1
|
Torres D, Villamayor PR, Román A, García P, Martínez P, Sanchez-Quinteiro P. In-depth histological, lectin-histochemical, immunohistochemical and ultrastructural description of the olfactory rosettes and olfactory bulbs of turbot (Scophthalmus maximus). Cell Tissue Res 2024; 397:215-239. [PMID: 39112611 DOI: 10.1007/s00441-024-03906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/18/2024] [Indexed: 09/05/2024]
Abstract
Chemical communication through olfaction is crucial for fish behaviours, mediating in socio-sexual behaviours as reproduction. Turbot, a flatfish with significant aquaculture production, possesses a well-developed olfactory system from early developmental stages. After metamorphosis, flatfish acquire their characteristic bilateral asymmetry with an ocular side facing the open water column, housing the dorsal olfactory rosette, and a blind side in contact with the sea bottom where the ventral rosette is located. This study aimed to address the existing gap in specific histological, ultrastructural, lectin-histochemical and immunohistochemical studies of the turbot olfactory rosettes and olfactory bulbs. We examined microdissected olfactory organs of adult turbots and premetamorphic larvae by using routine histological staining techniques, and a wide array of lectins and primary antibodies against G-proteins and calcium-binding proteins. We observed no discernible structural variations in the olfactory epithelium between rosettes, except for the dorsal rosette being larger in size compared to the ventral rosette. Additionally, the use of transmission electron microscopy significantly improved the characterization of the adult olfactory epithelium, exhibiting high cell density, small cell size, and a wide diversity of cell types. Moreover, specific immunopositivity in sensory and non-sensory cells provided us of essential information regarding their olfactory roles. The results obtained significantly enriched the scarce morphological and neurochemical information available on the turbot olfactory system, revealing a highly complex olfactory epithelium with distinct features compared to other teleost species, especially with regard to olfactory cell distribution and immunolabelling patterns.
Collapse
Affiliation(s)
- Dorinda Torres
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, Universidade de Santiago de Compostela, Av Carballo Calero S/N, 27002, Lugo, Spain
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Paula R Villamayor
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Albina Román
- Electron Microscopy Unit, Research Infrastructures Area, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Pablo García
- Pescanova Biomarine Center, 36980 O Grove, Pontevedra, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, Universidade de Santiago de Compostela, Av Carballo Calero S/N, 27002, Lugo, Spain.
| |
Collapse
|
2
|
Berning D, Heerema H, Gross JB. The spatiotemporal and genetic architecture of extraoral taste buds in Astyanax cavefish. Commun Biol 2024; 7:951. [PMID: 39107459 PMCID: PMC11303775 DOI: 10.1038/s42003-024-06635-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Intense environmental pressures can yield both regressive and constructive traits through complex evolutionary mechanisms. Although regression is well-studied, the biological bases of constructive features are less well understood. Cave-dwelling Astyanax fish harbor prolific extraoral taste buds on their heads, which are absent in conspecific surface-dwellers. Here, we present novel ontogenetic data demonstrating extraoral taste buds appear gradually and late in life history. This appearance is similar but non-identical in different cavefish populations, where patterning has evolved to permit taste bud re-specification across the endoderm-ectoderm germ layer boundary. Quantitative genetic analyses revealed that spatially distinct taste buds on the head are primarily mediated by two different cave-dominant loci. While the precise function of this late expansion on to the head is unknown, the appearance of extraoral taste buds coincides with a dietary shift from live-foods to bat guano, suggesting an adaptive mechanism to detect nutrition in food-starved caves. This work provides fundamental insight to a constructive evolutionary feature, arising late in life history, promising a new window into unresolved features of vertebrate sensory organ development.
