1
|
Venhuizen J, van Bergen MGJM, Bergevoet SM, Gilissen D, Spruijt CG, Wingens L, van den Akker E, Vermeulen M, Jansen JH, Martens JHA, van der Reijden BA. GFI1B and LSD1 repress myeloid traits during megakaryocyte differentiation. Commun Biol 2024; 7:374. [PMID: 38548886 PMCID: PMC10978956 DOI: 10.1038/s42003-024-06090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/21/2024] [Indexed: 04/01/2024] Open
Abstract
The transcription factor Growth Factor Independence 1B (GFI1B) recruits Lysine Specific Demethylase 1 A (LSD1/KDM1A) to stimulate gene programs relevant for megakaryocyte and platelet biology. Inherited pathogenic GFI1B variants result in thrombocytopenia and bleeding propensities with varying intensity. Whether these affect similar gene programs is unknow. Here we studied transcriptomic effects of four patient-derived GFI1B variants (GFI1BT174N,H181Y,R184P,Q287*) in MEG01 megakaryoblasts. Compared to normal GFI1B, each variant affected different gene programs with GFI1BQ287* uniquely failing to repress myeloid traits. In line with this, single cell RNA-sequencing of induced pluripotent stem cell (iPSC)-derived megakaryocytes revealed a 4.5-fold decrease in the megakaryocyte/myeloid cell ratio in GFI1BQ287* versus normal conditions. Inhibiting the GFI1B-LSD1 interaction with small molecule GSK-LSD1 resulted in activation of myeloid genes in normal iPSC-derived megakaryocytes similar to what was observed for GFI1BQ287* iPSC-derived megakaryocytes. Thus, GFI1B and LSD1 facilitate gene programs relevant for megakaryopoiesis while simultaneously repressing programs that induce myeloid differentiation.
Collapse
Affiliation(s)
- Jeron Venhuizen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Maaike G J M van Bergen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Saskia M Bergevoet
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Daan Gilissen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Cornelia G Spruijt
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Laura Wingens
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, Amsterdam, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands
| | - Joop H Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Bert A van der Reijden
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Lee NK, Lee JW, Woo JH, Choi YS, Choi JH. Upregulation of SPI1 in Ectopic Endometrium Contributes to an Invasive Phenotype. Arch Med Res 2023; 54:86-94. [PMID: 36702668 DOI: 10.1016/j.arcmed.2022.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUD AND AIM Endometriosis is one of the most common gynecological diseases associated with chronic pelvic pain, infertility, and cancer. However, its molecular pathogenesis remains unclear. This study aimed to identify key genes involved in the pathogenesis of endometriosis. METHODS Bioinformatic analyses were perfomed to identify key differentially expressed genes (DEGs), transcription factors (TFs), and functionally enriched pathways. Effect of SPI1 on migration, invasion, expression of ADH1B, MYH11, and PLN were analyzed in human endometriotic cells. RESULTS By screening three transcriptome datasets from the GEO for overlapping DEGs between eutopic and ectopic endometria in patients with endometriosis, we found that the expression of ADH1B, MYH11, and PLN was markedly upregulated in the ectopic endometrium. Knockdown of ADH1B, MYH11, and PLN significantly inhibited the migration and invasion of human endometriotic 12Z cells. Additionally, gene set enrichment analysis revealed that epithelial-mesenchymal transition gene signature was positively correlated with ADH1B, MYH11, and PLN expression. Notably, the TF SPI1 was found to regulate the expression of these three genes in the endometriotic tissues and 12TZ cells. Moreover, SPI1 expression was associated with the invasion of endometriotic cells and was increased in the ectopic endometrium of patients with endometriosis. CONCLUSION These data suggest that SPI1 plays a key role in the progression of endometriosis by regulating ADH1B, MYH11, and PLN expression and may therefore serve as a potential prognostic and therapeutic factor for endometriosis.
