1
|
Zhang X, Zheng PS. Mechanism of chromosomal mosaicism in preimplantation embryos and its effect on embryo development. J Assist Reprod Genet 2024; 41:1127-1141. [PMID: 38386118 PMCID: PMC11143108 DOI: 10.1007/s10815-024-03048-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Aneuploidy is one of the main causes of miscarriage and in vitro fertilization failure. Mitotic abnormalities in preimplantation embryos are the main cause of mosaicism, which may be influenced by several endogenous factors such as relaxation of cell cycle control mechanisms, defects in chromosome cohesion, centrosome aberrations and abnormal spindle assembly, and DNA replication stress. In addition, incomplete trisomy rescue is a rare cause of mosaicism. However, there may be a self-correcting mechanism in mosaic embryos, which allows some mosaicisms to potentially develop into normal embryos. At present, it is difficult to accurately diagnose mosaicism using preimplantation genetic testing for aneuploidy. Therefore, in clinical practice, embryos diagnosed as mosaic should be considered comprehensively based on the specific situation of the patient.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital, Xi'an Jiaotong University of Medical School, Xi'an, 710061, Shanxi, P.R. China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital, Xi'an Jiaotong University of Medical School, Xi'an, 710061, Shanxi, P.R. China.
- Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of People's Republic of China, Xi'an, 710061, Shanxi, P.R. China.
| |
Collapse
|
2
|
Chien CW, Tang YA, Jeng SL, Pan HA, Sun HS. Blastocyst telomere length predicts successful implantation after frozen-thawed embryo transfer. Hum Reprod Open 2024; 2024:hoae012. [PMID: 38515829 PMCID: PMC10955253 DOI: 10.1093/hropen/hoae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/04/2024] [Indexed: 03/23/2024] Open
Abstract
STUDY QUESTION Do embryos with longer telomere length (TL) at the blastocyst stage have a higher capacity to survive after frozen-thawed embryo transfer (FET)? SUMMARY ANSWER Digitally estimated TL using low-pass whole genome sequencing (WGS) data from the preimplantation genetic testing for aneuploidy (PGT-A) process demonstrates that blastocyst TL is the most essential factor associated with likelihood of implantation. WHAT IS KNOWN ALREADY The lifetime TL is established in the early cleavage cycles following fertilization through a recombination-based lengthening mechanism and starts erosion beyond the blastocyst stage. In addition, a telomerase-mediated slow erosion of TL in human fetuses has been observed from a gestational age of 6-11 weeks. Finally, an abnormal shortening of telomeres is likely involved in embryo loss during early development. STUDY DESIGN SIZE DURATION Blastocyst samples were obtained from patients who underwent PGT-A and FET in an IVF center from March 2015 to May 2018. Digitally estimated mitochondrial copy number (mtCN) and TL were used to study associations with the implantation potential of each embryo. PARTICIPANTS/MATERIALS SETTING AND METHODS In total, 965 blastocysts from 232 cycles (164 patients) were available to investigate the biological and clinical relevance of TL. A WGS-based workflow was applied to determine the ploidy of each embryo. Data from low-pass WGS-PGT-A were used to estimate the mtCN and TL for each embryo. Single-variant and multi-variant logistic regression, decision tree, and random forest models were applied to study various factors in association with the implantation potential of each embryo. MAIN RESULTS AND THE ROLE OF CHANCE Of the 965 blastocysts originally available, only 216 underwent FET. While mtCN from the transferred embryos is significantly associated with the ploidy call of each embryo, mtCN has no role in impacting IVF outcomes after an embryo transfer in these women. The results indicate that mtCN is a marker of embryo aneuploidy. On the other hand, digitally estimated TL is the most prominent univariant factor and showed a significant positive association with pregnancy outcomes (P < 0.01, odds ratio 79.1). We combined several maternal and embryo parameters to study the joint effects on successful implantation. The machine learning models, namely decision tree and random forest, were trained and yielded classification accuracy of 0.82 and 0.91, respectively. Taken together, these results support the vital role of TL in governing implantation potential, perhaps through the ability to control embryo survival after transfer. LIMITATIONS REASONS FOR CAUTION The small sample size limits our study as only 216 blastocysts were transferred. The number was further reduced to 153 blastocysts, where pregnancy outcomes could be accurately traced. The other limitation of this study is that all data were collected from a single IVF center. The uniform and controlled operation of IVF cycles in a single center may cause selection bias. WIDER IMPLICATIONS OF THE FINDINGS We present novel findings to show that digitally estimated TL at the blastocyst stage is a predictor of pregnancy capacity after a FET cycle. As elective single-embryo transfer has become the mainstream direction in reproductive medicine, prioritizing embryos based on their implantation potential is crucial for clinical infertility treatment in order to reduce twin pregnancy rate and the time to pregnancy in an IVF center. The AI-powered, random forest prediction model established in this study thus provides a way to improve clinical practice and optimize the chances for people with fertility problems to achieve parenthood. STUDY FUNDING/COMPETING INTERESTS This study was supported by a grant from the National Science and Technology Council, Taiwan (MOST 108-2321-B-006-013 -). There were no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Chun-Wei Chien
- Center for Genomic Medicine, Innovation Headquarters, National Cheng Kung University, Tainan, Taiwan
| | - Yen-An Tang
- Center for Genomic Medicine, Innovation Headquarters, National Cheng Kung University, Tainan, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuen-Lin Jeng
- Department of Statistics, Institute of Data Science, National Cheng Kung University, Tainan, Taiwan
- Center for Innovative FinTech Business Models, National Cheng Kung University, Tainan, Taiwan
| | - Hsien-An Pan
- IVF center, An-An Women and Children Clinic, Tainan, Taiwan
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - H Sunny Sun
- Center for Genomic Medicine, Innovation Headquarters, National Cheng Kung University, Tainan, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Salari S, Adashi EY, Keller L, Johnson TRB, Smith GD. Human embryos donated for human embryonic stem cell derivation. Fertil Steril 2023; 119:3-10. [PMID: 36494202 DOI: 10.1016/j.fertnstert.2022.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/12/2022]
Abstract
Human embryonic stem cells (hESCs), produced from human embryos, are demonstrating: utility and promise in disease modeling; enhanced and unique understanding of early events in basic genetic or molecular or cellular or epigenetic development; novel human approaches to pharmaceutical screening; pathways toward the discoveries of disease treatments and cures; and foundational importance for regenerative medicine. The regulatory landscape is rigorous, and rightly so. Here, we discuss the current US federal and state regulatory environment. A unique approach of presenting anonymized embryo donor statements is provided to personalize the decision-making process of human embryo donation for hESC derivation. From the uses of preimplantation genetic-tested and affected human embryos to derived disease-specific hESCs, one can glean the much needed information on early human genetics and developmental biology, which are presented here. Finally, we discuss the future uses of hESCs, and other pluripotent stem cells, in general and reproductive medicine.