Collapse
Affiliation(s)
- Daniel Berning
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Halle Heerema
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
3
|
Blin M, Valay L, Kuratko M, Pavie M, Rétaux S. The evolution of olfactory sensitivity, preferences, and behavioral responses in Mexican cavefish is influenced by fish personality. eLife 2024; 12:RP92861. [PMID: 38832493 PMCID: PMC11149931 DOI: 10.7554/elife.92861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Animals are adapted to their natural habitats and lifestyles. Their brains perceive the external world via their sensory systems, compute information together with that of internal states and autonomous activity, and generate appropriate behavioral outputs. However, how do these processes evolve across evolution? Here, focusing on the sense of olfaction, we have studied the evolution in olfactory sensitivity, preferences, and behavioral responses to six different food-related amino acid odors in the two eco-morphs of the fish Astyanax mexicanus. To this end, we have developed a high-throughput behavioral setup and pipeline of quantitative and qualitative behavior analysis, and we have tested 489 six-week-old Astyanax larvae. The blind, dark-adapted morphs of the species showed markedly distinct basal swimming patterns and behavioral responses to odors, higher olfactory sensitivity, and a strong preference for alanine, as compared to their river-dwelling eyed conspecifics. In addition, we discovered that fish have an individual 'swimming personality', and that this personality influences their capability to respond efficiently to odors and find the source. Importantly, the personality traits that favored significant responses to odors were different in surface fish and cavefish. Moreover, the responses displayed by second-generation cave × surface F2 hybrids suggested that olfactory-driven behavior and olfactory sensitivity is a quantitative genetic trait. Our findings show that olfactory processing has rapidly evolved in cavefish at several levels: detection threshold, odor preference, and foraging behavior strategy. Cavefish is therefore an outstanding model to understand the genetic, molecular, and neurophysiological basis of sensory specialization in response to environmental change.
Collapse
Affiliation(s)
- Maryline Blin
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-SaclaySaclayFrance
| | - Louis Valay
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-SaclaySaclayFrance
| | - Manon Kuratko
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-SaclaySaclayFrance
| | - Marie Pavie
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-SaclaySaclayFrance
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-SaclaySaclayFrance
| |
Collapse
|
4
|
Cobham AE, Rohner N. Unraveling stress resilience: Insights from adaptations to extreme environments by Astyanax mexicanus cavefish. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:178-188. [PMID: 38247307 DOI: 10.1002/jez.b.23238] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Extreme environmental conditions have profound impacts on shaping the evolutionary trajectory of organisms. Exposure to these conditions elicits stress responses, that can trigger phenotypic changes in novel directions. The Mexican Tetra, Astyanax mexicanus, is an excellent model for understanding evolutionary mechanisms in response to extreme or new environments. This fish species consists of two morphs; the classical surface-dwelling fish and the blind cave-dwellers that inhabit dark and biodiversity-reduced ecosystems. In this review, we explore the specific stressors present in cave environments and examine the diverse adaptive strategies employed by cave populations to not only survive but thrive as successful colonizers. By analyzing the evolutionary responses of A. mexicanus, we gain valuable insights into the genetic, physiological, and behavioral adaptations that enable organisms to flourish under challenging environmental conditions.
Collapse
Affiliation(s)
- Ansa E Cobham
- Stowers Institute for Medical Research, Missouri, Kansas City, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Missouri, Kansas City, USA
- Department of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, Missouri, USA
| |
Collapse
|
5
|
Rodríguez‐Morales R. Sensing in the dark: Constructive evolution of the lateral line system in blind populations of Astyanax mexicanus. Ecol Evol 2024; 14:e11286. [PMID: 38654714 PMCID: PMC11036076 DOI: 10.1002/ece3.11286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Cave-adapted animals evolve a suite of regressive and constructive traits that allow survival in the dark. Most studies aiming at understanding cave animal evolution have focused on the genetics and environmental underpinnings of regressive traits, with special emphasis on vision loss. Possibly as a result of vision loss, other non-visual sensory systems have expanded and compensated in cave species. For instance, in many cave-dwelling fish species, including the blind cavefish of the Mexican tetra, Astyanax mexicanus, a major non-visual mechanosensory system called the lateral line, compensated for vision loss through morphological expansions. While substantial work has shed light on constructive adaptation of this system, there are still many open questions regarding its developmental origin, synaptic plasticity, and overall adaptive value. This review provides a snapshot of the current state of knowledge of lateral line adaption in A. mexicanus, with an emphasis on anatomy, synaptic plasticity, and behavior. Multiple open avenues for future research in this system, and how these can be leveraged as tools for both evolutionary biology and evolutionary medicine, are discussed.
