1
|
Hernandez-Morato I, Koss S, Honzel E, Pitman MJ. Netrin-1 as A neural guidance protein in development and reinnervation of the larynx. Ann Anat 2024; 254:152247. [PMID: 38458575 DOI: 10.1016/j.aanat.2024.152247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Neural guidance proteins participate in motor neuron migration, axonal projection, and muscle fiber innervation during development. One of the guidance proteins that participates in axonal pathfinding is Netrin-1. Despite the well-known role of Netrin-1 in embryogenesis of central nervous tissue, it is still unclear how the expression of this guidance protein contributes to primary innervation of the periphery, as well as reinnervation. This is especially true in the larynx where Netrin-1 is upregulated within the intrinsic laryngeal muscles after nerve injury and where blocking of Netrin-1 alters the pattern of reinnervation of the intrinsic laryngeal muscles. Despite this consistent finding, it is unknown how Netrin-1 expression contributes to guidance of the axons towards the larynx. Improved knowledge of Netrin-1's role in nerve regeneration and reinnervation post-injury in comparison to its role in primary innervation during embryological development, may provide insights in the search for therapeutics to treat nerve injury. This paper reviews the known functions of Netrin-1 during the formation of the central nervous system and during cranial nerve primary innervation. It also describes the role of Netrin-1 in the formation of the larynx and during recurrent laryngeal reinnervation following nerve injury in the adult.
Collapse
Affiliation(s)
- Ignacio Hernandez-Morato
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States; Department of Anatomy and Embryology, School of Medicine, Complutense University of Madrid, Madrid, Madrid, Spain.
| | - Shira Koss
- ENT Associates of Nassau County, Levittown, NY, United States
| | - Emily Honzel
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Michael J Pitman
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
2
|
Bresee C, Litman-Cleper J, Clayton CJ, Krubitzer L. Translating the Timing of Developmental Benchmarks in Short-Tailed Opossums (Monodelphisdomestica) to Facilitate Comparisons with Commonly Used Rodent Models. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:69-85. [PMID: 38527443 PMCID: PMC11227379 DOI: 10.1159/000538524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/13/2024] [Indexed: 03/27/2024]
Abstract
INTRODUCTION The gray short-tailed opossum, Monodelhis domestica (M. domestica), is a widely used marsupial model species that presents unique advantages for neurodevelopmental studies. Notably their extremely altricial birth allows manipulation of postnatal pups at timepoints equivalent to embryonic stages of placental mammals. A robust literature exists on the development of short-tailed opossums, but many researchers working in the more conventional model species of mice and rats may find it daunting to identify the appropriate age at which to conduct experiments. METHODS Here, we present detailed staging diagrams taken from photographic observations of 40 individual pups, in 6 litters, over 25 timepoints across postnatal development. We also present a comparative neurodevelopmental timeline of short-tailed opossums (M. domestica), the house mouse (Mus musculus), and the laboratory rat (Rattus norvegicus) during embryonic as well as postnatal development, using timepoints taken from this study and a review of existing literature, and use this dataset to present statistical models comparing the opossum to the rat and mouse. RESULTS One aim of this research was to aid in testing the generalizability of results found in rodents to other mammalian brains, such as the more distantly related metatherians. However, this broad dataset also allows the identification of potential heterochronies in opossum development compared to rats and mice. In contrast to previous work, we found broad similarity between the pace of opossum neural development with that of rats and mice. We also found that development of some systems was accelerated in the opossum, such as the forelimb motor plant, oral motor control, and some aspects of the olfactory system, while the development of the cortex, some aspects of the retina, and other aspects of the olfactory system are delayed compared to the rat and mouse. DISCUSSION The pace of opossum development is broadly similar to that of mice and rats, which underscores the usefulness of this species as a compliment to the more commonly used rodents. Many features that differ the most between opossums and rats and mice were either clustered around the day of birth and were features that have functional importance for the pup immediately after or during birth, or were features that have reduced functional importance for the pup until later in postnatal development, given that it is initially attached to the mother.