Collapse
Affiliation(s)
- Na-Kyung Lee
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, South Korea
| | - Jae-Won Lee
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, South Korea
| | - Jeong-Hwa Woo
- College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Youn Seok Choi
- Department of Obstetrics and Gynecology, School of Medicine, Catholic University of Daegu, Daegu, South Korea
| | - Jung-Hye Choi
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, South Korea; College of Pharmacy, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
3
|
Characterization of a genomic region 8 kb downstream of GFI1B associated with myeloproliferative neoplasms. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166259. [PMID: 34450246 DOI: 10.1016/j.bbadis.2021.166259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/07/2021] [Accepted: 08/23/2021] [Indexed: 11/23/2022]
Abstract
A genomic locus 8 kb downstream of the transcription factor GFI1B (Growth Factor Independence 1B) predisposes to clonal hematopoiesis and myeloproliferative neoplasms. One of the most significantly associated polymorphisms in this region is rs621940-G. GFI1B auto-represses GFI1B, and altered GFI1B expression contributes to myeloid neoplasms. We studied whether rs621940-G affects GFI1B expression and growth of immature cells. GFI1B ChIP-seq showed clear binding to the rs621940 locus. Preferential binding of various hematopoietic transcription factors to either the rs621940-C or -G allele was observed, but GFI1B showed no preference. In gene reporter assays the rs621940 region inhibited GFI1B promoter activity with the G-allele having less suppressive effects compared to the C-allele. However, CRISPR-Cas9 mediated deletion of the locus in K562 cells did not alter GFI1B expression nor auto-repression. In healthy peripheral blood mononuclear cells GFI1B expression did not differ consistently between the rs621940 alleles. Long range and targeted deep sequencing did not detect consistent effects of rs621940-G on allelic GFI1B expression either. Finally, we observed that myeloid colony formation was not significantly affected by either rs621940 allele in 193 healthy donors. Together, these findings show no evidence that rs621940 or its locus affect GFI1B expression, auto-repression or growth of immature myeloid cells.
Collapse
|
4
|
Zhang L, Xin M, Wang P. Identification of a novel snoRNA expression signature associated with overall survival in patients with lung adenocarcinoma: A comprehensive analysis based on RNA sequencing dataset. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:7837-7860. [PMID: 34814278 DOI: 10.3934/mbe.2021389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since multiple studies have reported that small nucleolar RNAs (snoRNAs) can be serve as prognostic biomarkers for cancers, however, the prognostic values of snoRNAs in lung adenocarcinoma (LUAD) remain unclear. Therefore, the main work of this study is to identify the prognostic snoRNAs of LUAD and conduct a comprehensive analysis. The Cancer Genome Atlas LUAD cohort whole-genome RNA-sequencing dataset is included in this study, prognostic analysis and multiple bioinformatics approaches are used for comprehensive analysis and identification of prognostic snoRNAs. There were seven LUAD prognostic snoRNAs were screened in current study. We also constructed a novel expression signature containing five LUAD prognostic snoRNAs (snoU109, SNORA5A, SNORA70, SNORD104 and U3). Survival analysis of this expression signature reveals that LUAD patients with high risk score was significantly related to an unfavourable overall survival (adjusted P = 0.01, adjusted hazard ratio = 1.476, 95% confidence interval = 1.096-1.987). Functional analysis indicated that LUAD patients with different risk score phenotypes had significant differences in cell cycle, apoptosis, integrin, transforming growth factor beta, ErbB, nuclear factor kappa B, mitogen-activated protein kinase, phosphatidylinositol-3-kinase and toll like receptor signaling pathway. Immune microenvironment analysis also indicated that there were significant differences in immune microenvironment scores among LUAD patients with different risk score. In conclusion, this study identified an novel expression signature containing five LUAD prognostic snoRNAs, which may be serve as an independent prognostic indicator for LUAD patients.
Collapse
Affiliation(s)
- Linbo Zhang
- Department of Health Management and Division of Physical Examination, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning 530021, China
| | - Mei Xin
- Department of Health Management and Division of Physical Examination, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning 530021, China
| | - Peng Wang
- Department of Health Management and Division of Physical Examination, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning 530021, China
| |
Collapse
|
5
|
Wheat JC, Steidl U. Gene expression at a single-molecule level: implications for myelodysplastic syndromes and acute myeloid leukemia. Blood 2021; 138:625-636. [PMID: 34436525 PMCID: PMC8394909 DOI: 10.1182/blood.2019004261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Nongenetic heterogeneity, or gene expression stochasticity, is an important source of variability in biological systems. With the advent and improvement of single molecule resolution technologies, it has been shown that transcription dynamics and resultant transcript number fluctuations generate significant cell-to-cell variability that has important biological effects and may contribute substantially to both tissue homeostasis and disease. In this respect, the pathophysiology of stem cell-derived malignancies such as acute myeloid leukemia and myelodysplastic syndromes, which has historically been studied at the ensemble level, may require reevaluation. To that end, it is our aim in this review to highlight the results of recent single-molecule, biophysical, and systems studies of gene expression dynamics, with the explicit purpose of demonstrating how the insights from these basic science studies may help inform and progress the field of leukemia biology and, ultimately, research into novel therapies.
