS Approximately half of the quail given either iMMP9 or iCTSK demonstrated an overt lower jaw phenotype, characterized by longer lower jaw bones and a greater lower to upper jaw ratio than control embryos. Additionally, iMMP9-treated embryos exhibited a significant change in midface length and iCTSK-treated embryos had significant change in nasal bone length. CONCLUSION MMP9 and CTSK play a role in osteoclast-mediated determination of lower jaw bone length. Pharmacological inhibition of MMP9 or CTSK may be a promising therapeutic alternative to surgery for treating skeletal jaw malocclusions, but more preclinical research is needed prior to clinical translation.
Collapse
Affiliation(s)
- Claire J Houchen
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Bethany Castro
- Summer Scholar Program Participant, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Portia Hahn Leat
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Nashwa Mohammad
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Faith Hall-Glenn
- Department of Orthopaedic Surgery, School of Medicine, University of California-San Francisco, San Francisco, California, USA
- St. Anna's Children's Cancer Research Institute, Vienna, Austria
| | - Erin E Bumann
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
10
|
Paese CLB, Chang CF, Kristeková D, Brugmann SA. Pharmacological intervention of the FGF-PTH axis as a potential therapeutic for craniofacial ciliopathies. Dis Model Mech 2022; 15:275968. [PMID: 35818799 PMCID: PMC9403750 DOI: 10.1242/dmm.049611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Ciliopathies represent a disease class characterized by a broad range of phenotypes including polycystic kidneys and skeletal anomalies. Ciliopathic skeletal phenotypes are among the most common and most difficult to treat due to a poor understanding of the pathological mechanisms leading to disease. Using an avian model (talpid2) for a human ciliopathy with both kidney and skeletal anomalies (Orofaciodigital syndrome 14), we identified disruptions in the FGF23-PTH axis that resulted in reduced calcium uptake in the developing mandible and subsequent micrognathia. While pharmacological intervention with the FDA-approved pan-FGFR inhibitor AZD4547 alone rescued expression of the FGF target Sprouty2, it did not significantly rescue micrognathia. In contrast, treatment with a cocktail of AZD4547 and Teriparatide acetate, a PTH agonist and FDA-approved treatment for osteoporosis, resulted in a molecular, cellular, and phenotypic rescue of ciliopathic micrognathia in talpid2 mutants. Together, these data provide novel insight into pathological molecular mechanisms associated with ciliopathic skeletal phenotypes and a potential therapeutic strategy for a pleiotropic disease class with limited to no treatment options.
Collapse
Affiliation(s)
- Christian Louis Bonatto Paese
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ching-Fang Chang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Daniela Kristeková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Samantha A Brugmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
11
|
Newton AH. Marsupials and Multi-Omics: Establishing New Comparative Models of Neural Crest Patterning and Craniofacial Development. Front Cell Dev Biol 2022; 10:941168. [PMID: 35813210 PMCID: PMC9260703 DOI: 10.3389/fcell.2022.941168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/06/2022] [Indexed: 11/15/2022] Open
Abstract
Studies across vertebrates have revealed significant insights into the processes that drive craniofacial morphogenesis, yet we still know little about how distinct facial morphologies are patterned during development. Studies largely point to evolution in GRNs of cranial progenitor cell types such as neural crest cells, as the major driver underlying adaptive cranial shapes. However, this hypothesis requires further validation, particularly within suitable models amenable to manipulation. By utilizing comparative models between related species, we can begin to disentangle complex developmental systems and identify the origin of species-specific patterning. Mammals present excellent evolutionary examples to scrutinize how these differences arise, as sister clades of eutherians and marsupials possess suitable divergence times, conserved cranial anatomies, modular evolutionary patterns, and distinct developmental heterochrony in their NCC behaviours and craniofacial patterning. In this review, I lend perspectives into the current state of mammalian craniofacial biology and discuss the importance of establishing a new marsupial model, the fat-tailed dunnart, for comparative research. Through detailed comparisons with the mouse, we can begin to decipher mammalian conserved, and species-specific processes and their contribution to craniofacial patterning and shape disparity. Recent advances in single-cell multi-omics allow high-resolution investigations into the cellular and molecular basis of key developmental processes. As such, I discuss how comparative evolutionary application of these tools can provide detailed insights into complex cellular behaviours and expression dynamics underlying adaptive craniofacial evolution. Though in its infancy, the field of "comparative evo-devo-omics" presents unparalleled opportunities to precisely uncover how phenotypic differences arise during development.
Collapse
|
12
|
Smith SS, Chu D, Qu T, Aggleton JA, Schneider RA. Species-specific sensitivity to TGFβ signaling and changes to the Mmp13 promoter underlie avian jaw development and evolution. eLife 2022; 11:e66005. [PMID: 35666955 PMCID: PMC9246370 DOI: 10.7554/elife.66005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/03/2022] [Indexed: 12/02/2022] Open
Abstract
Precise developmental control of jaw length is critical for survival, but underlying molecular mechanisms remain poorly understood. The jaw skeleton arises from neural crest mesenchyme (NCM), and we previously demonstrated that these progenitor cells express more bone-resorbing enzymes including Matrix metalloproteinase 13 (Mmp13) when they generate shorter jaws in quail embryos versus longer jaws in duck. Moreover, if we inhibit bone resorption or Mmp13, we can increase jaw length. In the current study, we uncover mechanisms establishing species-specific levels of Mmp13 and bone resorption. Quail show greater activation of and sensitivity to transforming growth factor beta (TGFβ) signaling than duck; where intracellular mediators like SMADs and targets like Runt-related transcription factor 2 (Runx2), which bind Mmp13, become elevated. Inhibiting TGFβ signaling decreases bone resorption, and overexpressing Mmp13 in NCM shortens the duck lower jaw. To elucidate the basis for this differential regulation, we examine the Mmp13 promoter. We discover a SMAD-binding element and single nucleotide polymorphisms (SNPs) near a RUNX2-binding element that distinguish quail from duck. Altering the SMAD site and switching the SNPs abolish TGFβ sensitivity in the quail Mmp13 promoter but make the duck promoter responsive. Thus, differential regulation of TGFβ signaling and Mmp13 promoter structure underlie avian jaw development and evolution.