Collapse
Affiliation(s)
- Roberto Rodríguez‐Morales
- Department of Anatomy & Neurobiology, School of MedicineUniversity of Puerto RicoSan JuanPuerto Rico
| |
Collapse
|
6
|
Martin RP, Smith WL. First evidence of sexual dimorphism in olfactory organs of deep-sea lanternfishes (Myctophidae). PeerJ 2024; 12:e17075. [PMID: 38495764 PMCID: PMC10941764 DOI: 10.7717/peerj.17075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/18/2024] [Indexed: 03/19/2024] Open
Abstract
Finding a mate is of the utmost importance for organisms, and the traits associated with successfully finding one can be under strong selective pressures. In habitats where biomass and population density is often low, like the enormous open spaces of the deep sea, animals have evolved many adaptations for finding mates. One convergent adaptation seen in many deep-sea fishes is sexual dimorphism in olfactory organs, where, relative to body size, males have evolved greatly enlarged olfactory organs compared to females. Females are known to give off chemical cues such as pheromones, and these chemical stimuli can traverse long distances in the stable, stratified water of the deep sea and be picked up by the olfactory organs of males. This adaptation is believed to help males in multiple lineages of fishes find mates in deep-sea habitats. In this study, we describe the first morphological evidence of sexual dimorphism in the olfactory organs of lanternfishes (Myctophidae) in the genus Loweina. Lanternfishes are one of the most abundant vertebrates in the deep sea and are hypothesized to use visual signals from bioluminescence for mate recognition or mate detection. Bioluminescent cues that are readily visible at distances as far as 10 m in the aphotic deep sea are likely important for high population density lanternfish species that have high mate encounter rates. In contrast, myctophids found in lower density environments where species encounter rates are lower, like those in Loweina, likely benefit from longer-range chemical or olfactory cues for finding and identifying mates.
Collapse
Affiliation(s)
- Rene P. Martin
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States
- Division of Ichthyology, American Museum of Natural History, New York, New York, United States
| | - W. Leo Smith
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States
| |
Collapse
|
7
|
Li L, Deng L, Li J, Li T, Chen P, Luo W, Du Z. Gill structure and respiratory ability of Euchiloglanis kishinouyei (Osteichthyes: Siluriformes: Sisoridae). JOURNAL OF FISH BIOLOGY 2023; 103:1382-1391. [PMID: 37650846 DOI: 10.1111/jfb.15548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
Glyptosternoid fishes are distributed in the torrent environment of alpine canyons, where they often leave the water to climb rocky cliffs. As one of the most primitive species of glyptosternoid fishes, Euchiloglanis kishinouyei was examined in the current study to analyse its gill microstructure and respiratory ability. We first found that the oxygen consumption rate was relatively high and negatively correlated with body mass and that the average oxygen consumption at night was higher than during the day. The asphyxiation point of E. kishinouyei (5.05 ± 0.22 g) was c. 1.93 mg/L. Subsequently, the surface morphology, gross gill tissue structure, and ultra-microstructure of gill lamellae were investigated using optical microscopy and SEM. The gills showed an overall trend of regression, with five pairs of gill arches in each gill cavity. The adjacent gill filaments had large gaps, and the gill lamellae were thick. The gill filaments were closely arranged on the gill arches, their folded respiratory surface was highly vascularized with no tiny crest, and there were obvious tiny crests, grooves, pits, and pores on the nonrespiratory surface. The gill lamellae were closely embedded on both sides of gill filaments, which were composed of flat epithelial cells, basement membrane, pillar cells, and mucous cells. The gill total respiratory area correlated positively with body mass and length, whereas the gill relative respiratory area correlated negatively with body mass. We comprehensively analysed the gill microstructure and respiratory capacity of E. kishinouyei to provide fundamental data for the adaptive evolution of the gill structures of bimodally respiring fishes and offer insights into further study on the accessory air-breathing function of skin.
Collapse
Affiliation(s)
- Luojia Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Longjun Deng
- Yalong River Hydropower Development Co. Ltd, Chengdu, China
| | - Jie Li
- Sichuan Runjie Hongda Aquatic Science and Technology Co. Ltd, Chengdu, China
| | - Tiancai Li
- Yalong River Hydropower Development Co. Ltd, Chengdu, China
| | - Pengyu Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Ponnimbaduge Perera P, Perez Guerra D, Riddle MR. The Mexican Tetra, Astyanax mexicanus, as a Model System in Cell and Developmental Biology. Annu Rev Cell Dev Biol 2023; 39:23-44. [PMID: 37437210 DOI: 10.1146/annurev-cellbio-012023-014003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Our understanding of cell and developmental biology has been greatly aided by a focus on a small number of model organisms. However, we are now in an era where techniques to investigate gene function can be applied across phyla, allowing scientists to explore the diversity and flexibility of developmental mechanisms and gain a deeper understanding of life. Researchers comparing the eyeless cave-adapted Mexican tetra, Astyanax mexicanus, with its river-dwelling counterpart are revealing how the development of the eyes, pigment, brain, cranium, blood, and digestive system evolves as animals adapt to new environments. Breakthroughs in our understanding of the genetic and developmental basis of regressive and constructive trait evolution have come from A. mexicanus research. They include understanding the types of mutations that alter traits, which cellular and developmental processes they affect, and how they lead to pleiotropy. We review recent progress in the field and highlight areas for future investigations that include evolution of sex differentiation, neural crest development, and metabolic regulation of embryogenesis.