Collapse
Affiliation(s)
- Justin C Wheat
- Albert Einstein College of Medicine - Montefiore Health System, Bronx, NY
| | - Ulrich Steidl
- Albert Einstein College of Medicine - Montefiore Health System, Bronx, NY
| |
Collapse
|
6
|
Barabino SML, Citterio E, Ronchi AE. Transcription Factors, R-Loops and Deubiquitinating Enzymes: Emerging Targets in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13153753. [PMID: 34359655 PMCID: PMC8345071 DOI: 10.3390/cancers13153753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The advent of DNA massive sequencing technologies has allowed for the first time an extensive look into the heterogeneous spectrum of genes and mutations underpinning myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). In this review, we wish to explore the most recent advances and the rationale for the potential therapeutic interest of three main actors in myelo-leukemic transformation: transcription factors that govern myeloid differentiation; RNA splicing factors, which ensure proper mRNA maturation and whose mutations increase R-loops formation; and deubiquitinating enzymes, which contribute to genome stability in hematopoietic stem cells (HSCs). Abstract Myeloid neoplasms encompass a very heterogeneous family of diseases characterized by the failure of the molecular mechanisms that ensure a balanced equilibrium between hematopoietic stem cells (HSCs) self-renewal and the proper production of differentiated cells. The origin of the driver mutations leading to preleukemia can be traced back to HSC/progenitor cells. Many properties typical to normal HSCs are exploited by leukemic stem cells (LSCs) to their advantage, leading to the emergence of a clonal population that can eventually progress to leukemia with variable latency and evolution. In fact, different subclones might in turn develop from the original malignant clone through accumulation of additional mutations, increasing their competitive fitness. This process ultimately leads to a complex cancer architecture where a mosaic of cellular clones—each carrying a unique set of mutations—coexists. The repertoire of genes whose mutations contribute to the progression toward leukemogenesis is broad. It encompasses genes involved in different cellular processes, including transcriptional regulation, epigenetics (DNA and histones modifications), DNA damage signaling and repair, chromosome segregation and replication (cohesin complex), RNA splicing, and signal transduction. Among these many players, transcription factors, RNA splicing proteins, and deubiquitinating enzymes are emerging as potential targets for therapeutic intervention.
Collapse
|
7
|
Beauchemin H, Möröy T. Multifaceted Actions of GFI1 and GFI1B in Hematopoietic Stem Cell Self-Renewal and Lineage Commitment. Front Genet 2020; 11:591099. [PMID: 33193732 PMCID: PMC7649360 DOI: 10.3389/fgene.2020.591099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
Growth factor independence 1 (GFI1) and the closely related protein GFI1B are small nuclear proteins that act as DNA binding transcriptional repressors. Both recognize the same consensus DNA binding motif via their C-terminal zinc finger domains and regulate the expression of their target genes by recruiting chromatin modifiers such as histone deacetylases (HDACs) and demethylases (LSD1) by using an N-terminal SNAG domain that comprises only 20 amino acids. The only region that is different between both proteins is the region that separates the zinc finger domains and the SNAG domain. Both proteins are co-expressed in hematopoietic stem cells (HSCs) and, to some extent, in multipotent progenitors (MPPs), but expression is specified as soon as early progenitors and show signs of lineage bias. While expression of GFI1 is maintained in lymphoid primed multipotent progenitors (LMPPs) that have the potential to differentiate into both myeloid and lymphoid cells, GFI1B expression is no longer detectable in these cells. By contrast, GFI1 expression is lost in megakaryocyte precursors (MKPs) and in megakaryocyte-erythrocyte progenitors (MEPs), which maintain a high level of GFI1B expression. Consequently, GFI1 drives myeloid and lymphoid differentiation and GFI1B drives the development of megakaryocytes, platelets, and erythrocytes. How such complementary cell type- and lineage-specific functions of GFI1 and GFI1B are maintained is still an unresolved question in particular since they share an almost identical structure and very similar biochemical modes of actions. The cell type-specific accessibility of GFI1/1B binding sites may explain the fact that very similar transcription factors can be responsible for very different transcriptional programming. An additional explanation comes from recent data showing that both proteins may have additional non-transcriptional functions. GFI1 interacts with a number of proteins involved in DNA repair and lack of GFI1 renders HSCs highly susceptible to DNA damage-induced death and restricts their proliferation. In contrast, GFI1B binds to proteins of the beta-catenin/Wnt signaling pathway and lack of GFI1B leads to an expansion of HSCs and MKPs, illustrating the different impact that GFI1 or GFI1B has on HSCs. In addition, GFI1 and GFI1B are required for endothelial cells to become the first blood cells during early murine development and are among those transcription factors needed to convert adult endothelial cells or fibroblasts into HSCs. This role of GFI1 and GFI1B bears high significance for the ongoing effort to generate hematopoietic stem and progenitor cells de novo for the autologous treatment of blood disorders such as leukemia and lymphoma.
