1
|
Massri AJ, Berrio A, Afanassiev A, Greenstreet L, Pipho K, Byrne M, Schiebinger G, McClay DR, Wray GA. Single-cell transcriptomics reveals evolutionary reconfiguration of embryonic cell fate specification in the sea urchin Heliocidaris erythrogramma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591752. [PMID: 38746376 PMCID: PMC11092583 DOI: 10.1101/2024.04.30.591752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Altered regulatory interactions during development likely underlie a large fraction of phenotypic diversity within and between species, yet identifying specific evolutionary changes remains challenging. Analysis of single-cell developmental transcriptomes from multiple species provides a powerful framework for unbiased identification of evolutionary changes in developmental mechanisms. Here, we leverage a "natural experiment" in developmental evolution in sea urchins, where a major life history switch recently evolved in the lineage leading to Heliocidaris erythrogramma, precipitating extensive changes in early development. Comparative analyses of scRNA-seq developmental time courses from H. erythrogramma and Lytechinus variegatus (representing the derived and ancestral states respectively) reveals numerous evolutionary changes in embryonic patterning. The earliest cell fate specification events, and the primary signaling center are co-localized in the ancestral dGRN but remarkably, in H. erythrogramma they are spatially and temporally separate. Fate specification and differentiation are delayed in most embryonic cell lineages, although in some cases, these processes are conserved or even accelerated. Comparative analysis of regulator-target gene co-expression is consistent with many specific interactions being preserved but delayed in H. erythrogramma, while some otherwise widely conserved interactions have likely been lost. Finally, specific patterning events are directly correlated with evolutionary changes in larval morphology, suggesting that they are directly tied to the life history shift. Together, these findings demonstrate that comparative scRNA-seq developmental time courses can reveal a diverse set of evolutionary changes in embryonic patterning and provide an efficient way to identify likely candidate regulatory interactions for subsequent experimental validation.
Collapse
Affiliation(s)
- Abdull J Massri
- Department of Biology, Duke University, Durham, NC 27701 USA
| | | | - Anton Afanassiev
- Department of Mathematics, University of British Colombia, Vancouver, BC V6T 1Z4 Canada
| | - Laura Greenstreet
- Department of Mathematics, University of British Colombia, Vancouver, BC V6T 1Z4 Canada
| | - Krista Pipho
- Department of Biology, Duke University, Durham, NC 27701 USA
| | - Maria Byrne
- School of Life and Environmental Sciences, Sydney University, Sydney, NSW Australia
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Colombia, Vancouver, BC V6T 1Z4 Canada
| | - David R McClay
- Department of Biology, Duke University, Durham, NC 27701 USA
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC 27701 USA
| |
Collapse
|
2
|
Konrad KD, Arnott M, Testa M, Suarez S, Song JL. microRNA-124 directly suppresses Nodal and Notch to regulate mesodermal development. Dev Biol 2023; 502:50-62. [PMID: 37419400 PMCID: PMC10719910 DOI: 10.1016/j.ydbio.2023.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/27/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023]
Abstract
MicroRNAs regulate gene expression post-transcriptionally by destabilizing and/or inhibiting translation of target mRNAs in animal cells. MicroRNA-124 (miR-124) has been examined mostly in the context of neurogenesis. This study discovers a novel role of miR-124 in regulating mesodermal cell differentiation in the sea urchin embryo. The expression of miR-124 is first detectable at 12hours post fertilization at the early blastula stage, during endomesodermal specification. Mesodermally-derived immune cells come from the same progenitor cells that give rise to blastocoelar cells (BCs) and pigment cells (PCs) that must make a binary fate decision. We determined that miR-124 directly represses Nodal and Notch to regulate BC and PC differentiation. miR-124 inhibition does not impact the dorsal-ventral axis formation, but result in a significant increase in number of cells expressing BC-specific transcription factors (TFs) and a concurrent reduction of differentiated PCs. In general, removing miR-124's suppression of Nodal phenocopies miR124 inhibition. Interestingly, removing miR-124's suppression of Notch leads to an increased number of both BCs and PCs, with a subset of hybrid cells that express both BC- and PC-specific TFs in the larvae. Removal of miR-124's suppression of Notch not only affects differentiation of both BCs and PCs, but also induces cell proliferation of these cells during the first wave of Notch signaling. This study demonstrates that post-transcriptional regulation by miR-124 impacts differentiation of BCs and PCs by regulating the Nodal and Notch signaling pathways.