Collapse
Affiliation(s)
- Salomeh Salari
- Department of Obstetrics and Gynecology, Case Western Reserve University, University Hospital, Cleveland, Ohio
| | - Eli Y Adashi
- Department of Obstetrics and Gynecology, School of Medicine, Brown University, Providence, Rhode Island
| | - Laura Keller
- Department of Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Timothy R B Johnson
- Department of Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Gary D Smith
- Department of Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan; Departments of Physiology and Urology, Reproductive Sciences Program, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
4
|
Mu J, Zhou Z, Sang Q, Wang L. The physiological and pathological mechanisms of early embryonic development. FUNDAMENTAL RESEARCH 2022; 2:859-872. [PMID: 38933386 PMCID: PMC11197659 DOI: 10.1016/j.fmre.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022] Open
Abstract
Early embryonic development is a complex process. The zygote undergoes several rounds of division to form a blastocyst, and during this process, the zygote undergoes the maternal-to-zygotic transition to gain control of embryonic development and makes two cell fate decisions to differentiate into an embryonic and two extra-embryonic lineages. With the use of new molecular biotechnologies and animal models, we can now further study the molecular mechanisms of early embryonic development and the pathological causes of early embryonic arrest. Here, we first summarize the known molecular regulatory mechanisms of early embryonic development in mice. Then we discuss the pathological factors leading to the early embryonic arrest. We hope that this review will give researchers a relatively complete view of the physiology and pathology of early embryonic development.
Collapse
Affiliation(s)
- Jian Mu
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zhou Zhou
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Qing Sang
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Wang
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
5
|
Yun Y, Lee S, So C, Manhas R, Kim C, Wibowo T, Hori M, Hunter N. Oocyte Development and Quality in Young and Old Mice following Exposure to Atrazine. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:117007. [PMID: 36367780 PMCID: PMC9651182 DOI: 10.1289/ehp11343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Egg development has unique features that render it vulnerable to environmental perturbation. The herbicide atrazine is an endocrine disruptor shown to have detrimental effects on reproduction across several vertebrate species. OBJECTIVES This study was designed to determine whether exposure to low levels of atrazine impairs meiosis in female mammals, using a mouse model; in particular, the study's researchers sought to determine whether and how the fidelity of oocyte chromosome segregation may be affected and whether aging-related aneuploidy is exacerbated. METHODS Female C57BL/6J mice were exposed to two levels of atrazine in drinking water: The higher level equaled aqueous saturation, and the lower level corresponded to detected environmental contamination. To model developmental exposure, atrazine was ingested by pregnant females at 0.5 d post coitum and continued until pups were weaned at 21 d postpartum. For adult exposure, 2-month-old females ingested atrazine for 3 months. Following exposure, various indicators of oocyte development and quality were determined, including: a) chromosome synapsis and crossing over in fetal oocytes using immunofluorescence staining of prophase-I chromosome preparations; b) sizes of follicle pools in sectioned ovaries; c) efficiencies of in vitro fertilization and early embryogenesis; d) chromosome alignment and segregation in cultured oocytes; e) chromosomal errors in metaphase-I and -II (MI and MII) preparations; and f) sister-chromatid cohesion via immunofluorescence intensity of cohesin subunit REC8 on MI-chromosome preparations, and measurement of interkinetochore distances in MII preparations. RESULTS Mice exposed to atrazine during development showed slightly higher levels of defects in chromosome synapsis, but sizes of initial follicle pools were indistinguishable from controls. However, although more eggs were ovulated, oocyte quality was lower. At the chromosome level, frequencies of spindle misalignment and numerical and structural abnormalities were greater at both meiotic divisions. In vitro fertilization was less efficient, and there were more apoptotic cells in blastocysts derived from eggs of atrazine-exposed females. Similar levels of chromosomal defects were seen in oocytes following both developmental and adult exposure regimens, suggesting quiescent primordial follicles may be a consequential target of atrazine. An important finding was that defects were observed long after exposure was terminated. Moreover, chromosomally abnormal eggs were very frequent in older mice, implying that atrazine exposure during development exacerbates effects of maternal aging on oocyte quality. Indeed, analogous to the effects of maternal age, weaker cohesion between sister chromatids was observed in oocytes from atrazine-exposed animals. CONCLUSION Low-level atrazine exposure caused persistent changes to the female mammalian germline in mice, with potential consequences for reproductive lifespan and congenital disease. https://doi.org/10.1289/EHP11343.