Collapse
Affiliation(s)
| | - Tarik Möröy
- Institut de recherches cliniques de Montréal, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
8
|
Tao L, Wang X, Zhou Q. Long noncoding RNA SNHG16 promotes the tumorigenicity of cervical cancer cells by recruiting transcriptional factor SPI1 to upregulate PARP9. Cell Biol Int 2019; 44:773-784. [PMID: 31774223 DOI: 10.1002/cbin.11272] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Long noncoding RNA (lncRNA) small nucleolar RNA host gene 16 (SNHG16) has been linked to multiple cancers including breast, ovarian, bladder, and colorectal cancer. However, the role of SNHG16 in cervical cancer is unclear. Here, quantitative analysis of SNHG16 and PARP9 expression levels in cervical cancer tissues and cell lines indicated that both SNHG16 and PARP9 were highly expressed compared with controls. Using the dual-luciferase reporter gene assay, RNA immunoprecipitation, chromatin immunoprecipitation, we were able to determine that SNHG16 recruited SPI1 protein to promote transcription of PARP9 to upregulate its transcription in cervical cancer cells. After ectopic expression and knockdown experiments were conducted, it was observed that silencing SNHG16 inhibited PARP9 expression, proliferation, and invasion of cervical cancer cells, which was rescued by co-transfection of SNHG16 silencing and PARP9 overexpression. Moreover, in vivo experimental results showed that silencing SNHG16 reduced the expression of PARP9 and suppressed tumor growth. These data indicate that SNHG16 recruits SPI1 to upregulate PARP9, which promotes the tumorigenicity of cervical cancer cells. The regulation of their expression might provide a new direction for treating cervical cancer.
Collapse
Affiliation(s)
- Ling Tao
- Four Department of Gynecology, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, P.R. China
| | - Xiyan Wang
- The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, P.R. China
| | - Qi Zhou
- Four Department of Gynecology, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, P.R. China
| |
Collapse
|
9
|
van Bergen MGJM, van der Reijden BA. Targeting the GFI1/1B-CoREST Complex in Acute Myeloid Leukemia. Front Oncol 2019; 9:1027. [PMID: 31649884 PMCID: PMC6794713 DOI: 10.3389/fonc.2019.01027] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/23/2019] [Indexed: 11/21/2022] Open
Abstract
One of the hallmarks of acute myeloid leukemia (AML) is a block in cellular differentiation. Recent studies have shown that small molecules targeting Lysine Specific Demethylase 1A (KDM1A) may force the malignant cells to terminally differentiate. KDM1A is a core component of the chromatin binding CoREST complex. Together with histone deacetylases CoREST regulates gene expression by histone 3 demethylation and deacetylation. The transcription factors GFI1 and GFI1B (for growth factor independence) are major interaction partners of KDM1A and recruit the CoREST complex to chromatin in myeloid cells. Recent studies show that the small molecules that target KDM1A disrupt the GFI1/1B-CoREST interaction and that this is key to inducing terminal differentiation of leukemia cells.