Collapse
Affiliation(s)
- Kalin D Konrad
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Malcolm Arnott
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Michael Testa
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Santiago Suarez
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
3
|
Abstract
Larvae of sea urchins have a population of conspicuous pigmented cells embedded in the outer surface epithelium. Pigment cells are a distinct mesodermal lineage that gives rise to a key component of the larval immune system. During cleavage, signaling from adjacent cells influences a small crescent of cells to initiate a network of genetic interactions that prepare the cells for morphogenesis and specializes them as immunocytes. The cells become active during gastrulation, detach from the epithelium, migrate through the blastocoel, and insert into the ectoderm where they complete their differentiation. Studies of pigment cell development have helped establish how cellular signaling controls networks of genetic interactions that bring about morphogenesis and differentiation. This review summarizes studies of pigment cell development and concludes that pigment cells are an excellent experimental model. Pigment cells provide several opportunities to further test and refine our understanding of the molecular basis of cellular development.
Collapse
Affiliation(s)
- Robert D Burke
- Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
4
|
Levin N, Yamakawa S, Morino Y, Wada H. Perspectives on divergence of early developmental regulatory pathways: Insight from the evolution of echinoderm double negative gate. Curr Top Dev Biol 2022; 146:1-24. [PMID: 35152980 DOI: 10.1016/bs.ctdb.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Evolution of gene regulatory networks (GRN) that orchestrate the highly coordinated course of development, is made possible by the network's robust nature for incorporating change without detrimental developmental outcome. It can be considered that the upstream network regulating early development, has immense influence over succeeding pathways thus may be less subjected to evolutionary modification. However, recent studies show incorporation of novel genes in such early developmental pathways such as the echinoderm pmar1 as evidence for drastic change occurring high in the GRN hierarchy. Here we discuss the mechanisms that underlie divergence of early developmental pathways utilizing promising insights from the evolution of echinoderm early mesoderm specification pathway of Pmar1-HesC double negative gate found solely in the euechinoid sea urchin lineage, as well as examples from other groups such as Spiralia and Drosophila.
Collapse
Affiliation(s)
- Nina Levin
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shumpei Yamakawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Morino
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
5
|
Yamazaki A, Yamakawa S, Morino Y, Sasakura Y, Wada H. Gene regulation of adult skeletogenesis in starfish and modifications during gene network co-option. Sci Rep 2021; 11:20111. [PMID: 34635691 PMCID: PMC8505446 DOI: 10.1038/s41598-021-99521-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
The larval skeleton of the echinoderm is believed to have been acquired through co-option of a pre-existing gene regulatory network (GRN); that is, the mechanism for adult skeleton formation in the echinoderm was deployed in early embryogenesis during echinoderm diversification. To explore the evolutionary changes that occurred during co-option, we examined the mechanism for adult skeletogenesis using the starfish Patiria pectinifera. Expression patterns of skeletogenesis-related genes (vegf, vegfr, ets1/2, erg, alx1, ca1, and clect) suggest that adult skeletogenic cells develop from the posterior coelom after the start of feeding. Treatment with inhibitors and gene knockout using transcription activator-like effector nucleases (TALENs) suggest that the feeding-nutrient sensing pathway activates Vegf signaling via target of rapamycin (TOR) activity, leading to the activation of skeletogenic regulatory genes in starfish. In the larval skeletogenesis of sea urchins, the homeobox gene pmar1 activates skeletogenic regulatory genes, but in starfish, localized expression of the pmar1-related genes phbA and phbB was not detected during the adult skeleton formation stage. Based on these data, we provide a model for the adult skeletogenic GRN in the echinoderm and propose that the upstream regulatory system changed from the feeding-TOR-Vegf pathway to a homeobox gene-system during co-option of the skeletogenic GRN.
Collapse
Affiliation(s)
- Atsuko Yamazaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Shumpei Yamakawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yoshiaki Morino
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan
| | - Hiroshi Wada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
6
|
Yamazaki A, Morino Y, Urata M, Yamaguchi M, Minokawa T, Furukawa R, Kondo M, Wada H. pmar1/ phb homeobox genes and the evolution of the double-negative gate for endomesoderm specification in echinoderms. Development 2020; 147:dev.182139. [PMID: 32001441 DOI: 10.1242/dev.182139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
Abstract
In several model animals, the earliest phases of embryogenesis are regulated by lineage-specific genes, such as Drosophila bicoid Sea urchin (echinoid) embryogenesis is initiated by zygotic expression of pmar1, a paired-class homeobox gene that has been considered to be present only in the lineage of modern urchins (euechinoids). In euechinoids, Pmar1 promotes endomesoderm specification by repressing the hairy and enhancer of split C (hesC) gene. Here, we have identified the basal echinoid (cidaroid) pmar1 gene, which also promotes endomesoderm specification but not by repressing hesC A further search for related genes demonstrated that other echinoderms have pmar1-related genes named phb Functional analyses of starfish Phb proteins indicated that, similar to cidaroid Pmar1, they promote activation of endomesoderm regulatory gene orthologs via an unknown repressor that is not HesC. Based on these results, we propose that Pmar1 may have recapitulated the regulatory function of Phb during the early diversification of echinoids and that the additional repressor HesC was placed under the control of Pmar1 in the euechinoid lineage. This case provides an exceptional model for understanding how early developmental processes diverge.