Collapse
Affiliation(s)
- Yan Yun
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
- Howard Hughes Medical Institute, University of California, Davis, Davis, California, USA
| | - Sunkyung Lee
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Christina So
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Rushali Manhas
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Carol Kim
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Tabitha Wibowo
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Michael Hori
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Neil Hunter
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
- Howard Hughes Medical Institute, University of California, Davis, Davis, California, USA
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, USA
| |
Collapse
|
6
|
Wyatt CDR, Pernaute B, Gohr A, Miret-Cuesta M, Goyeneche L, Rovira Q, Salzer MC, Boke E, Bogdanovic O, Bonnal S, Irimia M. A developmentally programmed splicing failure contributes to DNA damage response attenuation during mammalian zygotic genome activation. SCIENCE ADVANCES 2022; 8:eabn4935. [PMID: 35417229 PMCID: PMC9007516 DOI: 10.1126/sciadv.abn4935] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Transition from maternal to embryonic transcriptional control is crucial for embryogenesis. However, alternative splicing regulation during this process remains understudied. Using transcriptomic data from human, mouse, and cow preimplantation development, we show that the stage of zygotic genome activation (ZGA) exhibits the highest levels of exon skipping diversity reported for any cell or tissue type. Much of this exon skipping is temporary, leads to disruptive noncanonical isoforms, and occurs in genes enriched for DNA damage response in the three species. Two core spliceosomal components, Snrpb and Snrpd2, regulate these patterns. These genes have low maternal expression at ZGA and increase sharply thereafter. Microinjection of Snrpb/d2 messenger RNA into mouse zygotes reduces the levels of exon skipping at ZGA and leads to increased p53-mediated DNA damage response. We propose that mammalian embryos undergo an evolutionarily conserved, developmentally programmed splicing failure at ZGA that contributes to the attenuation of cellular responses to DNA damage.
Collapse
Affiliation(s)
- Christopher D. R. Wyatt
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Barbara Pernaute
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - André Gohr
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Miret-Cuesta
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Lucia Goyeneche
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Quirze Rovira
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marion C. Salzer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elvan Boke
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2010, Australia
| | - Sophie Bonnal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
7
|
Regin M, Spits C, Sermon K. On the origins and fate of chromosomal abnormalities in human preimplantation embryos: an unsolved riddle. Mol Hum Reprod 2022; 28:6566308. [DOI: 10.1093/molehr/gaac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
About 8 out of 10 human embryos obtained in vitro harbour chromosomal abnormalities of either meiotic or mitotic origin. Abnormalities of mitotic origin lead to chromosomal mosaicism, a phenomenon which has sparked much debate lately as it confounds results obtained through preimplantation genetic testing for aneuploidy (PGT-A). PGT-A in itself is still highly debated, not only on the modalities of its execution, but also on whether it should be offered to patients at all.
We will focus on post-zygotic chromosomal abnormalities leading to mosaicism. First, we will summarize what is known of the rates of chromosomal abnormalities at different developmental stages. Next, based on the current understanding of the origin and cellular consequences of chromosomal abnormalities, which is largely based on studies on cancer cells and model organisms, we will offer a number of hypotheses on which mechanisms may be at work in early human development. Finally, and very briefly, we will touch upon the impact our current knowledge has on the practice of PGT-A. What is the level of abnormal cells that an embryo can tolerate before it loses its potential for full development? And is blastocyst biopsy as harmless as it seems?
Collapse
Affiliation(s)
- Marius Regin
- Research group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Claudia Spits
- Research group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Karen Sermon
- Research group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, 1090, Belgium
| |
Collapse
|
8
|
Brooks KE, Daughtry BL, Davis B, Yan MY, Fei SS, Shepherd S, Carbone L, Chavez SL. Molecular contribution to embryonic aneuploidy and karyotypic complexity in initial cleavage divisions of mammalian development. Development 2022; 149:dev198341. [PMID: 35311995 PMCID: PMC9058497 DOI: 10.1242/dev.198341] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/04/2022] [Indexed: 01/05/2023]
Abstract
Embryonic aneuploidy is highly complex, often leading to developmental arrest, implantation failure or spontaneous miscarriage in both natural and assisted reproduction. Despite our knowledge of mitotic mis-segregation in somatic cells, the molecular pathways regulating chromosome fidelity during the error-prone cleavage-stage of mammalian embryogenesis remain largely undefined. Using bovine embryos and live-cell fluorescent imaging, we observed frequent micro-/multi-nucleation of mis-segregated chromosomes in initial mitotic divisions that underwent unilateral inheritance, re-fused with the primary nucleus or formed a chromatin bridge with neighboring cells. A correlation between a lack of syngamy, multipolar divisions and asymmetric genome partitioning was also revealed, and single-cell DNA-seq showed propagation of primarily non-reciprocal mitotic errors. Depletion of the mitotic checkpoint protein BUB1B (also known as BUBR1) resulted in similarly abnormal nuclear structures and cell divisions, as well as chaotic aneuploidy and dysregulation of the kinase-substrate network that mediates mitotic progression, all before zygotic genome activation. This demonstrates that embryonic micronuclei sustain multiple fates, provides an explanation for blastomeres with uniparental origins, and substantiates defective checkpoints and likely other maternally derived factors as major contributors to the karyotypic complexity afflicting mammalian preimplantation development.