Collapse
Affiliation(s)
| | - Bert A. van der Reijden
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
10
|
Möröy T, Khandanpour C. Role of GFI1 in Epigenetic Regulation of MDS and AML Pathogenesis: Mechanisms and Therapeutic Implications. Front Oncol 2019; 9:824. [PMID: 31508375 PMCID: PMC6718700 DOI: 10.3389/fonc.2019.00824] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/12/2019] [Indexed: 01/12/2023] Open
Abstract
Growth factor independence 1 (GFI1) is a DNA binding zinc finger protein, which can mediate transcriptional repression mainly by recruiting histone-modifying enzymes to its target genes. GFI1 plays important roles in hematopoiesis, in particular by regulating both the function of hematopoietic stem- and precursor cells and differentiation along myeloid and lymphoid lineages. In recent years, a number of publications have provided evidence that GFI1 is involved in the pathogenesis of acute myeloid leukemia (AML), its proposed precursor, myelodysplastic syndrome (MDS), and possibly also in the progression from MDS to AML. For instance, expression levels of the GFI1 gene correlate with patient survival and treatment response in both AML and MDS and can influence disease progression and maintenance in experimental animal models. Also, a non-synonymous single nucleotide polymorphism (SNP) of GFI1, GFI1-36N, which encodes a variant GFI1 protein with a decreased efficiency to act as a transcriptional repressor, was found to be a prognostic factor for the development of AML and MDS. Both the GFI1-36N variant as well as reduced expression of the GFI1 gene lead to genome-wide epigenetic changes at sites where GFI1 occupies target gene promoters and enhancers. These epigenetic changes alter the response of leukemic cells to epigenetic drugs such as HDAC- or HAT inhibitors, indicating that GFI1 expression levels and genetic variants of GFI1 are of clinical relevance. Based on these and other findings, specific therapeutic approaches have been proposed to treat AML by targeting some of the epigenetic changes that occur as a consequence of GFI1 expression. Here, we will review the well-known role of Gfi1 as a transcription factor and describe the more recently discovered functions of GFI1 that are independent of DNA binding and how these might affect disease progression and the choice of epigenetic drugs for therapeutic regimens of AML and MDS.
Collapse
Affiliation(s)
- Tarik Möröy
- Department of Hematopoiesis and Cancer, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| |
Collapse
|
11
|
Tijjani A, Utsunomiya YT, Ezekwe AG, Nashiru O, Hanotte O. Genome Sequence Analysis Reveals Selection Signatures in Endangered Trypanotolerant West African Muturu Cattle. Front Genet 2019; 10:442. [PMID: 31231417 PMCID: PMC6558954 DOI: 10.3389/fgene.2019.00442] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/29/2019] [Indexed: 01/01/2023] Open
Abstract
Like most West African Bos taurus, the shorthorn Muturu is under threat of replacement or crossbreeding with zebu. Their populations are now reduced to a few hundred breeding individuals and they are considered endangered. So far, the genetic variation and genetic basis of the trypanotolerant Muturu environmental adaptation have not been assessed. Here, we present genome-wide candidate positive selection signatures in Muturu following within-population iHS and between population Rsb signatures of selection analysis. We compared the results in Muturu with the ones obtained in N’Dama, a West African longhorn trypanotolerant taurine, and in two European taurine (Holstein and Jersey). The results reveal candidate signatures of selection regions in Muturu including genes linked to the innate (e.g., TRIM10, TRIM15, TRIM40, and TRIM26) and the adaptive (e.g., JSP.1, BOLA-DQA2, BOLA-DQA5, BOLA-DRB3, and BLA-DQB) immune responses. The most significant regions are identified on BTA 23 at the bovine major histocompatibility complex (MHC) (iHS analysis) and on BTA 12 at genes including a heat tolerance gene (INTS6) (Rsb analysis). Other candidate selected regions include genes related to growth traits/stature (e.g., GHR and GHRHR), coat color (e.g., MITF and KIT), feed efficiency (e.g., ZRANB3 and MAP3K5) and reproduction (e.g., RFX2, SRY, LAP3, and GPX5). Genes under common signatures of selection regions with N’Dama, including for adaptive immunity and heat tolerance, suggest shared mechanisms of adaptation to environmental challenges for these two West African taurine cattle. Interestingly, out of the 242,910 SNPs identified within the candidate selected regions in Muturu, 917 are missense SNPs (0.4%), with an unequal distribution across 273 genes. Fifteen genes including RBBP8, NID1, TEX15, LAMA3, TRIM40, and OR12D3 comprise 220 missense variants, each between 11 and 32. Our results, while providing insights into the candidate genes under selection in Muturu, are paving the way to the identification of genes and their polymorphisms linked to the unique tropical adaptive traits of the West Africa taurine, including trypanotolerance.