Collapse
Affiliation(s)
- Spenser S Smith
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Daniel Chu
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Tiange Qu
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Jessye A Aggleton
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Richard A Schneider
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
13
|
Genetic Interaction of Thm2 and Thm1 Shapes Postnatal Craniofacial Bone. J Dev Biol 2022; 10:jdb10020017. [PMID: 35645293 PMCID: PMC9149932 DOI: 10.3390/jdb10020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Ciliopathies are genetic syndromes that link skeletal dysplasias to the dysfunction of primary cilia. Primary cilia are sensory organelles synthesized by intraflagellar transport (IFT)—A and B complexes, which traffic protein cargo along a microtubular core. We have reported that the deletion of the IFT-A gene, Thm2, together with a null allele of its paralog, Thm1, causes a small skeleton with a small mandible or micrognathia in juvenile mice. Using micro-computed tomography, here we quantify the craniofacial defects of Thm2−/−; Thm1aln/+ triple allele mutant mice. At postnatal day 14, triple allele mutant mice exhibited micrognathia, midface hypoplasia, and a decreased facial angle due to shortened upper jaw length, premaxilla, and nasal bones, reflecting altered development of facial anterior-posterior elements. Mutant mice also showed increased palatal width, while other aspects of the facial transverse, as well as vertical dimensions, remained intact. As such, other ciliopathy-related craniofacial defects, such as cleft lip and/or palate, hypo-/hypertelorism, broad nasal bridge, craniosynostosis, and facial asymmetry, were not observed. Calvarial-derived osteoblasts of triple allele mutant mice showed reduced bone formation in vitro that was ameliorated by Hedgehog agonist, SAG. Together, these data indicate that Thm2 and Thm1 genetically interact to regulate bone formation and sculpting of the postnatal face. The triple allele mutant mice present a novel model to study craniofacial bone development.
Collapse
|
14
|
Huang J, Wang C, Ouyang J, Tang H, Zheng S, Xiong Y, Gao Y, Wu Y, Wang L, Yan X, Chen H. Identification of Key Candidate Genes for Beak Length Phenotype by Whole-Genome Resequencing in Geese. Front Vet Sci 2022; 9:847481. [PMID: 35372529 PMCID: PMC8964941 DOI: 10.3389/fvets.2022.847481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
The domestic goose is an important economic animal in agriculture and its beak, a trait with high heritability, plays an important role in promoting food intake and defending against attacks. In this study, we sequenced 772 420-day-old Xingguo gray geese (XGG) using a low-depth (~1 ×) whole-genome resequencing strategy. We detected 12,490,912 single nucleotide polymorphisms (SNPs) using the standard GATK and imputed with STITCH. We then performed a genome-wide association study on the beak length trait in XGG. The results indicated that 57 SNPs reached genome-wide significance levels for the beak length trait and were assigned to seven genes, including TAPT1, DHX15, CCDC149, LGI2, SEPSECS, ANAPC4, and Slc34a2. The different genotypes of the most significant SNP (top SNP), which was located upstream of LGI2 and explained 7.24% of the phenotypic variation in beak length, showed significant differences in beak length. Priority-based significance analysis concluded that CCDC149, LGI2, and SEPSECS genes in the most significant quantitative trait locus interval were the most plausible positional and functional candidate genes for beak length development in the XGG population. These findings not only enhance our understanding of the genetic mechanism of the beak length phenotype in geese, but also lay the foundation for further studies to facilitate the genetic selection of traits in geese.
Collapse
|
15
|
CRLF1 and CLCF1 in Development, Health and Disease. Int J Mol Sci 2022; 23:ijms23020992. [PMID: 35055176 PMCID: PMC8780587 DOI: 10.3390/ijms23020992] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Cytokines and their receptors have a vital function in regulating various processes such as immune function, inflammation, haematopoiesis, cell growth and differentiation. The interaction between a cytokine and its specific receptor triggers intracellular signalling cascades that lead to altered gene expression in the target cell and consequent changes in its proliferation, differentiation, or activation. In this review, we highlight the role of the soluble type I cytokine receptor CRLF1 (cytokine receptor-like factor-1) and the Interleukin (IL)-6 cytokine CLCF1 (cardiotrophin-like cytokine factor 1) during development in physiological and pathological conditions with particular emphasis on Crisponi/cold-induced sweating syndrome (CS/CISS) and discuss new insights, challenges and possibilities arising from recent studies.
Collapse
|
16
|
Miao KZ, Cozzone A, Caetano-Lopes J, Harris MP, Fisher S. Osteoclast activity sculpts craniofacial form to permit sensorineural patterning in the zebrafish skull. Front Endocrinol (Lausanne) 2022; 13:969481. [PMID: 36387889 PMCID: PMC9664155 DOI: 10.3389/fendo.2022.969481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Efforts to understand the morphogenesis of complex craniofacial structures have largely focused on the role of chondrocytes and osteoblasts. Along with these bone-creating cells, bone-resorbing osteoclasts are critical in homeostasis of adult skeletal structures, but there is currently limited information on their role in the complex morphogenetic events of craniofacial development. Fundamental aspects of skull formation and general skeletal development are conserved from zebrafish to mammals. Using a cathepsinK reporter, we documented osteoclast location in the developing zebrafish skull over several weeks, from 5.18 mm to 9.6 mm standard length (approximately 15 to 34 days post fertilization). While broad distribution of osteoclasts is consistent across individuals, they are sparse and the exact locations vary among fish and across developmental time points. Interestingly, we observed osteoclasts concentrating at areas associated with neuromasts and their associated nerves, in particular the hyomandibular foramina and around the supraorbital lateral line. These are areas of active remodeling. In contrast, other areas of rapid bone growth, such as the osteogenic fronts of the frontal and parietal bones, show no particular concentration of osteoclasts, suggesting that they play a special role in shaping bone near neuromasts and nerves. In csf1ra mutants lacking functional osteoclasts, the morphology of the cranial bone was disrupted in both areas. The hyomandibular foramen is present in the initial cartilage template, but after the initiation of ossification, the diameter of the canal is significantly smaller in the absence of osteoclasts. The diameter of the supraorbital lateral line canals was also reduced in the mutants, as was the number of pores associated with neuromasts, which allow for the passage of associated nerves through the bone. Our findings define important and previously unappreciated roles for osteoclast activity in shaping craniofacial skeletal structures with a particular role in bone modeling around peripheral cranial nerves, providing a scaffold for wiring the sensioneural system during craniofacial development. This has important implications for the formation of the evolutionarily diverse lateral line system, as well understanding the mechanism of neurologic sequelae of congenital osteoclast dysfunction in human craniofacial development.