Collapse
Affiliation(s)
- Atsuko Yamazaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoshiaki Morino
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Makoto Urata
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan.,Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Masaaki Yamaguchi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Takuya Minokawa
- Research Center for Marine Biology, Tohoku University, Sakamoto 9, Asamushi, Aomori 039-3501, Japan
| | - Ryohei Furukawa
- Department of Biology, Research and Education Center for Natural Sciences, Keio University, Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8521, Japan
| | - Mariko Kondo
- Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa 238-0225, Japan
| | - Hiroshi Wada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
7
|
Erkenbrack EM, Thompson JR. Cell type phylogenetics informs the evolutionary origin of echinoderm larval skeletogenic cell identity. Commun Biol 2019; 2:160. [PMID: 31069269 PMCID: PMC6499829 DOI: 10.1038/s42003-019-0417-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/04/2019] [Indexed: 01/19/2023] Open
Abstract
The multiplicity of cell types comprising multicellular organisms begs the question as to how cell type identities evolve over time. Cell type phylogenetics informs this question by comparing gene expression of homologous cell types in distantly related taxa. We employ this approach to inform the identity of larval skeletogenic cells of echinoderms, a clade for which there are phylogenetically diverse datasets of spatial gene expression patterns. We determined ancestral spatial expression patterns of alx1, ets1, tbr, erg, and vegfr, key components of the skeletogenic gene regulatory network driving identity of the larval skeletogenic cell. Here we show ancestral state reconstructions of spatial gene expression of extant eleutherozoan echinoderms support homology and common ancestry of echinoderm larval skeletogenic cells. We propose larval skeletogenic cells arose in the stem lineage of eleutherozoans during a cell type duplication event that heterochronically activated adult skeletogenic cells in a topographically distinct tissue in early development.
Collapse
Affiliation(s)
- Eric M. Erkenbrack
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511 USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516 USA
| | - Jeffrey R. Thompson
- Department of Geosciences, Baylor University, Waco, TX 76706 USA
- Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089-0740 USA
| |
Collapse
|
8
|
Favarolo MB, López SL. Notch signaling in the division of germ layers in bilaterian embryos. Mech Dev 2018; 154:122-144. [PMID: 29940277 DOI: 10.1016/j.mod.2018.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 01/09/2023]
Abstract
Bilaterian embryos are triploblastic organisms which develop three complete germ layers (ectoderm, mesoderm, and endoderm). While the ectoderm develops mainly from the animal hemisphere, there is diversity in the location from where the endoderm and the mesoderm arise in relation to the animal-vegetal axis, ranging from endoderm being specified between the ectoderm and mesoderm in echinoderms, and the mesoderm being specified between the ectoderm and the endoderm in vertebrates. A common feature is that part of the mesoderm segregates from an ancient bipotential endomesodermal domain. The process of segregation is noisy during the initial steps but it is gradually refined. In this review, we discuss the role of the Notch pathway in the establishment and refinement of boundaries between germ layers in bilaterians, with special focus on its interaction with the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- María Belén Favarolo
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Facultad de Medicina, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina
| | - Silvia L López
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Facultad de Medicina, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina.
| |
Collapse
|
9
|
Notch-mediated lateral inhibition is an evolutionarily conserved mechanism patterning the ectoderm in echinoids. Dev Genes Evol 2017; 228:1-11. [PMID: 29249002 DOI: 10.1007/s00427-017-0599-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
Notch signaling is a crucial cog in early development of euechinoid sea urchins, specifying both non-skeletogenic mesodermal lineages and serotonergic neurons in the apical neuroectoderm. Here, the spatial distributions and function of delta, gcm, and hesc, three genes critical to these processes in euechinoids, are examined in the distantly related cidaroid sea urchin Eucidaris tribuloides. Spatial distribution and experimental perturbation of delta and hesc suggest that the function of Notch signaling in ectodermal patterning in early development of E. tr ibuloides is consistent with canonical lateral inhibition. Delta transcripts were observed in t he archenteron, apical ectoderm, and lateral ectoderm in gastrulating e mbryos of E. tribuloides. Perturbation of Notch signaling by either delta morpholino or treatment of DAPT downregulated hesc and upregulated delta and gcm, resulting in ectopic expression of delta and gcm. Similarly, hesc perturbation mirrored the effects of delta perturbation. Interestingly, perturbation of delta or hesc resulted in more cells expressing gcm and supernumerary pigment cells, suggesting that pigment cell proliferation is regulated by Notch in E. tribuloides. These results are consistent with an evolutionary scenario whereby, in the echinoid ancestor, Notch signaling was deployed in the ectoderm to specify neurogenic progenitors and controlled pigment cell proliferation in the dorsal ectoderm.
Collapse
|