Collapse
Affiliation(s)
- Abdulfatai Tijjani
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University Park Campus, University of Nottingham, Nottingham, United Kingdom.,Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria.,International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Yuri Tani Utsunomiya
- Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Arinze G Ezekwe
- Department of Animal Science, Faculty of Agriculture, University of Nigeria, Nsukka, Nigeria
| | - Oyekanmi Nashiru
- Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria
| | - Olivier Hanotte
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University Park Campus, University of Nottingham, Nottingham, United Kingdom.,International Livestock Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
12
|
Olariu V, Peterson C. Kinetic models of hematopoietic differentiation. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 11:e1424. [PMID: 29660842 PMCID: PMC6191385 DOI: 10.1002/wsbm.1424] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/13/2018] [Accepted: 03/16/2018] [Indexed: 01/02/2023]
Abstract
As cell and molecular biology is becoming increasingly quantitative, there is an upsurge of interest in mechanistic modeling at different levels of resolution. Such models mostly concern kinetics and include gene and protein interactions as well as cell population dynamics. The final goal of these models is to provide experimental predictions, which is now taking on. However, even without matured predictions, kinetic models serve the purpose of compressing a plurality of experimental results into something that can empower the data interpretation, and importantly, suggesting new experiments by turning "knobs" in silico. Once formulated, kinetic models can be executed in terms of molecular rate equations for concentrations or by stochastic simulations when only a limited number of copies are involved. Developmental processes, in particular those of stem and progenitor cell commitments, are not only topical but also particularly suitable for kinetic modeling due to the finite number of key genes involved in cellular decisions. Stem and progenitor cell commitment processes have been subject to intense experimental studies over the last decade with some emphasis on embryonic and hematopoietic stem cells. Gene and protein interactions governing these processes can be modeled by binary Boolean rules or by continuous-valued models with interactions set by binding strengths. Conceptual insights along with tested predictions have emerged from such kinetic models. Here we review kinetic modeling efforts applied to stem cell developmental systems with focus on hematopoiesis. We highlight the future challenges including multi-scale models integrating cell dynamical and transcriptional models. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Developmental Biology > Stem Cell Biology and Regeneration.
Collapse
Affiliation(s)
- Victor Olariu
- Department of Computational Biology, Lund University, Lund, Sweden
| | - Carsten Peterson
- Department of Computational Biology, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Thivakaran A, Botezatu L, Hönes JM, Schütte J, Vassen L, Al-Matary YS, Patnana P, Zeller A, Heuser M, Thol F, Gabdoulline R, Olberding N, Frank D, Suslo M, Köster R, Lennartz K, Görgens A, Giebel B, Opalka B, Dührsen U, Khandanpour C. Gfi1b: a key player in the genesis and maintenance of acute myeloid leukemia and myelodysplastic syndrome. Haematologica 2018; 103:614-625. [PMID: 29326122 PMCID: PMC5865438 DOI: 10.3324/haematol.2017.167288] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/05/2018] [Indexed: 12/22/2022] Open
Abstract
Differentiation of hematopoietic stem cells is regulated by a concert of different transcription factors. Disturbed transcription factor function can be the basis of (pre)malignancies such as myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). Growth factor independence 1b (Gfi1b) is a repressing transcription factor regulating quiescence of hematopoietic stem cells and differentiation of erythrocytes and platelets. Here, we show that low expression of Gfi1b in blast cells is associated with an inferior prognosis of MDS and AML patients. Using different models of human MDS or AML, we demonstrate that AML development was accelerated with heterozygous loss of Gfi1b, and latency was further decreased when Gfi1b was conditionally deleted. Loss of Gfi1b significantly increased the number of leukemic stem cells with upregulation of genes involved in leukemia development. On a molecular level, we found that loss of Gfi1b led to epigenetic changes, increased levels of reactive oxygen species, as well as alteration in the p38/Akt/FoXO pathways. These results demonstrate that Gfi1b functions as an oncosuppressor in MDS and AML development.