Collapse
Affiliation(s)
- Kelly Z. Miao
- Department of Pharmacology and Experimental Therapeutics, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, United States
| | - Austin Cozzone
- Department of Pharmacology and Experimental Therapeutics, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, United States
| | - Joana Caetano-Lopes
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Matthew P. Harris
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Shannon Fisher
- Department of Pharmacology and Experimental Therapeutics, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, United States
- *Correspondence: Shannon Fisher,
| |
Collapse
|
17
|
Geiger M, Schoenebeck JJ, Schneider RA, Schmidt MJ, Fischer MS, Sánchez-Villagra MR. Exceptional Changes in Skeletal Anatomy under Domestication: The Case of Brachycephaly. Integr Org Biol 2021; 3:obab023. [PMID: 34409262 PMCID: PMC8366567 DOI: 10.1093/iob/obab023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/06/2021] [Accepted: 07/08/2021] [Indexed: 01/17/2023] Open
Abstract
"Brachycephaly" is generally considered a phenotype in which the facial part of the head is pronouncedly shortened. While brachycephaly is characteristic for some domestic varieties and breeds (e.g., Bulldog, Persian cat, Niata cattle, Anglo-Nubian goat, Middle White pig), this phenotype can also be considered pathological. Despite the superficially similar appearance of "brachycephaly" in such varieties and breeds, closer examination reveals that "brachycephaly" includes a variety of different cranial modifications with likely different genetic and developmental underpinnings and related with specific breed histories. We review the various definitions and characteristics associated with brachycephaly in different domesticated species. We discern different types of brachycephaly ("bulldog-type," "katantognathic," and "allometric" brachycephaly) and discuss morphological conditions related to brachycephaly, including diseases (e.g., brachycephalic airway obstructive syndrome). Further, we examine the complex underlying genetic and developmental processes and the culturally and developmentally related reasons why brachycephalic varieties may or may not be prevalent in certain domesticated species. Knowledge on patterns and mechanisms associated with brachycephaly is relevant for domestication research, veterinary and human medicine, as well as evolutionary biology, and highlights the profound influence of artificial selection by humans on animal morphology, evolution, and welfare.
Collapse
Affiliation(s)
- M Geiger
- Paleontological Institute and Museum, University of Zurich,
Karl-Schmid-Str. 4, 8006 Zurich, Switzerland
| | - J J Schoenebeck
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University
of Edinburgh, Easter Bush Campus, Midlothian EH25
9RG, UK
| | - R A Schneider
- Department of Orthopaedic Surgery, University of California at San
Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA
94143-0514, USA
| | - M J Schmidt
- Clinic for Small Animals—Neurosurgery, Neuroradiology and Clinical
Neurology, Justus Liebig University Giessen, Frankfurter Str.
114, 35392 Giessen, Germany
| | - M S Fischer
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller
University Jena, Erbertstr. 1, 07743 Jena,
Germany
| | - M R Sánchez-Villagra
- Paleontological Institute and Museum, University of Zurich,
Karl-Schmid-Str. 4, 8006 Zurich, Switzerland
| |
Collapse
|
18
|
Guo S, Gu J, Ma J, Xu R, Wu Q, Meng L, Liu H, Li L, Xu Y. GATA4-driven miR-206-3p signatures control orofacial bone development by regulating osteogenic and osteoclastic activity. Theranostics 2021; 11:8379-8395. [PMID: 34373748 PMCID: PMC8344011 DOI: 10.7150/thno.58052] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Growth disorders in the orofacial bone development process may lead to orofacial deformities. The balance between bone matrix formation by mesenchymal lineage osteoblasts and bone resorption by osteoclasts is vital for orofacial bone development. Although the mechanisms of orofacial mesenchymal stem cells (OMSCs) in orofacial bone development have been studied intensively, the communication between OMSCs and osteoclasts remains largely unclear. Methods: We used a neural crest cell-specific knockout mouse model to investigate orofacial bone development in GATA-binding protein 4 (GATA4) morphants. We investigated the underlying mechanisms of OMSCs-derived exosomes (OMExos) on osteoclastogenesis and bone resorption activity in vitro. miRNAs were extracted from OMExos, and differences in miRNA abundances were determined using an Affymetrix miRNA array. Luciferase reporter assays were used to validate the binding between GATA4 and miR-206-3p in OMSCs and to confirm the putative binding of miR-206-3p and its target genes in OMSCs and osteoclasts. The regulatory mechanism of the GATA4-miR-206-3p axis in OMSC osteogenic differentiation and osteoclastogenesis was examined in vitro and in vivo. Results: Wnt1-Cre;Gata4fl/fl mice (cKO) not only presented inhibited bone formation but also showed active bone resorption. Osteoclasts cocultured in vitro with cKO OMSCs presented an increased capacity for osteoclastogenesis, which was exosome-dependent. Affymetrix miRNA array analysis showed that miR-206-3p was downregulated in exosomes from shGATA4 OMSCs. Moreover, the transcriptional activity of miR-206-3p was directly regulated by GATA4 in OMSCs. We further demonstrated that miR-206-3p played a key role in the regulation of orofacial bone development by directly targeting bone morphogenetic protein-3 (Bmp3) and nuclear factor of activated T -cells, cytoplasmic 1 (NFATc1). OMExos and agomiR-206-3p enhanced bone mass in Wnt1-cre;Gata4fl/fl mice by augmenting trabecular bone structure and decreasing osteoclast numbers. Conclusion: Our findings confirm that miR-206-3p is an important downstream factor of GATA4 that regulates the functions of OMSCs and osteoclasts. These results demonstrate the efficiency of OMExos and microRNA agomirs in promoting bone regeneration, which provide an ideal therapeutic tool for orofacial bone deformities in the future.
Collapse
|
19
|
Preidl RHM, Amann K, Weber M, Schiller M, Ringler M, Ries J, Neukam FW, Kesting M, Geppert CI, Wehrhan F. Lineage-associated connexin 43 expression in bisphosphonate-exposed rat bones. J Craniomaxillofac Surg 2021; 49:738-747. [PMID: 33642117 DOI: 10.1016/j.jcms.2021.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 11/19/2020] [Accepted: 02/14/2021] [Indexed: 10/22/2022] Open
Abstract
Expression of signaling proteins in bone cells depends on their embryological mesoderm-derived (e.g. tibia) or cranial neural crest (CNC)-derived (e.g. jaw) origin. Connexin 43 (Cx43) is a gap junction protein that plays an essential role in the mode of action of bisphosphonates (BP). This study aimed to investigate Cx43 expression and the influence of BP application on mesoderm- and CNC-derived bone. Using a rat model, molar extraction and tibia osteotomy with (Group 4) or without (Group 3) previous BP application was performed. Untreated (Group 1) and animals selectively treated with BPs (Group 2) served as controls. Cx43 expression was immunohistochemically determined 12 and 16 weeks postoperatively via a labeling index. Cx43 expression in CNC-derived bone was significantly higher compared with mesodermal bone. BP application decreased Cx43 expression; however, detected expression levels were still higher in jawbone (Group 2 tibia vs jaw: 5.83 ± 5.06 vs 23.52 ± 6.42; p = 0.007). During bone healing after surgical intervention (Group 3) there were no expression differences between tibia and jawbone. BP treatment prior to surgery resulted in significantly lower Cx43 expression in CNC-derived compared with tibia bone (Group 4 tibia vs jaw: 56.84 ± 15.57 vs 16.40 ± 5.66; p < 0.01). Increased Cx43 expression in jaw compared with tibia bone is in line with their embryological origins. A significant Cx43 suppression in jawbone after BP application and surgery might contribute to the selectively altered osseous turnover and development of MRONJ in CNC-derived bone.