Collapse
Affiliation(s)
- Chris Bresee
- Center for Neuroscience, University of California at Davis, Davis, (CA,) USA
| | - Jules Litman-Cleper
- Center for Neuroscience, University of California at Davis, Davis, (CA,) USA
| | - Cindy J. Clayton
- Department of Psychology, University of California at Davis, Davis, (CA,) USA
| | - Leah Krubitzer
- Center for Neuroscience, University of California at Davis, Davis, (CA,) USA
- Department of Psychology, University of California at Davis, Davis, (CA,) USA
| |
Collapse
|
3
|
de Leeuw VC, van Oostrom CTM, Wackers PFK, Pennings JLA, Hodemaekers HM, Piersma AH, Hessel EVS. Neuronal differentiation pathways and compound-induced developmental neurotoxicity in the human neural progenitor cell test (hNPT) revealed by RNA-seq. CHEMOSPHERE 2022; 304:135298. [PMID: 35700809 PMCID: PMC9247748 DOI: 10.1016/j.chemosphere.2022.135298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 05/27/2023]
Abstract
There is an increased awareness that the use of animals for compound-induced developmental neurotoxicity (DNT) testing has limitations. Animal-free innovations, especially the ones based on human stem cell-based models are pivotal in studying DNT since they can mimic processes relevant to human brain development. Here we present the human neural progenitor test (hNPT), a 10-day protocol in which neural progenitor cells differentiate into a neuron-astrocyte co-culture. The study aimed to characterise differentiation over time and to find neurodevelopmental processes sensitive to compound exposure using transcriptomics. 3992 genes regulated in unexposed control cultures (p ≤ 0.001, log2FC ≥ 1) showed Gene Ontology (GO-) term enrichment for neuronal and glial differentiation, neurite extension, synaptogenesis, and synaptic transmission. Exposure to known or suspected DNT compounds (acrylamide, chlorpyrifos, fluoxetine, methyl mercury, or valproic acid) at concentrations resulting in 95% cell viability each regulated unique combinations of GO-terms relating to neural progenitor proliferation, neuronal and glial differentiation, axon development, synaptogenesis, synaptic transmission, and apoptosis. Investigation of the GO-terms 'neuron apoptotic process' and 'axon development' revealed common genes that were responsive across compounds, and might be used as biomarkers for DNT. The GO-term 'synaptic signalling', on the contrary, whilst also responsive to all compounds tested, showed little overlap in gene expression regulation patterns between the conditions. This GO-term may articulate compound-specific effects that may be relevant for revealing differences in mechanism of toxicity. Given its focus on neural progenitor cell to mature multilineage neuronal cell maturation and its detailed molecular readout based on gene expression analysis, hNPT might have added value as a tool for neurodevelopmental toxicity testing in vitro. Further assessment of DNT-specific biomarkers that represent these processes needs further studies.
Collapse
Affiliation(s)
- Victoria C de Leeuw
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Conny T M van Oostrom
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Paul F K Wackers
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hennie M Hodemaekers
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
4
|
McLeod VM, Chiam MDF, Perera ND, Lau CL, Boon WC, Turner BJ. Mapping Motor Neuron Vulnerability in the Neuraxis of Male SOD1 G93A Mice Reveals Widespread Loss of Androgen Receptor Occurring Early in Spinal Motor Neurons. Front Endocrinol (Lausanne) 2022; 13:808479. [PMID: 35273564 PMCID: PMC8902593 DOI: 10.3389/fendo.2022.808479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
Sex steroid hormones have been implicated as disease modifiers in the neurodegenerative disorder amyotrophic lateral sclerosis (ALS). Androgens, signalling via the androgen receptor (AR), predominate in males, and have widespread actions in the periphery and the central nervous system (CNS). AR translocates to the cell nucleus when activated upon binding androgens, whereby it regulates transcription of target genes via the classical genomic signalling pathway. We previously reported that AR protein is decreased in the lumbar spinal cord tissue of symptomatic male SOD1G93A mice. Here, we further explored the changes in AR within motor neurons (MN) of the CNS, assessing their nuclear AR content and propensity to degenerate by endstage disease in male SOD1G93A mice. We observed that almost all motor neuron populations had undergone significant loss in nuclear AR in SOD1G93A mice. Interestingly, loss of nuclear AR was evident in lumbar spinal MNs as early as the pre-symptomatic age of 60 days. Several MN populations with high AR content were identified which did not degenerate in SOD1G93A mice. These included the brainstem ambiguus and vagus nuclei, and the sexually dimorphic spinal MNs: cremaster, dorsolateral nucleus (DLN) and spinal nucleus of bulbocavernosus (SNB). In conclusion, we demonstrate that AR loss directly associates with MN vulnerability and disease progression in the SOD1G93A mouse model of ALS.