Collapse
Affiliation(s)
- Aniththa Thivakaran
- Department of Haematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lacramioara Botezatu
- Department of Haematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Judith M Hönes
- Department of Haematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Judith Schütte
- Department of Haematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lothar Vassen
- Department of Haematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yahya S Al-Matary
- Department of Haematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Pradeep Patnana
- Department of Haematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Amos Zeller
- Department of Haematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Heuser
- Department of Haematology, Haemostaseology, Oncology, and Stem Cell Transplantation, Medical University of Hannover, Germany
| | - Felicitas Thol
- Department of Haematology, Haemostaseology, Oncology, and Stem Cell Transplantation, Medical University of Hannover, Germany
| | - Razif Gabdoulline
- Department of Haematology, Haemostaseology, Oncology, and Stem Cell Transplantation, Medical University of Hannover, Germany
| | - Nadine Olberding
- Department of Haematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daria Frank
- Department of Haematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Marina Suslo
- Department of Haematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Renata Köster
- Department of Haematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Klaus Lennartz
- Institute for Cell Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andre Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bertram Opalka
- Department of Haematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Dührsen
- Department of Haematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Cyrus Khandanpour
- Department of Haematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany .,Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Germany
| |
Collapse
|
14
|
Zou C, Wei X, Zhang Q, Zhou C. Passivity of Reaction–Diffusion Genetic Regulatory Networks with Time-Varying Delays. Neural Process Lett 2017. [DOI: 10.1007/s11063-017-9682-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Anguita E, Candel FJ, Chaparro A, Roldán-Etcheverry JJ. Transcription Factor GFI1B in Health and Disease. Front Oncol 2017; 7:54. [PMID: 28401061 PMCID: PMC5368270 DOI: 10.3389/fonc.2017.00054] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/13/2017] [Indexed: 12/13/2022] Open
Abstract
Many human diseases arise through dysregulation of genes that control key cell fate pathways. Transcription factors (TFs) are major cell fate regulators frequently involved in cancer, particularly in leukemia. The GFI1B gene, coding a TF, was identified by sequence homology with the oncogene growth factor independence 1 (GFI1). Both GFI1 and GFI1B have six C-terminal C2H2 zinc fingers and an N-terminal SNAG (SNAIL/GFI1) transcriptional repression domain. Gfi1 is essential for neutrophil differentiation in mice. In humans, GFI1 mutations are associated with severe congenital neutropenia. Gfi1 is also required for B and T lymphopoiesis. However, knockout mice have demonstrated that Gfi1b is required for development of both erythroid and megakaryocytic lineages. Consistent with this, human mutations of GFI1B produce bleeding disorders with low platelet count and abnormal function. Loss of Gfi1b in adult mice increases the absolute numbers of hematopoietic stem cells (HSCs) that are less quiescent than wild-type HSCs. In keeping with this key role in cell fate, GFI1B is emerging as a gene involved in cancer, which also includes solid tumors. In fact, abnormal activation of GFI1B and GFI1 has been related to human medulloblastoma and is also likely to be relevant in blood malignancies. Several pieces of evidence supporting this statement will be detailed in this mini review.