Collapse
Affiliation(s)
- Raimund H M Preidl
- Resident, Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Glückstraße 11, 91056, Erlangen, Germany.
| | - Kerstin Amann
- Head of Nephropathology, University of Erlangen-Nuremberg, Glückstraße 11, 91056, Erlangen, Germany
| | - Manuel Weber
- Resident, Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Glückstraße 11, 91056, Erlangen, Germany
| | - Martin Schiller
- Doctoral Students, Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Glückstraße 11, 91056, Erlangen, Germany
| | - Manuela Ringler
- Doctoral Students, Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Glückstraße 11, 91056, Erlangen, Germany
| | - Jutta Ries
- Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Glückstraße 11, 91056, Erlangen, Germany
| | - Friedrich W Neukam
- Former Head of Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Glückstraße 11, 91056, Erlangen, Germany
| | - Marco Kesting
- Head of Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Glückstraße 11, 91056, Erlangen, Germany
| | - Carol-Immanuel Geppert
- Specialist in Pathology, University of Erlangen-Nuremberg, Glückstraße 11, 91056, Erlangen, Germany
| | - Falk Wehrhan
- Specialist in Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Glückstraße 11, 91056, Erlangen, Germany
| |
Collapse
|
20
|
Bonatto Paese CL, Brooks EC, Aarnio-Peterson M, Brugmann SA. Ciliopathic micrognathia is caused by aberrant skeletal differentiation and remodeling. Development 2021; 148:148/4/dev194175. [PMID: 33589509 DOI: 10.1242/dev.194175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
Ciliopathies represent a growing class of diseases caused by defects in microtubule-based organelles called primary cilia. Approximately 30% of ciliopathies are characterized by craniofacial phenotypes such as craniosynostosis, cleft lip/palate and micrognathia. Patients with ciliopathic micrognathia experience a particular set of difficulties, including impaired feeding and breathing, and have extremely limited treatment options. To understand the cellular and molecular basis for ciliopathic micrognathia, we used the talpid2 (ta2 ), a bona fide avian model for the human ciliopathy oral-facial-digital syndrome subtype 14. Histological analyses revealed that the onset of ciliopathic micrognathia in ta2 embryos occurred at the earliest stages of mandibular development. Neural crest-derived skeletal progenitor cells were particularly sensitive to a ciliopathic insult, undergoing unchecked passage through the cell cycle and subsequent increased proliferation. Furthermore, whereas neural crest-derived skeletal differentiation was initiated, osteoblast maturation failed to progress to completion. Additional molecular analyses revealed that an imbalance in the ratio of bone deposition and resorption also contributed to ciliopathic micrognathia in ta2 embryos. Thus, our results suggest that ciliopathic micrognathia is a consequence of multiple aberrant cellular processes necessary for skeletal development, and provide potential avenues for future therapeutic treatments.
Collapse
Affiliation(s)
- Christian Louis Bonatto Paese
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Evan C Brooks
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Megan Aarnio-Peterson
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samantha A Brugmann
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA .,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Shriners Children's Hospital, Cincinnati, OH 45229, USA
| |
Collapse
|
21
|
Galea GL, Zein MR, Allen S, Francis-West P. Making and shaping endochondral and intramembranous bones. Dev Dyn 2020; 250:414-449. [PMID: 33314394 PMCID: PMC7986209 DOI: 10.1002/dvdy.278] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Skeletal elements have a diverse range of shapes and sizes specialized to their various roles including protecting internal organs, locomotion, feeding, hearing, and vocalization. The precise positioning, size, and shape of skeletal elements is therefore critical for their function. During embryonic development, bone forms by endochondral or intramembranous ossification and can arise from the paraxial and lateral plate mesoderm or neural crest. This review describes inductive mechanisms to position and pattern bones within the developing embryo, compares and contrasts the intrinsic vs extrinsic mechanisms of endochondral and intramembranous skeletal development, and details known cellular processes that precisely determine skeletal shape and size. Key cellular mechanisms are employed at distinct stages of ossification, many of which occur in response to mechanical cues (eg, joint formation) or preempting future load‐bearing requirements. Rapid shape changes occur during cellular condensation and template establishment. Specialized cellular behaviors, such as chondrocyte hypertrophy in endochondral bone and secondary cartilage on intramembranous bones, also dramatically change template shape. Once ossification is complete, bone shape undergoes functional adaptation through (re)modeling. We also highlight how alterations in these cellular processes contribute to evolutionary change and how differences in the embryonic origin of bones can influence postnatal bone repair. Compares and contrasts Endochondral and intramembranous bone development Reviews embryonic origins of different bones Describes the cellular and molecular mechanisms of positioning skeletal elements. Describes mechanisms of skeletal growth with a focus on the generation of skeletal shape
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.,Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Mohamed R Zein
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Steven Allen
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Philippa Francis-West
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
22
|
Tang W, Bronner ME. Neural crest lineage analysis: from past to future trajectory. Development 2020; 147:147/20/dev193193. [PMID: 33097550 DOI: 10.1242/dev.193193] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since its discovery 150 years ago, the neural crest has intrigued investigators owing to its remarkable developmental potential and extensive migratory ability. Cell lineage analysis has been an essential tool for exploring neural crest cell fate and migration routes. By marking progenitor cells, one can observe their subsequent locations and the cell types into which they differentiate. Here, we review major discoveries in neural crest lineage tracing from a historical perspective. We discuss how advancing technologies have refined lineage-tracing studies, and how clonal analysis can be applied to questions regarding multipotency. We also highlight how effective progenitor cell tracing, when combined with recently developed molecular and imaging tools, such as single-cell transcriptomics, single-molecule fluorescence in situ hybridization and high-resolution imaging, can extend the scope of neural crest lineage studies beyond development to regeneration and cancer initiation.
Collapse
Affiliation(s)
- Weiyi Tang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
23
|
Chu D, Nguyen A, Smith SS, Vavrušová Z, Schneider RA. Stable integration of an optimized inducible promoter system enables spatiotemporal control of gene expression throughout avian development. Biol Open 2020; 9:bio055343. [PMID: 32917762 PMCID: PMC7561481 DOI: 10.1242/bio.055343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 01/18/2023] Open
Abstract
Precisely altering gene expression is critical for understanding molecular processes of embryogenesis. Although some tools exist for transgene misexpression in developing chick embryos, we have refined and advanced them by simplifying and optimizing constructs for spatiotemporal control. To maintain expression over the entire course of embryonic development we use an enhanced piggyBac transposon system that efficiently integrates sequences into the host genome. We also incorporate a DNA targeting sequence to direct plasmid translocation into the nucleus and a D4Z4 insulator sequence to prevent epigenetic silencing. We designed these constructs to minimize their size and maximize cellular uptake, and to simplify usage by placing all of the integrating sequences on a single plasmid. Following electroporation of stage HH8.5 embryos, our tetracycline-inducible promoter construct produces robust transgene expression in the presence of doxycycline at any point during embryonic development in ovo or in culture. Moreover, expression levels can be modulated by titrating doxycycline concentrations and spatial control can be achieved using beads or gels. Thus, we have generated a novel, sensitive, tunable, and stable inducible-promoter system for high-resolution gene manipulation in vivo.