Collapse
Affiliation(s)
- Victoria M. McLeod
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Mathew D. F. Chiam
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Nirma D. Perera
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Chew L. Lau
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Wah Chin Boon
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Bradley J. Turner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Perron Institute for Neurological and Translational Science, Queen Elizabeth Medical Centre, Nedlands, WA, Australia
- *Correspondence: Bradley J. Turner,
| |
Collapse
|
5
|
Tenney AP, Livet J, Belton T, Prochazkova M, Pearson EM, Whitman MC, Kulkarni AB, Engle EC, Henderson CE. Etv1 Controls the Establishment of Non-overlapping Motor Innervation of Neighboring Facial Muscles during Development. Cell Rep 2020; 29:437-452.e4. [PMID: 31597102 PMCID: PMC7032945 DOI: 10.1016/j.celrep.2019.08.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 06/16/2019] [Accepted: 08/22/2019] [Indexed: 01/06/2023] Open
Abstract
The somatotopic motor-neuron projections onto their cognate target muscles are essential for coordinated movement, but how that occurs for facial motor circuits, which have critical roles in respiratory and interactive behaviors, is poorly understood. We report extensive molecular heterogeneity in developing facial motor neurons in the mouse and identify markers of subnuclei and the motor pools innervating specific facial muscles. Facial subnuclei differentiate during migration to the ventral hindbrain, where neurons with progressively later birth dates—and evolutionarily more recent functions—settle in more-lateral positions. One subpopulation marker, ETV1, determines both positional and target muscle identity for neurons of the dorsolateral (DL) subnucleus. In Etv1 mutants, many markers of DL differentiation are lost, and individual motor pools project indifferently to their own and neighboring muscle targets. The resulting aberrant activation patterns are reminiscent of the facial synkinesis observed in humans after facial nerve injury. Tenney et al. demonstrate that embryonic facial motor neurons are transcriptionally diverse as they establish somatotopic innervation of the facial muscles, a process that requires the transcription factor ETV1. Facial-motor axon-targeting errors in Etv1 mutants cause coordination of whisking and eyeblink evocative of human blepharospasm.