Collapse
Affiliation(s)
| | | | - Misty R Riddle
- Department of Biology, University of Nevada, Reno, Nevada, USA;
| |
Collapse
|
9
|
Bettini S, Lazzari M, Milani L, Maurizii MG, Franceschini V. Immunohistochemical Analysis of Olfactory Sensory Neuron Populations in the Developing Olfactory Organ of the Guppy, Poecilia reticulata (Cyprinodontiformes, Poecilidae). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1764-1773. [PMID: 37639707 DOI: 10.1093/micmic/ozad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/11/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Olfaction is fundamental for sensing environmental chemicals and has obvious adaptive advantages. In fish, the peripheral olfactory organ is composed of lamellae in which the olfactory mucosa contains three main categories of olfactory sensory neurons (OSNs) as follows: ciliated (cOSNs), microvillous (mOSNs), and crypt cells. We studied the appearance of these different OSNs during development of Poecilia reticulata, given its growing use as animal model system. We performed immunohistochemical detection of molecular markers specific for the different OSNs, carrying out image analyses for marked-cell counting and measuring optical density. The P. reticulata olfactory organ did not show change in size during the first weeks of life. The proliferative activity increased at the onset of secondary sexual characters, remaining high until sexual maturity. Then, it decreased in both sexes, but with a recovery in females, probably in relation to their almost double body growth, compared to males. The density of both cOSNs and mOSNs remained constant throughout development, probably due to conserved functions already active in the fry, independently of the sex. The density of calretinin-positive crypt cells decreased progressively until sexual maturity, whereas the increased density of calretinin-negative crypt cell fraction, prevailing in later developmental stages, indicated their probable involvement in reproductive activities.
Collapse
Affiliation(s)
- Simone Bettini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Maurizio Lazzari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Maria Gabriella Maurizii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
10
|
Espinasa L, Pavie M, Rétaux S. Protocol for lens removal in embryonic fish and its application on the developmental effects of eye regression. SUBTERRANEAN BIOLOGY 2023. [DOI: 10.3897/subtbiol.45.96963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The lens plays a central role in the development of the optic cup. In fish, regression of the eye early in development affects the development of the craniofacial skeleton, the size of the olfactory pits, the optic nerve, and the tectum. Lens removal further affects olfaction, prey capture, and aggression. The similarity of the fish eye to other vertebrates is the basis for its use as an excellent animal model of human defects. Questions regarding the effects of eye regression are specifically well-suited to be addressed by using fish from the genus Astyanax. The species has two morphs; an eyeless cave morph and an eyed, surface morph. In the cavefish, a lens initially develops in embryos, but then degenerates by apoptosis. The cavefish retina is subsequently disorganized, degenerates, and retinal growth is arrested. The same effect is observed in surface fish when the lens is removed or exchanged for a cavefish lens. While studies can greatly benefit from a control group of surface fish with regressed eyes brought through lensectomies, few studies include them because of technical difficulties and the low survivorship of embryos that undergo this procedure. Here we describe a technique with significant modification for improvement for conducting lensectomy in one-day-old Astyanax and other fish, including zebrafish. Yields of up to 30 live embryos were obtained using this technique from a single spawn, thus enabling studies that require large sample sizes.
Collapse
|
11
|
Espinasa L, Diamant R, Mesquita M, Lindquist JM, Powers AM, Helmreich J. Laterality in cavefish: Left or right foraging behavior in Astyanax mexicanus. SUBTERRANEAN BIOLOGY 2022. [DOI: 10.3897/subtbiol.44.86565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The evolution of foraging behaviors is key to colonizing challenging habitats such as a cave’s dark environment. Vibration attraction behavior (VAB) gives fish the ability to swim in the darkness toward a vibration stimulus produced by many prey crustaceans and insects. VAB evolved in the blind Mexican cave tetra, Astyanax mexicanus. VAB is regulated by an increased number of mechanosensory neuromasts, particularly in the eye orbital region. However, VAB in Astyanax is only correlated with the number of neuromasts on the left side. Astyanax also have a bent skull preferentially to the left and a QTL signal for the right-side number of neuromasts. We conducted field studies in five different cave populations for four years. Results support that all cave populations can express behavioral lateralization or preponderance of side to examine a vibrating object. The percentage of individuals favoring one side may change among pools and years. In one cave population (Pachón), for one year, this “handedness” was expressed by preferentially using the right side of their face. On the contrary, in most years and pools, Tinaja, Sabinos, Molino, and Toro cave populations explored preferentially using their left side. This suggests that if there is an adaptative effect, it selects for asymmetry on itself, and not necessarily for which side is the one to be specialized. Results also showed that the laterality varied depending on how responsive an individual fish was, perhaps due to its nutritional, motivational state, or mode of stimuli most relevant at the time for the fish.