Collapse
Affiliation(s)
- Daniel Chu
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - An Nguyen
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - Spenser S Smith
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - Zuzana Vavrušová
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - Richard A Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| |
Collapse
|
24
|
Cheng Y, Miller MJ, Zhang D, Song G, Jia C, Qu Y, Lei F. Comparative Genomics Reveals Evolution of a Beak Morphology Locus in a High-Altitude Songbird. Mol Biol Evol 2020; 37:2983-2988. [PMID: 32592485 DOI: 10.1093/molbev/msaa157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Ground Tit (Pseudopodoces humilis) has lived on the Qinghai-Tibet Plateau for ∼5.7 My and has the highest altitudinal distribution among all parids. This species has evolved an elongated beak in response to long-term selection imposed by ground-foraging and cavity-nesting habits, yet the genetic basis for beak elongation remains unknown. Here, we perform genome-wide analyses across 14 parid species and identify 25 highly divergent genomic regions that are significantly associated with beak length, finding seven candidate genes involved in bone morphogenesis and remolding. Neutrality tests indicate that a model allowing for a selective sweep in the highly conserved COL27A1 gene best explains variation in beak length. We also identify two nonsynonymous fixed mutations in the collagen domain that are predicted to be functionally deleterious yet may have facilitated beak elongation. Our study provides evidence of adaptive alleles in COL27A1 with major effects on beak elongation of Ps. humilis.
Collapse
Affiliation(s)
- Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Matthew J Miller
- Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, Norman, OK
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
25
|
The Morphology of Cross-Beaks and BMP4 Gene Expression in Huiyang Bearded Chickens. Animals (Basel) 2019; 9:ani9121143. [PMID: 31847260 PMCID: PMC6940792 DOI: 10.3390/ani9121143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/01/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Recently, the emergence of cross-beaks has been reported in several domestic chickens. Despite several candidate genes, bone morphogenetic protein 4 (BMP4) has been suggested as responsible for chicken cross-beaks. The subtypes of the morphology term, etiopathogenesis, and the relationship of the candidate BMP4 gene to cross-beaks are not yet known. The objective of this study was to describe the subtypes of cross-beaks by left or right and upper and lower jaw bones and to figure out the relationship between BMP4 and the development of craniofacial bones in Huiyang bearded chickens. Abstract Bird beaks are important for biological purposes such as food intake, removing parasites, and defining phenotypic attributes. Cross-beaks are a threat to poultry health and are harmful to productivity, wasting some units in the poultry industry. However, there is still limited research on subtypes of cross-beaks and the genetic basis of cross-beaks as well. Here, we described the subtypes of cross-beaks in terms of left or right and upper or lower jaw bones. We evaluated the impact of cross-beaks on craniofacial bones and figured out the relationship between bone morphogenetic protein 4 (BMP4) and the development of craniofacial bones in Huiyang bearded chickens. We identified five typical subtypes of cross-beaks by morphological assessment and X-ray scanning. We found that cross-beaks caused certain changes in the facial bone morphology, including changes to the length and width of the bone around the ocular area (p < 0.05). The relative expressions of BMP4 in lacrimal, mandible, premaxilla, frontal, and parietal bones were significantly higher in the severe cross-beak group, followed by that of the medium cross-beak group, weak cross-beak group, and control group (p < 0.05). Overall, we constructed a generally applicable method to classify cross-beaks in term of the angle. The skeleton around the ocular area was affected by the cross-beak. The expression levels of BMP4 in craniofacial bones may provide insight to potential role of BMP4 in the development of cross-beaks.
Collapse
|
26
|
Hassan MG, Vargas R, Zaher AR, Ismail HA, Lee C, Cox TC, Jheon AH. Altering calcium and phosphorus levels in utero affects adult mouse mandibular morphology. Orthod Craniofac Res 2019; 22 Suppl 1:113-119. [PMID: 31074150 DOI: 10.1111/ocr.12269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The purpose of our study was to determine morphological changes and bone mineral density (BMD) differences in the adult mandible of offspring exposed to high calcium, low phosphorus diets in utero until weaning age. MATERIALS AND METHODS Time-mated FVB wild-type mice were fed normal or experimental diet during gestation and until weaning of offspring. Experimental diet contained 3-fold increase in calcium and 3-fold decrease in phosphorus compared to normal diet. Adult mandibles of offspring exposed to experimental diet were sacrificed and heads scanned using micro-computed tomography. Three-dimensional 3D geometric morphometric analysis GMA was utilized to detect morphological changes to the mandible including the condyle. RESULTS Experimental females showed the greatest morphological differences including shortened mandibular ramus width and height, shortened mandibular body length and height, a wider but shortened condylar neck and a wider condylar head in the lateral-medial direction. Experimental male mandibles trended towards increased mandibular body height and length, opposite the changes observed in experimental female mandibles, whereas condyles were similar to that observed in experimental females. Bone mineral density (BMD) was lowered in experimental females. CONCLUSION Increased calcium and decreased phosphorus levels led to a retrognathic mandible associated with lowered BMD in experimental females, whereas experimental showed partly opposite effects. Further studies are required to understand the mechanism underlying diet- and gender-specific differences in mandibular morphology.
Collapse
Affiliation(s)
- Mohamed G Hassan
- Department of Orthodontics, Faculty of Oral and Dental Medicine, South Valley University, Qena, Egypt.,Department of Orthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.,Program in Craniofacial Biology, UCSF, San Francisco, California
| | - Ricardo Vargas
- Division of Orthodontics, UCSF, San Francisco, California
| | - Abbas R Zaher
- Department of Orthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Hanan A Ismail
- Department of Orthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Clare Lee
- Program in Craniofacial Biology, UCSF, San Francisco, California
| | - Timothy C Cox
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington
| | - Andrew H Jheon
- Program in Craniofacial Biology, UCSF, San Francisco, California.,Division of Orthodontics, UCSF, San Francisco, California.,Division of Craniofacial Anomalies, UCSF, San Francisco, California
| |
Collapse
|
27
|
Wu Z, Jung HS. How the diversity of the faces arises. J Oral Biosci 2019; 61:195-200. [PMID: 31751682 DOI: 10.1016/j.job.2019.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/05/2019] [Accepted: 08/10/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND The evolution of the face is crucial for each species to adapt to different diets, environments, and in some species, to promote social interaction. The diversity in the shapes of the face results from divergence in the process of facial development that begins during early embryonic development. HIGHLIGHTS Here we review the recent advancements in the understanding of the genetic, epigenetic, molecular, and cellular basis of facial diversity. We also review the robustness of facial development and how it relates to the evolution of the face. Finally, we discuss the current challenges in achieving a deeper understanding of facial diversity. CONCLUSION We have gained much knowledge with respect to cis-regulatory elements, gene expression, cellular behavior, and the physical forces in facial development in the past two decades. Significant interdisciplinary work is needed to integrate these varied pieces of information into a complete picture of how the diversity of faces arises.