Collapse
Affiliation(s)
- Kelsey E. Brooks
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Brittany L. Daughtry
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Brett Davis
- Bioinformatics and Biostatistics Unit, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Melissa Y. Yan
- Bioinformatics and Biostatistics Unit, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Suzanne S. Fei
- Bioinformatics and Biostatistics Unit, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Selma Shepherd
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Department of Medical Informatics and Clinical Epidemiology, Division of Bioinformatics and Computational Biomedicine, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Shawn L. Chavez
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
9
|
LC-MS Analysis Revealed the Significantly Different Metabolic Profiles in Spent Culture Media of Human Embryos with Distinct Morphology, Karyotype and Implantation Outcomes. Int J Mol Sci 2022; 23:ijms23052706. [PMID: 35269848 PMCID: PMC8911215 DOI: 10.3390/ijms23052706] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
In this study we evaluated possible differences in metabolomic profiles of spent embryo culture media (SECM) of human embryos with distinct morphology, karyotype, and implantation outcomes. A total of 153 samples from embryos of patients undergoing in vitro fertilization (IVF) programs were collected and analyzed by HPLC-MS. Metabolomic profiling and statistical analysis revealed clear clustering of day five SECM from embryos with different morphological classes and karyotype. Profiling of day five SECM from embryos with different implantation outcomes showed 241 significantly changed molecular ions in SECM of successfully implanted embryos. Separate analysis of paired SECM samples on days three and five revealed 46 and 29 molecular signatures respectively, significantly differing in culture media of embryos with a successful outcome. Pathway enrichment analysis suggests certain amino acids, vitamins, and lipid metabolic pathways to be crucial for embryo implantation. Differences between embryos with distinct implantation potential are detectable on the third and fifth day of cultivation that may allow the application of culture medium analysis in different transfer protocols for both fresh and cryopreserved embryos. A combination of traditional morphological criteria with metabolic profiling of SECM may increase implantation rates in assisted reproductive technology programs as well as improve our knowledge of the human embryo metabolism in the early stages of development.
Collapse
|
10
|
He QL, Yuan P, Yang L, Yan ZQ, Chen W, Chen YD, Kong SM, Tang FC, Qiao J, Yan LY. Single-cell RNA sequencing reveals abnormal fluctuations in human eight-cell embryos associated with blastocyst formation failure. Mol Hum Reprod 2022; 28:6460826. [PMID: 34904654 DOI: 10.1093/molehr/gaab069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
Infertility has become a global health issue, with the number of people suffering from the disease increasing year by year, and ART offering great promise for infertility treatment. However, the regulation of early embryonic development is complicated and a series of processes takes place, including the maternal-to-zygotic transition. In addition, developmental arrest is frequently observed during human early embryonic development. In this study, we performed single-cell RNA sequencing on a biopsied blastomere from human eight-cell embryos and tracked the developmental potential of the remaining cells. To compare the sequencing results between different eight-cell embryos, we have combined the research data of this project with the data previously shared in the database and found that cells from the same embryo showed a higher correlation. Additionally, the transcriptome of embryos with blastocyst formation failure was significantly different from developed embryos, and the gene expression as well as cell signaling pathways related to embryonic development were also altered. In particular, the expression of some maternal and zygotic genes in the failed blastocyst formation group was significantly altered: the overall expression level of maternal genes was significantly higher in the failed blastocyst than the developed blastocyst group. In general, these findings provide clues for the causes of human embryonic arrest after the eight-cell stage, and they also provide new ideas for improving the success rate of ART in clinical practice.
Collapse
Affiliation(s)
- Qi-Long He
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Peng Yuan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Lu Yang
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhi-Qiang Yan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Wei Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yi-Dong Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Si-Ming Kong
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Fu-Chou Tang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Li-Ying Yan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
11
|
Footprints of microRNAs in Cancer Biology. Biomedicines 2021; 9:biomedicines9101494. [PMID: 34680611 PMCID: PMC8533183 DOI: 10.3390/biomedicines9101494] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs involved in post-transcriptional gene regulation. Over the past years, various studies have demonstrated the role of aberrant miRNA expression in the onset of cancer. The mechanisms by which miRNA exerts its cancer-promoting or inhibitory effects are apparent through the various cancer hallmarks, which include selective proliferative advantage, altered stress response, vascularization, invasion and metastasis, metabolic rewiring, the tumor microenvironment and immune modulation; therefore, this review aims to highlight the association between miRNAs and the various cancer hallmarks by dissecting the mechanisms of miRNA regulation in each hallmark separately. It is hoped that the information presented herein will provide further insights regarding the role of cancer and serve as a guideline to evaluate the potential of microRNAs to be utilized as biomarkers and therapeutic targets on a larger scale in cancer research.
Collapse
|
12
|
Papathanasiou S, Markoulaki S, Blaine LJ, Leibowitz ML, Zhang CZ, Jaenisch R, Pellman D. Whole chromosome loss and genomic instability in mouse embryos after CRISPR-Cas9 genome editing. Nat Commun 2021; 12:5855. [PMID: 34615869 PMCID: PMC8494802 DOI: 10.1038/s41467-021-26097-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
Karyotype alterations have emerged as on-target complications from CRISPR-Cas9 genome editing. However, the events that lead to these karyotypic changes in embryos after Cas9-treatment remain unknown. Here, using imaging and single-cell genome sequencing of 8-cell stage embryos, we track both spontaneous and Cas9-induced karyotype aberrations through the first three divisions of embryonic development. We observe the generation of abnormal structures of the nucleus that arise as a consequence of errors in mitosis, including micronuclei and chromosome bridges, and determine their contribution to common karyotype aberrations including whole chromosome loss that has been recently reported after editing in embryos. Together, these data demonstrate that Cas9-mediated germline genome editing can lead to unwanted on-target side effects, including major chromosome structural alterations that can be propagated over several divisions of embryonic development.
Collapse
Affiliation(s)
- Stamatis Papathanasiou
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Logan J Blaine
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mitchell L Leibowitz
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Cheng-Zhong Zhang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rudolf Jaenisch
- Whitehead Institute, Cambridge, MA, USA.