Collapse
Affiliation(s)
- Eduardo Anguita
- Hematology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Francisco J Candel
- Microbiology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC) , Madrid , Spain
| | - Alberto Chaparro
- Hematology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Juan J Roldán-Etcheverry
- Hematology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
16
|
Stem and progenitor cell alterations in myelodysplastic syndromes. Blood 2017; 129:1586-1594. [PMID: 28159737 DOI: 10.1182/blood-2016-10-696062] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/18/2017] [Indexed: 02/07/2023] Open
Abstract
Recent studies have demonstrated that myelodysplastic syndromes (MDSs) arise from a small population of disease-initiating hematopoietic stem cells (HSCs) that persist and expand through conventional therapies and are major contributors to disease progression and relapse. MDS stem and progenitor cells are characterized by key founder and driver mutations and are enriched for cytogenetic alterations. Quantitative alterations in hematopoietic stem and progenitor cell (HSPC) numbers are also seen in a stage-specific manner in human MDS samples as well as in murine models of the disease. Overexpression of several markers such as interleukin-1 (IL-1) receptor accessory protein (IL1RAP), CD99, T-cell immunoglobulin mucin-3, and CD123 have begun to differentiate MDS HSPCs from healthy counterparts. Overactivation of innate immune components such as Toll-like receptors, IL-1 receptor-associated kinase/tumor necrosis factor receptor-associated factor-6, IL8/CXCR2, and IL1RAP signaling pathways has been demonstrated in MDS HSPCs and is being targeted therapeutically in preclinical and early clinical studies. Other dysregulated pathways such as signal transducer and activator of transcription 3, tyrosine kinase with immunoglobulinlike and EGF-like domains 1/angiopoietin-1, p21-activated kinase, microRNA 21, and transforming growth factor β are also being explored as therapeutic targets against MDS HSPCs. Taken together, these studies have demonstrated that MDS stem cells are functionally critical for the initiation, transformation, and relapse of disease and need to be targeted therapeutically for future curative strategies in MDSs.
Collapse
|
17
|
Ishikawa Y, Gamo K, Yabuki M, Takagi S, Toyoshima K, Nakayama K, Nakayama A, Morimoto M, Miyashita H, Dairiki R, Hikichi Y, Tomita N, Tomita D, Imamura S, Iwatani M, Kamada Y, Matsumoto S, Hara R, Nomura T, Tsuchida K, Nakamura K. A Novel LSD1 Inhibitor T-3775440 Disrupts GFI1B-Containing Complex Leading to Transdifferentiation and Impaired Growth of AML Cells. Mol Cancer Ther 2016; 16:273-284. [PMID: 27903753 DOI: 10.1158/1535-7163.mct-16-0471] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/18/2016] [Accepted: 11/16/2016] [Indexed: 11/16/2022]
Abstract
Dysregulation of lysine (K)-specific demethylase 1A (LSD1), also known as KDM1A, has been implicated in the development of various cancers, including leukemia. Here, we describe the antileukemic activity and mechanism of action of T-3775440, a novel irreversible LSD1 inhibitor. Cell growth analysis of leukemia cell lines revealed that acute erythroid leukemia (AEL) and acute megakaryoblastic leukemia cells (AMKL) were highly sensitive to this compound. T-3775440 treatment enforced transdifferentiation of erythroid/megakaryocytic lineages into granulomonocytic-like lineage cells. Mechanistically, T-3775440 disrupted the interaction between LSD1 and growth factor-independent 1B (GFI1B), a transcription factor critical for the differentiation processes of erythroid and megakaryocytic lineage cells. Knockdown of LSD1 and GFI1B recapitulated T-3775440-induced transdifferentiation and cell growth suppression, highlighting the significance of LSD1-GFI1B axis inhibition with regard to the anti-AML effects of T-3775440. Moreover, T-3775440 exhibited significant antitumor efficacy in AEL and AMKL xenograft models. Our findings provide a rationale for evaluating LSD1 inhibitors as potential treatments and indicate a novel mechanism of action against AML, particularly AEL and AMKL. Mol Cancer Ther; 16(2); 273-84. ©2016 AACR.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Transdifferentiation/drug effects
- Cluster Analysis
- Computational Biology/methods
- Disease Models, Animal
- Drug Resistance, Neoplasm
- Female
- Gene Expression Profiling
- Gene Knockdown Techniques
- Hematopoiesis/genetics
- Histone Demethylases/antagonists & inhibitors
- Histone Demethylases/genetics
- Histone Demethylases/metabolism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Molecular Targeted Therapy
- Multiprotein Complexes/metabolism
- Protein Binding
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yoshinori Ishikawa
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Kanae Gamo
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Masato Yabuki
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Shinji Takagi
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Kosei Toyoshima
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Kazuhide Nakayama
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Akiko Nakayama
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Megumi Morimoto
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hitoshi Miyashita
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Ryo Dairiki
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yukiko Hikichi
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Naoki Tomita
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Daisuke Tomita
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Shinichi Imamura
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Misa Iwatani
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yusuke Kamada
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Satoru Matsumoto
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Ryujiro Hara
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Toshiyuki Nomura
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Ken Tsuchida
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan.
| | - Kazuhide Nakamura
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan.
| |
Collapse
|