Collapse
Affiliation(s)
- Zhaoming Wu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
28
|
Woronowicz KC, Schneider RA. Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw. EvoDevo 2019; 10:17. [PMID: 31417668 PMCID: PMC6691539 DOI: 10.1186/s13227-019-0131-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/22/2019] [Indexed: 01/16/2023] Open
Abstract
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition.
Collapse
Affiliation(s)
- Katherine C Woronowicz
- 1Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1161, Box 0514, San Francisco, CA 94143-0514 USA.,2Present Address: Department of Genetics, Harvard Medical School, Orthopaedic Research Laboratories, Children's Hospital Boston, Boston, MA 02115 USA
| | - Richard A Schneider
- 1Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1161, Box 0514, San Francisco, CA 94143-0514 USA
| |
Collapse
|
29
|
Sánchez‐Villagra MR, van Schaik CP. Evaluating the self‐domestication hypothesis of human evolution. Evol Anthropol 2019; 28:133-143. [DOI: 10.1002/evan.21777] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 12/12/2018] [Accepted: 03/03/2019] [Indexed: 12/17/2022]
|
30
|
Watanabe M, Kawasaki M, Kawasaki K, Kitamura A, Nagai T, Kodama Y, Meguro F, Yamada A, Sharpe PT, Maeda T, Takagi R, Ohazama A. Ift88 limits bone formation in maxillary process through suppressing apoptosis. Arch Oral Biol 2019; 101:43-50. [PMID: 30878609 DOI: 10.1016/j.archoralbio.2019.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE The development of the maxillary bone is under strict molecular control because of its complicated structure. Primary cilia play a critical role in craniofacial development, since defects in primary cilia are known to cause congenital craniofacial dysmorphologies as a wide spectrum of human diseases: the ciliopathies. The primary cilia also are known to regulate bone formation. However, the role of the primary cilia in maxillary bone development is not fully understood. DESIGN To address this question, we generated mice with a mesenchymal conditional deletion ofIft88 using the Wnt1Cre mice (Ift88fl/fl;Wnt1Cre). The gene Ift88 encodes a protein that is required for the function and formation of primary cilia. RESULTS It has been shown thatIft88fl/fl;Wnt1Cre mice exhibit cleft palate. Here, we additionally observed excess bone formation in the Ift88 mutant maxillary process. We also found ectopic apoptosis in the Ift88 mutant maxillary process at an early stage of development. To investigate whether the ectopic apoptosis is related to the Ift88 mouse maxillary phenotypes, we generated Ift88fl/fl;Wnt1Cre;p53-/- mutants to reduce apoptosis. The Ift88fl/fl;Wnt1Cre;p53-/- mice showed no excess bone formation, suggesting that the cells evading apoptosis by the presence of Ift88 in wild-type mice limit bone formation in maxillary development. On the other hand, the palatal cleft was retained in the Ift88fl/fl;Wnt1Cre;p53-/- mice, indicating that the excess bone formation or abnormal apoptosis was independent of the cleft palate phenotype in Ift88 mutant mice. CONCLUSIONS Ift88 limits bone formation in the maxillary process by suppressing apoptosis.
Collapse
Affiliation(s)
- Momoko Watanabe
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Oral and Maxillofacial Surgery, Department of Health Science, Course for Oral science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Maiko Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, Guy's Hospital, London Bridge, London, UK
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, Guy's Hospital, London Bridge, London, UK; Research Center for Advanced Oral Science, Department of Oral Life Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Kitamura
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Oral and Maxillofacial Surgery, Department of Health Science, Course for Oral science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takahiro Nagai
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Oral and Maxillofacial Surgery, Department of Health Science, Course for Oral science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasumitsu Kodama
- Division of Oral and Maxillofacial Surgery, Department of Health Science, Course for Oral science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fumiya Meguro
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akane Yamada
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Oral and Maxillofacial Surgery, Department of Health Science, Course for Oral science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Paul T Sharpe
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, Guy's Hospital, London Bridge, London, UK
| | - Takeyasu Maeda
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Research Center for Advanced Oral Science, Department of Oral Life Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Faculty of Dental Medicine, University of Airlangga, Surabaya, Indonesia
| | - Ritsuo Takagi
- Division of Oral and Maxillofacial Surgery, Department of Health Science, Course for Oral science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, Guy's Hospital, London Bridge, London, UK.
| |
Collapse
|
31
|
Woronowicz KC, Gline SE, Herfat ST, Fields AJ, Schneider RA. FGF and TGFβ signaling link form and function during jaw development and evolution. Dev Biol 2018; 444 Suppl 1:S219-S236. [PMID: 29753626 PMCID: PMC6239991 DOI: 10.1016/j.ydbio.2018.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/20/2018] [Accepted: 05/06/2018] [Indexed: 12/14/2022]
Abstract
How does form arise during development and change during evolution? How does form relate to function, and what enables embryonic structures to presage their later use in adults? To address these questions, we leverage the distinct functional morphology of the jaw in duck, chick, and quail. In connection with their specialized mode of feeding, duck develop a secondary cartilage at the tendon insertion of their jaw adductor muscle on the mandible. An equivalent cartilage is absent in chick and quail. We hypothesize that species-specific jaw architecture and mechanical forces promote secondary cartilage in duck through the differential regulation of FGF and TGFβ signaling. First, we perform transplants between chick and duck embryos and demonstrate that the ability of neural crest mesenchyme (NCM) to direct the species-specific insertion of muscle and the formation of secondary cartilage depends upon the amount and spatial distribution of NCM-derived connective tissues. Second, we quantify motility and build finite element models of the jaw complex in duck and quail, which reveals a link between species-specific jaw architecture and the predicted mechanical force environment. Third, we investigate the extent to which mechanical load mediates FGF and TGFβ signaling in the duck jaw adductor insertion, and discover that both pathways are mechano-responsive and required for secondary cartilage formation. Additionally, we find that FGF and TGFβ signaling can also induce secondary cartilage in the absence of mechanical force or in the adductor insertion of quail embryos. Thus, our results provide novel insights on molecular, cellular, and biomechanical mechanisms that couple musculoskeletal form and function during development and evolution.