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA.
| | - David Pellman
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
13
|
Cell fate determination and Hippo signaling pathway in preimplantation mouse embryo. Cell Tissue Res 2021; 386:423-444. [PMID: 34586506 DOI: 10.1007/s00441-021-03530-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
First cell fate determination plays crucial roles in cell specification during early phases of embryonic development. Three classical concepts have been proposed to explain the lineage specification mechanism of the preimplantation embryo: inside-outside, pre-patterning, and polarity models. Transcriptional effectors of the Hippo signal pathway are YAP and TAZ activators that can create a shuttle between the cytoplasm and the nucleus. Despite different localizations of YAP in the cell, it determines the fate of ICM and TE. How the decisive cue driving factors that determine YAP localization are coordinated remains a central unanswered question. How can an embryonic cell find its position? The objective of this review is to summarize the molecular and mechanical aspects in cell fate decision during mouse preimplantation embryonic development. The findings will reveal the relationship between cell-cell adhesion, cell polarity, and determination of cell fate during early embryonic development in mice and elucidate the inducing/inhibiting mechanisms that are involved in cell specification following zygotic genome activation and compaction processes. With future studies, new biophysical and chemical cues in the cell fate determination will impart significant spatiotemporal effects on early embryonic development. The achieved knowledge will provide important information to the development of new approaches to be used in infertility treatment and increase the success of pregnancy.
Collapse
|
14
|
Molecular Drivers of Developmental Arrest in the Human Preimplantation Embryo: A Systematic Review and Critical Analysis Leading to Mapping Future Research. Int J Mol Sci 2021; 22:ijms22158353. [PMID: 34361119 PMCID: PMC8347543 DOI: 10.3390/ijms22158353] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/28/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Developmental arrest of the preimplantation embryo is a multifactorial condition, characterized by lack of cellular division for at least 24 hours, hindering the in vitro fertilization cycle outcome. This systematic review aims to present the molecular drivers of developmental arrest, focusing on embryonic and parental factors. A systematic search in PubMed/Medline, Embase and Cochrane-Central-Database was performed in January 2021. A total of 76 studies were included. The identified embryonic factors associated with arrest included gene variations, mitochondrial DNA copy number, methylation patterns, chromosomal abnormalities, metabolic profile and morphological features. Parental factors included, gene variation, protein expression levels and infertility etiology. A valuable conclusion emerging through critical analysis indicated that genetic origins of developmental arrest analyzed from the perspective of parental infertility etiology and the embryo itself, share common ground. This is a unique and long-overdue contribution to literature that for the first time presents an all-inclusive methodological report on the molecular drivers leading to preimplantation embryos’ arrested development. The variety and heterogeneity of developmental arrest drivers, along with their inevitable intertwining relationships does not allow for prioritization on the factors playing a more definitive role in arrested development. This systematic review provides the basis for further research in the field.
Collapse
|
15
|
Telomere Shortening and Fusions: A Link to Aneuploidy in Early Human Embryo Development. Obstet Gynecol Surv 2021; 76:429-436. [PMID: 34324695 DOI: 10.1097/ogx.0000000000000907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Importance It is known that oocytes undergo aging that is caused by exposure to an aged ovarian microenvironment. Telomere length in mouse and bovine oocytes declines with age, and age-associated telomere shortening in oocytes is considered a sign of poor development competency. Women with advanced age undergoing assisted reproductive technologies have poor outcomes because of increasing aneuploidy rates with age. Research has shown that aneuploidy is associated with DNA damage, reactive oxygen species, and telomere dysfunction. Objective In this review, we focus on the possible relationship between telomere dysfunction and aneuploidy in human early embryo development and several reproductive and perinatal outcomes, discussing the mechanism of aneuploidy caused by telomere shortening and fusion in human embryos. Evidence Acquisition We reviewed the current literature evidence concerning telomere dysfunction and aneuploidy in early human embryo development. Results Shorter telomeres in oocytes, leukocytes, and granulosa cells, related to aging in women, were associated with recurrent miscarriage, trisomy 21, ovarian insufficiency, and decreasing chance of in vitro fertilization success. Telomere length and telomerase activity in embryos have been related to the common genomic instability at the cleavage stage of human development. Complications of assisted reproductive technology pregnancies, such as miscarriage, birth defects, preterm births, and intrauterine growth restriction, also might result from telomere shortening as observed in oocytes, polar body, granulosa cells, and embryos. Conclusions and Relevance Telomere length clearly plays an important role in the development of the embryo and fetus, and the abnormal shortening of telomeres is likely involved in embryo loss during early human development. However, telomere fusion studies have yet to be performed in early human development.
Collapse
|
16
|
Harkenrider MM, Markham MJ, Dizon DS, Jhingran A, Salani R, Serour RK, Lynn J, Kohn EC. Moving Forward in Cervical Cancer: Enhancing Susceptibility to DNA Repair Inhibition and Damage, an NCI Clinical Trials Planning Meeting Report. J Natl Cancer Inst 2021; 112:1081-1088. [PMID: 32219419 DOI: 10.1093/jnci/djaa041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer is the fourth most common cancer in women worldwide, and prognosis is poor for those who experience recurrence or develop metastatic disease, in part due to the lack of active therapeutic directions. The National Cancer Institute convened a Cervical Cancer Clinical Trials Planning Meeting in October 2018 to facilitate the design of hypothesis-driven clinical trials focusing on locally advanced, metastatic, and recurrent cervical cancer around the theme of enhancing susceptibility to DNA repair inhibition and DNA damage. Before the meeting, a group of experts in the field summarized available preclinical and clinical data to identify potentially active inducers and inhibitors of DNA. The goals of the Clinical Trials Planning Meeting focused on identification of novel experimental strategies capitalizing on DNA damage and repair (DDR) regulators and cell cycle aberrations, optimization of radiotherapy as a DDR agent, and design of clinical trials incorporating DDR regulation into the primary and recurrent or metastatic therapies for cervical carcinoma. Meeting deliverables were novel clinical trial concepts to move into the National Clinical Trials Network. This report provides an overview for the rationale of this meeting and the state of the science related to DDR regulation in cervical cancer.