Collapse
Affiliation(s)
- Alan P Tenney
- Center for Motor Neuron Biology and Disease (MNC), Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| | - Jean Livet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Timothy Belton
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Michaela Prochazkova
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Erica M Pearson
- Center for Motor Neuron Biology and Disease (MNC), Columbia University, New York, NY 10032, USA; Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Mary C Whitman
- Department of Ophthalmology, Boston Children's Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Elizabeth C Engle
- Department of Neurology, Boston Children's Hospital/Harvard Medical School, Boston, MA 02115, USA; Department of Ophthalmology, Boston Children's Hospital/Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Christopher E Henderson
- Center for Motor Neuron Biology and Disease (MNC), Columbia University, New York, NY 10032, USA; Columbia Stem Cell Initiative (CSCI), Columbia University, New York, NY 10032, USA; Columbia Translational Neuroscience Initiative (CTNI), Columbia University, New York, NY 10032, USA; Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA; Department of Neuroscience, Columbia University, New York, NY 10032, USA
| |
Collapse
|
6
|
Rahmat S, Gilland E. Hindbrain neurovascular anatomy of adult goldfish (Carassius auratus). J Anat 2019; 235:783-793. [PMID: 31218682 DOI: 10.1111/joa.13026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 11/28/2022] Open
Abstract
The goldfish hindbrain develops from a segmented (rhombomeric) neuroepithelial scaffold, similar to other vertebrates. Motor, reticular and other neuronal groups develop in specific segmental locations within this rhombomeric framework. Teleosts are unique in possessing a segmental series of unpaired, midline central arteries that extend from the basilar artery and penetrate the pial midline of each hindbrain rhombomere (r). This study demonstrates that the rhombencephalic arterial supply of the brainstem forms in relation to the neural segments they supply. Midline central arteries penetrate the pial floor plate and branch within the neuroepithelium near the ventricular surface to form vascular trees that extend back towards the pial surface. This intramural branching pattern has not been described in any other vertebrate, with blood flow in a ventriculo-pial direction, vastly different than the pial-ventricular blood flow observed in most other vertebrates. Each central arterial stem penetrates the pial midline and ascends through the floor plate, giving off short transverse paramedian branches that extend a short distance into the adjoining basal plate to supply ventromedial areas of the brainstem, including direct supply of reticulospinal neurons. Robust r3 and r8 central arteries are significantly larger and form a more interconnected network than any of the remaining hindbrain vascular stems. The r3 arterial stem has extensive vascular branching, including specific vessels that supply the cerebellum, trigeminal motor nucleus located in r2/3 and facial motoneurons found in r6/7. Results suggest that some blood vessels may be predetermined to supply specific neuronal populations, even traveling outside of their original neurovascular territories in order to supply migrated neurons.
Collapse
Affiliation(s)
- Sulman Rahmat
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Edwin Gilland
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
7
|
Fritzsch B, Elliott KL, Pavlinkova G, Duncan JS, Hansen MR, Kersigo JM. Neuronal Migration Generates New Populations of Neurons That Develop Unique Connections, Physiological Properties and Pathologies. Front Cell Dev Biol 2019; 7:59. [PMID: 31069224 PMCID: PMC6491807 DOI: 10.3389/fcell.2019.00059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Central nervous system neurons become postmitotic when radial glia cells divide to form neuroblasts. Neuroblasts may migrate away from the ventricle radially along glia fibers, in various directions or even across the midline. We present four cases of unusual migration that are variably connected to either pathology or formation of new populations of neurons with new connectivities. One of the best-known cases of radial migration involves granule cells that migrate from the external granule cell layer along radial Bergman glia fibers to become mature internal granule cells. In various medulloblastoma cases this migration does not occur and transforms the external granule cell layer into a rapidly growing tumor. Among the ocular motor neurons is one unique population that undergoes a contralateral migration and uniquely innervates the superior rectus and levator palpebrae muscles. In humans, a mutation of a single gene ubiquitously expressed in all cells, induces innervation defects only in this unique motor neuron population, leading to inability to elevate eyes or upper eyelids. One of the best-known cases for longitudinal migration is the facial branchial motor (FBM) neurons and the overlapping inner ear efferent population. We describe here molecular cues that are needed for the caudal migration of FBM to segregate these motor neurons from the differently migrating inner ear efferent population. Finally, we describe unusual migration of inner ear spiral ganglion neurons that result in aberrant connections with disruption of frequency presentation. Combined, these data identify unique migratory properties of various neuronal populations that allow them to adopt new connections but also sets them up for unique pathologies.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, United States.,Department of Otolaryngology, University of Iowa, Iowa City, IA, United States
| | - Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | | | - Jeremy S Duncan
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| | - Marlan R Hansen
- Department of Otolaryngology, University of Iowa, Iowa City, IA, United States
| | | |
Collapse
|