Collapse
Affiliation(s)
- Katherine C Woronowicz
- Department of Orthopaedic Surgery, University of California, San Francisco, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - Stephanie E Gline
- Department of Orthopaedic Surgery, University of California, San Francisco, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - Safa T Herfat
- Department of Orthopaedic Surgery, University of California, San Francisco, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - Aaron J Fields
- Department of Orthopaedic Surgery, University of California, San Francisco, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - Richard A Schneider
- Department of Orthopaedic Surgery, University of California, San Francisco, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA.
| |
Collapse
|
32
|
Probing the origin of matching functional jaws: roles of Dlx5/6 in cranial neural crest cells. Sci Rep 2018; 8:14975. [PMID: 30297736 PMCID: PMC6175850 DOI: 10.1038/s41598-018-33207-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022] Open
Abstract
Gnathostome jaws derive from the first pharyngeal arch (PA1), a complex structure constituted by Neural Crest Cells (NCCs), mesodermal, ectodermal and endodermal cells. Here, to determine the regionalized morphogenetic impact of Dlx5/6 expression, we specifically target their inactivation or overexpression to NCCs. NCC-specific Dlx5/6 inactivation (NCC∆Dlx5/6) generates severely hypomorphic lower jaws that present typical maxillary traits. Therefore, differently from Dlx5/6 null-embryos, the upper and the lower jaws of NCC∆Dlx5/6 mice present a different size. Reciprocally, forced Dlx5 expression in maxillary NCCs provokes the appearance of distinct mandibular characters in the upper jaw. We conclude that: (1) Dlx5/6 activation in NCCs invariably determines lower jaw identity; (2) the morphogenetic processes that generate functional matching jaws depend on the harmonization of Dlx5/6 expression in NCCs and in distinct ectodermal territories. The co-evolution of synergistic opposing jaws requires the coordination of distinct regulatory pathways involving the same transcription factors in distant embryonic territories.
Collapse
|
33
|
Jheon AH, Oberoi S, Solem RC, Kapila S. Moving towards precision orthodontics: An evolving paradigm shift in the planning and delivery of customized orthodontic therapy. Orthod Craniofac Res 2018. [PMID: 28643930 DOI: 10.1111/ocr.12171] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in precision medicine portend similar progress in orthodontics and will be increasingly harnessed to achieve customized treatment approaches and enhance treatment efficiencies. Our goal is to provide a background on emerging advances in computer technologies and biomedicine and highlight their current and likely future applications to precision orthodontics. A review of orthodontically relevant technologies and advances in pertinent biological research was undertaken. Innovations in computer hardware and software, and 3D imaging technologies offer the ability for customized treatment and biomechanical planning that will be more fully realized within the next few decades. These technologies combined with 3D printing are already being applied to customized appliance fabrication such as aligners and retainers. The future prospects for custom fabrication of orthodontic brackets of appropriate material properties and smart devices are highly desirable and compelling goals. Within biomedicine, the fundamental understanding of cartilage growth and bone biology is currently being tested in animal models to modify mandibular growth and modulate tooth movement, respectively. Some of these discoveries will ultimately have clinical applications in orthodontics including for growth modification, accelerating orthodontic tooth movement, and enhancing anchorage or retention of teeth. Additional genomic and proteomic information will add to further customization of orthodontic diagnosis and treatments. Over the coming decades, precision orthodontics will continue to benefit from advances in many fields and will require the integration of advances in technology, and biomedical and clinical research to deliver optimal, efficient, safe, and reproducible personalized orthodontic treatment.
Collapse
Affiliation(s)
- A H Jheon
- Division of Craniofacial Anomalies and Program in Craniofacial Biology, Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| | - S Oberoi
- Division of Craniofacial Anomalies and Program in Craniofacial Biology, Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| | - R C Solem
- Division of Orthodontics, Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| | - S Kapila
- Division of Orthodontics, Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
34
|
Schneider RA. Neural crest and the origin of species-specific pattern. Genesis 2018; 56:e23219. [PMID: 30134069 PMCID: PMC6108449 DOI: 10.1002/dvg.23219] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
Abstract
For well over half of the 150 years since the discovery of the neural crest, the special ability of these cells to function as a source of species-specific pattern has been clearly recognized. Initially, this observation arose in association with chimeric transplant experiments among differentially pigmented amphibians, where the neural crest origin for melanocytes had been duly noted. Shortly thereafter, the role of cranial neural crest cells in transmitting species-specific information on size and shape to the pharyngeal arch skeleton as well as in regulating the timing of its differentiation became readily apparent. Since then, what has emerged is a deeper understanding of how the neural crest accomplishes such a presumably difficult mission, and this includes a more complete picture of the molecular and cellular programs whereby neural crest shapes the face of each species. This review covers studies on a broad range of vertebrates and describes neural-crest-mediated mechanisms that endow the craniofacial complex with species-specific pattern. A major focus is on experiments in quail and duck embryos that reveal a hierarchy of cell-autonomous and non-autonomous signaling interactions through which neural crest generates species-specific pattern in the craniofacial integument, skeleton, and musculature. By controlling size and shape throughout the development of these systems, the neural crest underlies the structural and functional integration of the craniofacial complex during evolution.
Collapse
Affiliation(s)
- Richard A. Schneider
- Department of Orthopedic SurgeryUniversity of California at San Francisco, 513 Parnassus AvenueS‐1161San Francisco, California
| |
Collapse
|
35
|
Cheng Y, Gao B, Wang H, Han N, Shao S, Wu S, Song G, Zhang YE, Zhu X, Lu X, Qu Y, Lei F. Evolution of beak morphology in the Ground Tit revealed by comparative transcriptomics. Front Zool 2017; 14:58. [PMID: 29299037 PMCID: PMC5740785 DOI: 10.1186/s12983-017-0245-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/28/2017] [Indexed: 11/10/2022] Open
Abstract
Background Beak morphology exhibits considerable adaptive plasticity in birds, which results in highly varied or specialized forms in response to variations in ecology and life history. As the only parid species endemic to the Qinghai-Tibet Plateau, the Ground Tit (Parus humilis) has evolved a distinctly long and curved beak from other parids. An integration of morphometrics, phylogenetics, transcriptomics and embryology allows us to address the evolutionary and developmental mechanisms of the adaptive beak structure observed in the Ground Tit. Results A morphometric approach quantified that the Ground Tit has a comparatively longer and more decurved upper beaks than other parids. We estimated that the ancestor of the Ground Tit likely had a short straight upper beak similar to most current recognized parid species using an ancestral state reconstruction. This morphological specialization is considered an adaptation to its ground-oriented behavior on the high plateau. To identify genetic mechanisms behind this adaptive change, a comparative transcriptomic analysis was applied between the Ground Tit and its closely related species, the Great Tit (Parus major). We detected that 623 genes were significantly differentially expressed in embryonic upper beaks between the two species, 17 of which were functionally annotated to correlate with bone development and morphogenesis, although genes related to bone development were not found to undergo accelerated evolution in the Ground Tit. RT-qPCR validation confirmed differential expression of five out of eight genes that were selected from the 17 genes. Subsequent functional assays in chicken embryos demonstrated that two of these genes, FGF13 and ITGB3, may affect beak morphology by modulating levels of osteoblasts and osteoclasts. Conclusions Our results provide preliminary evidence that development of the long decurved beak of the Ground Tit is likely regulated by transcriptional activities of multiple genes coordinating osteoblasts and osteoclasts. The integration of multiple approaches employed here sheds light on ecological and genetic mechanisms in the evolution of avian morphology.