Collapse
Affiliation(s)
- Matthew M Harkenrider
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, USA
| | - Merry Jennifer Markham
- Division of Hematology and Oncology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Don S Dizon
- Division of Hematology and Oncology, Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Anuja Jhingran
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ritu Salani
- The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Jean Lynn
- Coordinating Center for Clinical Trials, National Cancer Institute, Bethesda, MD, USA
| | - Elise C Kohn
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
17
|
Kim J, Lee S, Kim H, Lee H, Seong KM, Youn H, Youn B. Autophagic Organelles in DNA Damage Response. Front Cell Dev Biol 2021; 9:668735. [PMID: 33912571 PMCID: PMC8072393 DOI: 10.3389/fcell.2021.668735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy is an important subcellular event engaged in the maintenance of cellular homeostasis via the degradation of cargo proteins and malfunctioning organelles. In response to cellular stresses, like nutrient deprivation, infection, and DNA damaging agents, autophagy is activated to reduce the damage and restore cellular homeostasis. One of the responses to cellular stresses is the DNA damage response (DDR), the intracellular pathway that senses and repairs damaged DNA. Proper regulation of these pathways is crucial for preventing diseases. The involvement of autophagy in the repair and elimination of DNA aberrations is essential for cell survival and recovery to normal conditions, highlighting the importance of autophagy in the resolution of cell fate. In this review, we summarized the latest information about autophagic recycling of mitochondria, endoplasmic reticulum (ER), and ribosomes (called mitophagy, ER-phagy, and ribophagy, respectively) in response to DNA damage. In addition, we have described the key events necessary for a comprehensive understanding of autophagy signaling networks. Finally, we have highlighted the importance of the autophagy activated by DDR and appropriate regulation of autophagic organelles, suggesting insights for future studies. Especially, DDR from DNA damaging agents including ionizing radiation (IR) or anti-cancer drugs, induces damage to subcellular organelles and autophagy is the key mechanism for removing impaired organelles.
Collapse
Affiliation(s)
- Jeongha Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Haksoo Lee
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Ki Moon Seong
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea.,Department of Biological Sciences, Pusan National University, Busan, South Korea
| |
Collapse
|
18
|
Vasilyev SA, Tolmacheva EN, Vasilyeva OY, Markov AV, Zhigalina DI, Zatula LA, Lee VA, Serdyukova ES, Sazhenova EA, Nikitina TV, Kashevarova AA, Lebedev IN. LINE-1 retrotransposon methylation in chorionic villi of first trimester miscarriages with aneuploidy. J Assist Reprod Genet 2021; 38:139-149. [PMID: 33170392 PMCID: PMC7823001 DOI: 10.1007/s10815-020-02003-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/02/2020] [Indexed: 01/15/2023] Open
Abstract
PURPOSE High frequency of aneuploidy in meiosis and cleavage stage coincides with waves of epigenetic genome reprogramming that may indicate a possible association between epigenetic mechanisms and aneuploidy occurrence. This study aimed to assess the methylation level of the long interspersed repeat element 1 (LINE-1) retrotransposon in chorionic villi of first trimester miscarriages with a normal karyotype and aneuploidy. METHODS The methylation level was assessed at 19 LINE-1 promoter CpG sites in chorionic villi of 141 miscarriages with trisomy of chromosomes 2, 6, 8-10, 13-15, 16, 18, 20-22, and monosomy X using massive parallel sequencing. RESULTS The LINE-1 methylation level was elevated statistically significant in chorionic villi of miscarriages with both trisomy (45.2 ± 4.3%) and monosomy X (46.9 ± 4.2%) compared with that in induced abortions (40.0 ± 2.4%) (p < 0.00001). The LINE-1 methylation levels were specific for miscarriages with different aneuploidies and significantly increased in miscarriages with trisomies 8, 14, and 18 and monosomy X (p < 0.05). The LINE-1 methylation level increased with gestational age both for group of miscarriages regardless of karyotype (R = 0.21, p = 0.012) and specifically for miscarriages with trisomy 16 (R = 0.48, p = 0.007). LINE-1 methylation decreased with maternal age in miscarriages with a normal karyotype (R = - 0.31, p = 0.029) and with trisomy 21 (R = - 0.64, p = 0.024) and increased with paternal age for miscarriages with trisomy 16 (R = 0.38, p = 0.048) and monosomy X (R = 0.73, p = 0.003). CONCLUSION Our results indicate that the pathogenic effects of aneuploidy in human embryogenesis can be supplemented with significant epigenetic changes in the repetitive sequences.
Collapse
Affiliation(s)
- Stanislav A Vasilyev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Nab. R. Ushaiki, 10, Tomsk, Russia.
- Biological Institute, National Research Tomsk State University, Lenina, 36, Tomsk, Russia.
| | - Ekaterina N Tolmacheva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Nab. R. Ushaiki, 10, Tomsk, Russia
| | - Oksana Yu Vasilyeva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Nab. R. Ushaiki, 10, Tomsk, Russia
| | - Anton V Markov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Nab. R. Ushaiki, 10, Tomsk, Russia
| | - Daria I Zhigalina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Nab. R. Ushaiki, 10, Tomsk, Russia
| | - Lada A Zatula
- Department of Medical Genetics, Siberian State Medical University, Moskovskiy Trakt, 2, Tomsk, Russia
| | - Vasilissa A Lee
- Department of Medical Genetics, Siberian State Medical University, Moskovskiy Trakt, 2, Tomsk, Russia
| | - Ekaterina S Serdyukova
- Biological Institute, National Research Tomsk State University, Lenina, 36, Tomsk, Russia
| | - Elena A Sazhenova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Nab. R. Ushaiki, 10, Tomsk, Russia
| | - Tatyana V Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Nab. R. Ushaiki, 10, Tomsk, Russia
| | - Anna A Kashevarova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Nab. R. Ushaiki, 10, Tomsk, Russia
| | - Igor N Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Nab. R. Ushaiki, 10, Tomsk, Russia
- Department of Medical Genetics, Siberian State Medical University, Moskovskiy Trakt, 2, Tomsk, Russia
| |
Collapse
|
19
|
Duro J, Nilsson J. SAC during early cell divisions: Sacrificing fidelity over timely division, regulated differently across organisms: Chromosome alignment and segregation are left unsupervised from the onset of development until checkpoint activity is acquired, varying from species to species. Bioessays 2020; 43:e2000174. [PMID: 33251610 DOI: 10.1002/bies.202000174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Early embryogenesis is marked by a frail Spindle Assembly Checkpoint (SAC). The time of SAC acquisition varies depending on the species, cell size or a yet to be uncovered developmental timer. This means that for a specific number of divisions, biorientation of sister chromatids occurs unsupervised. When error-prone segregation is an issue, an aneuploidy-selective apoptosis system can come into play to eliminate chromosomally unbalanced cells resulting in healthy newborns. However, aneuploidy content can be too great to overcome, endangering viability. SAC generates a diffusible signal to lengthen time spent in mitosis if needed, ensuring correct chromosome segregation, a fundamental factor in the generation of euploid cells. Thus, it remains puzzling what benefit could come from delaying SAC acquisition till later in the development. In this review, we describe what is known on SAC acquisition in distinct species and highlight pending research as well as potential applications for such knowledge.
Collapse
Affiliation(s)
- Joana Duro
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|
20
|
Aizawa E, Dumeau CE, Freimann R, Di Minin G, Wutz A. Polyploidy of semi-cloned embryos generated from parthenogenetic haploid embryonic stem cells. PLoS One 2020; 15:e0233072. [PMID: 32911495 PMCID: PMC7482839 DOI: 10.1371/journal.pone.0233072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/25/2020] [Indexed: 11/18/2022] Open
Abstract
In mammals, the fusion of two gametes, an oocyte and a spermatozoon, during fertilization forms a totipotent zygote. There has been no reported case of adult mammal development by natural parthenogenesis, in which embryos develop from unfertilized oocytes. The genome and epigenetic information of haploid gametes are crucial for mammalian development. Haploid embryonic stem cells (haESCs) can be established from uniparental blastocysts and possess only one set of chromosomes. Previous studies have shown that sperm or oocyte genome can be replaced by haESCs with or without manipulation of genomic imprinting for generation of mice. Recently, these remarkable semi-cloning methods have been applied for screening of key factors of mouse embryonic development. While haESCs have been applied as substitutes of gametic genomes, the fundamental mechanism how haESCs contribute to the genome of totipotent embryos is unclear. Here, we show the generation of fertile semi-cloned mice by injection of parthenogenetic haESCs (phaESCs) into oocytes after deletion of two differentially methylated regions (DMRs), the IG-DMR and H19-DMR. For characterizing the genome of semi-cloned embryos further, we establish ESC lines from semi-cloned blastocysts. We report that polyploid karyotypes are observed in semi-cloned ESCs (scESCs). Our results confirm that mitotically arrested phaESCs yield semi-cloned embryos and mice when the IG-DMR and H19-DMR are deleted. In addition, we highlight the occurrence of polyploidy that needs to be considered for further improving the development of semi-cloned embryos derived by haESC injection.
Collapse
Affiliation(s)
- Eishi Aizawa
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Charles-Etienne Dumeau
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Remo Freimann
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Giulio Di Minin
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
21
|
Dviri M, Madjunkova S, Koziarz A, Antes R, Abramov R, Mashiach J, Moskovtsev S, Kuznyetsova I, Librach C. Is there a correlation between paternal age and aneuploidy rate? An analysis of 3,118 embryos derived from young egg donors. Fertil Steril 2020; 114:293-300. [PMID: 32654815 DOI: 10.1016/j.fertnstert.2020.03.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To investigate a possible correlation between chromosomal aberrations and paternal age, analyzing embryos derived from young oocyte donors, with available preimplantation genetic testing for aneuploidy results from day 5/6 trophectoderm biopsy obtained by next-generation sequencing for all 24 chromosomes. DESIGN Retrospective cohort study. SETTING Canadian fertility centre. PATIENT(S) A total of 3,118 embryos from 407 male patients, allocated into three paternal age groups: group A, ≤39 years (n = 203); group B, 40-49 years (n = 161); group C, ≥50 years (n = 43). INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) The primary outcomes were aneuploidy, euploidy, mosaicism, and blastocyst formation rates. Secondary endpoints were comparison of specific chromosome aneuploidy, segmental and complex (involving two chromosomes + mosaicism >50%) aneuploidy, and analysis of overall percentage of chromosomal gains and losses within each group. RESULT(S) The study included 437 in vitro fertilization (IVF) antagonist cycles using 302 oocyte donors in which preimplantation genetic testing for aneuploidy was performed. Overall, 70.04% of embryos were euploid, 13.9% were aneuploid, and 16.06% were mosaic. No significant differences among paternal age groups A, B, and C were found in euploidy rates (69.2%, 70.6%, 71.4%, respectively), aneuploidy rates (14.7%, 12.8%, 13.9%, respectively) or mosaicism rates (16.1%, 16.6%, 13.6%; respectively). The fertilization rate was lower in group C compared with group B (76.35% vs. 80.09%). No difference was found in blastocyst formation rate between the study groups (median 52% [interquartile range, 41%, 67%] vs. 53% [42%, 65%] vs. 52% [42%, 64%], respectively). A generalized linear mixed model regression analysis for embryo ploidy rates found older oocyte donor age to be independently associated with embryo aneuploidy (odds ratio = 1.041; 95% CI, 1.009-1.074). The rate of segmental aneuploidies was significantly higher in the older versus younger paternal age group (36.6% vs. 19.4%). CONCLUSION(S) No association was found between paternal age and aneuploidy rates in embryos derived from IVF cycles using young oocyte donors, after adjusting for donor, sperm, and IVF cycle characteristics. Advanced paternal age ≥ 50, compared with younger paternal ages, was associated with a lower fertilization rate and increased rate of segmental aberrations.