Collapse
Affiliation(s)
- Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Bin Gao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Haitao Wang
- School of Life Sciences, Northeast Normal University, Changchun, 130024 China
| | - Naijian Han
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Shimiao Shao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shaoyuan Wu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116 China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiaojia Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xin Lu
- Department of Ecology, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
36
|
|
37
|
Anthwal N, Urban DJ, Luo ZX, Sears KE, Tucker AS. Meckel's cartilage breakdown offers clues to mammalian middle ear evolution. Nat Ecol Evol 2017; 1:93. [PMID: 28459103 DOI: 10.1038/s41559-017-0093] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A key transformation in mammalian ear evolution was incorporation of the primary jaw joint of premammalian synapsids into the definitive mammalian middle ear of living mammals. This evolutionary transition occurred in two-steps, starting with a partial or "transitional" mammalian middle ear in which the ectotympanic and malleus were still connected to the mandible by an ossified Meckel's Cartilage (MC), as observed in many Mesozoic mammals. This was followed by MC breakdown, freeing the ectotympanic and the malleus from the mandible and creating the definitive mammalian middle ear. Here we report novel findings on the role of chondroclasts in MC breakdown, shedding light on how therian mammals lost MC connecting the ear to the jaw. Genetic or pharmacological loss of clast cells in mice and opossums leads to persistence of embryonic MC beyond juvenile stages, with MC ossification in mutant mice. The persistent MC causes a distinctive postnatal groove on the mouse dentary. This morphology phenocopies the ossified MC and Meckelian groove observed in Mesozoic mammals. Clast cell recruitment to MC is not observed in reptiles, where MC persists as a cartilaginous structure. We hypothesize that ossification of MC is an ancestral feature of mammaliaforms, and that a shift in the timing of clast cell recruitment to MC prior to its ossification is a key developmental mechanism for the evolution of the definitive mammalian middle ear in extant therians.
Collapse
Affiliation(s)
- Neal Anthwal
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, UK
| | - Daniel J Urban
- School of Integrative Biology, 505 S Goodwin Avenue, University of Illinois, Urbana IL USA
| | - Zhe Xi Luo
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago IL USA
| | - Karen E Sears
- School of Integrative Biology, 505 S Goodwin Avenue, University of Illinois, Urbana IL USA.,Carl Woese Institute for Genomic Biology, 1206 W Gregory Drive, University of Illinois, Urbana IL USA
| | - Abigail S Tucker
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, UK
| |
Collapse
|
38
|
Kauffmann P, Hahn W, Sievers N, Troeltzsch M, Hohloch K, Brockmeyer P, Cordesmeyer R, Schliephake H, Gruber RM. Osteoblast-like cells with different embryologic origins behave differently in increasing zoledronic acid concentrations: a pilot study in pigs. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 123:20-28. [DOI: 10.1016/j.oooo.2016.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/18/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022]
|
39
|
Abstract
Coincident with the blossoming of the sakura was the 14th annual CDB Symposium hosted by the RIKEN Center for Developmental Biology in Kobe, Japan. This year's meeting, 'Size in Development: Growth, Shape and Allometry' focused on the molecular and cellular mechanisms underlying differences in size and shape and how they have evolved. On display was the power of using diverse approaches ranging from the study of organoids to whole organisms.
Collapse
Affiliation(s)
- Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
40
|
Sánchez-Villagra MR, Geiger M, Schneider RA. The taming of the neural crest: a developmental perspective on the origins of morphological covariation in domesticated mammals. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160107. [PMID: 27429770 PMCID: PMC4929905 DOI: 10.1098/rsos.160107] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/03/2016] [Indexed: 05/02/2023]
Abstract
Studies on domestication are blooming, but the developmental bases for the generation of domestication traits and breed diversity remain largely unexplored. Some phenotypic patterns of human neurocristopathies are suggestive of those reported for domesticated mammals and disrupting neural crest developmental programmes have been argued to be the source of traits deemed the 'domestication syndrome'. These character changes span multiple organ systems and morphological structures. But an in-depth examination within the phylogenetic framework of mammals including domesticated forms reveals that the distribution of such traits is not universal, with canids being the only group showing a large set of predicted features. Modularity of traits tied to phylogeny characterizes domesticated mammals: through selective breeding, individual behavioural and morphological traits can be reordered, truncated, augmented or deleted. Similarly, mammalian evolution on islands has resulted in suites of phenotypic changes like those of some domesticated forms. Many domesticated mammals can serve as valuable models for conducting comparative studies on the evolutionary developmental biology of the neural crest, given that series of their embryos are readily available and that their phylogenetic histories and genomes are well characterized.
Collapse
Affiliation(s)
| | - Madeleine Geiger
- Palaeontological Institute and Museum, University of Zurich, Karl-Schmid-Street 4, 8006 Zurich, Switzerland
| | - Richard A. Schneider
- Department of Orthopaedic Surgery, University of Californiaat San Francisco, 513 Parnassus Avenue, S-1161, San Francisco, CA, USA
| |
Collapse
|
41
|
Abstract
Molecular and cellular mechanisms that control jaw length are becoming better understood. This is significant since the jaws are not only critical for species-specific adaptation and survival, but they are often affected by a variety of size-related anomalies including mandibular hypoplasia, retrognathia, asymmetry, and clefting. This chapter overviews how jaw length is established during the allocation, proliferation, differentiation, and growth of jaw precursor cells, which originate from neural crest mesenchyme (NCM). The focus is mainly on results from experiments transplanting NCM between quail and duck embryos. Quail have short jaws whereas those of duck are relatively long. Quail-duck chimeras reveal that the determinants of jaw length are NCM mediated throughout development and include species-specific differences in jaw progenitor number, differential regulation of various signaling pathways, and the autonomous activation of programs for skeletal matrix deposition and resorption. Such insights help make the goal of devising new therapies for birth defects, diseases, and injuries to the jaw skeleton seem ever more likely.
Collapse
Affiliation(s)
- Richard A Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California, USA.
| |
Collapse
|