Collapse
Affiliation(s)
- Michal Dviri
- CReATe Fertility Centre, Toronto, Ontario Canada; Department of Obstetrics and Gynecology, Women's College Hospital, Toronto, Ontario Canada
| | | | - Alex Koziarz
- Faculty of Medicine, Women's College Hospital, Toronto, Ontario Canada
| | - Ran Antes
- CReATe Fertility Centre, Toronto, Ontario Canada
| | - Rina Abramov
- CReATe Fertility Centre, Toronto, Ontario Canada
| | - Jordana Mashiach
- CReATe Fertility Centre, Toronto, Ontario Canada; Department of Obstetrics and Gynecology, Women's College Hospital, Toronto, Ontario Canada
| | - Sergey Moskovtsev
- CReATe Fertility Centre, Toronto, Ontario Canada; Department of Obstetrics and Gynecology, Women's College Hospital, Toronto, Ontario Canada
| | | | - Clifford Librach
- CReATe Fertility Centre, Toronto, Ontario Canada; Department of Obstetrics and Gynecology, Women's College Hospital, Toronto, Ontario Canada; Institute of Medical Sciences, Women's College Hospital, Toronto, Ontario Canada; Department of Physiology, University of Toronto, Women's College Hospital, Toronto, Ontario Canada; Department of Gynecology, Women's College Hospital, Toronto, Ontario Canada
| |
Collapse
|
22
|
Vališ K, Novák P. Targeting ERK-Hippo Interplay in Cancer Therapy. Int J Mol Sci 2020; 21:ijms21093236. [PMID: 32375238 PMCID: PMC7247570 DOI: 10.3390/ijms21093236] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular signal-regulated kinase (ERK) is a part of the mitogen-activated protein kinase (MAPK) signaling pathway which allows the transduction of various cellular signals to final effectors and regulation of elementary cellular processes. Deregulation of the MAPK signaling occurs under many pathological conditions including neurodegenerative disorders, metabolic syndromes and cancers. Targeted inhibition of individual kinases of the MAPK signaling pathway using synthetic compounds represents a promising way to effective anti-cancer therapy. Cross-talk of the MAPK signaling pathway with other proteins and signaling pathways have a crucial impact on clinical outcomes of targeted therapies and plays important role during development of drug resistance in cancers. We discuss cross-talk of the MAPK/ERK signaling pathway with other signaling pathways, in particular interplay with the Hippo/MST pathway. We demonstrate the mechanism of cell death induction shared between MAPK/ERK and Hippo/MST signaling pathways and discuss the potential of combination targeting of these pathways in the development of more effective anti-cancer therapies.
Collapse
Affiliation(s)
- Karel Vališ
- Correspondence: (K.V.); (P.N.); Tel.: +420-325873610 (P.N.)
| | - Petr Novák
- Correspondence: (K.V.); (P.N.); Tel.: +420-325873610 (P.N.)
| |
Collapse
|
23
|
Harris SM, Jin Y, Loch-Caruso R, Padilla IY, Meeker JD, Bakulski KM. Identification of environmental chemicals targeting miscarriage genes and pathways using the comparative toxicogenomics database. ENVIRONMENTAL RESEARCH 2020; 184:109259. [PMID: 32143025 PMCID: PMC7103533 DOI: 10.1016/j.envres.2020.109259] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/30/2020] [Accepted: 02/13/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Miscarriage is a prevalent public health issue and many events occur before women are aware of their pregnancy, complicating research design. Thus, risk factors for miscarriage are critically understudied. Our goal was to identify environmental chemicals with a high number of interactions with miscarriage genes, based on known toxicogenomic responses. METHODS We used miscarriage (MeSH: D000022) and chemical gene lists from the Comparative Toxicogenomics Database in human, mouse, and rat. We assessed enrichment for gene ontology biological processes among the miscarriage genes. We prioritized chemicals (n = 25) found at Superfund sites or in the blood or urine pregnant women. For chemical-disease gene sets of sufficient size (n = 13 chemicals, n = 20 comparisons), chi-squared enrichment tests and proportional reporting ratios (PRR) were calculated. We cross-validated enrichment results. RESULTS Miscarriage was annotated with 121 genes and overrepresented in inflammatory response (q = 0.001), collagen metabolic process (q = 1 × 10-13), cell death (q = 0.02), and vasculature development (q = 0.005) pathways. The number of unique genes annotated to a chemical ranged from 2 (bromacil) to 5607 (atrazine). In humans, all chemicals tested were highly enriched for miscarriage gene overlap (all p < 0.001; parathion PRR = 7, cadmium PRR = 6.5, lead PRR = 3.9, arsenic PRR = 3.5, atrazine PRR = 2.8). In mice, highest enrichment (p < 0.001) was observed for naphthalene (PRR = 16.1), cadmium (PRR = 12.8), arsenic (PRR = 11.6), and carbon tetrachloride (PRR = 7.7). In rats, we observed highest enrichment (p < 0.001) for cadmium (PRR = 8.7), carbon tetrachloride (PRR = 8.3), and dieldrin (PRR = 5.3). Our findings were robust to 1000 permutations each of variable gene set sizes. CONCLUSION We observed chemical gene sets (parathion, cadmium, naphthalene, carbon tetrachloride, arsenic, lead, dieldrin, and atrazine) were highly enriched for miscarriage genes. Exposures to chemicals linked to miscarriage, and thus linked to decreased probability of live birth, may limit the inclusion of fetuses susceptible to adverse birth outcomes in epidemiology studies. Our findings have critical public health implications for successful pregnancies and the interpretation of adverse impacts of environmental chemical exposures on pregnancy.
Collapse
Affiliation(s)
- Sean M Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yuan Jin
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ingrid Y Padilla
- Department of Civil Engineering and Surveying, University of Puerto Rico, Mayagüez, Puerto Rico
| | - John D Meeker
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
24
|
|