Collapse
|
12
|
Lloyd E, McDole B, Privat M, Jaggard JB, Duboué ER, Sumbre G, Keene AC. Blind cavefish retain functional connectivity in the tectum despite loss of retinal input. Curr Biol 2022; 32:3720-3730.e3. [PMID: 35926509 DOI: 10.1016/j.cub.2022.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/07/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022]
Abstract
Sensory systems display remarkable plasticity and are under strong evolutionary selection. The Mexican cavefish, Astyanax mexicanus, consists of eyed river-dwelling surface populations and multiple independent cave populations that have converged on eye loss, providing the opportunity to examine the evolution of sensory circuits in response to environmental perturbation. Functional analysis across multiple transgenic populations expressing GCaMP6s showed that functional connectivity of the optic tectum largely did not differ between populations, except for the selective loss of negatively correlated activity within the cavefish tectum, suggesting positively correlated neural activity is resistant to an evolved loss of input from the retina. Furthermore, analysis of surface-cave hybrid fish reveals that changes in the tectum are genetically distinct from those encoding eye loss. Together, these findings uncover the independent evolution of multiple components of the visual system and establish the use of functional imaging in A. mexicanus to study neural circuit evolution.
Collapse
Affiliation(s)
- Evan Lloyd
- Department of Biological Science, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biology, Texas A&M University, College Station, TX 77843, USA; Harriet Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Brittnee McDole
- Department of Biological Science, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Martin Privat
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - James B Jaggard
- Department of Biological Science, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Erik R Duboué
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - German Sumbre
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
13
|
Rétaux S. [The toolbox of developmental evolution or how Mexican cave fishes lost their eyes]. Biol Aujourdhui 2022; 216:49-53. [PMID: 35876521 DOI: 10.1051/jbio/2022011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 06/15/2023]
Abstract
The fish Astyanax mexicanus comes in two very different forms: a "normal" river morph, and a blind, depigmented cave morph, living in the total and permanent darkness of Mexican caves. This species is on the way to becoming a model of choice in evolutionary and comparative biology, both for the study of the evolution of behavior, physiology or morphology, and for molecular genetics or population genetics. Here, I present the advancement of knowledge in the field of the developmental evolution of the eye of the cave morph. By rewinding back in time its development from the eye of the larva to the retinal field at the end of gastrulation, the cave-dwelling Astyanax embryo reveals mechanisms and processes likely to contribute to evolutionary variations between species, but also to pathological variations in the morphogenesis of the optic region.
Collapse
|
14
|
Lunsford ET, Paz A, Keene AC, Liao JC. Evolutionary convergence of a neural mechanism in the cavefish lateral line system. eLife 2022; 11:77387. [PMID: 35708234 PMCID: PMC9246366 DOI: 10.7554/elife.77387] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Animals can evolve dramatic sensory functions in response to environmental constraints, but little is known about the neural mechanisms underlying these changes. The Mexican tetra, Astyanax mexicanus, is a leading model to study genetic, behavioral, and physiological evolution by comparing eyed surface populations and blind cave populations. We compared neurophysiological responses of posterior lateral line afferent neurons and motor neurons across A. mexicanus populations to reveal how shifts in sensory function may shape behavioral diversity. These studies indicate differences in intrinsic afferent signaling and gain control across populations. Elevated endogenous afferent activity identified a lower response threshold in the lateral line of blind cavefish relative to surface fish leading to increased evoked potentials during hair cell deflection in cavefish. We next measured the effect of inhibitory corollary discharges from hindbrain efferent neurons onto afferents during locomotion. We discovered that three independently derived cavefish populations have evolved persistent afferent activity during locomotion, suggesting for the first time that partial loss of function in the efferent system can be an evolutionary mechanism for neural adaptation of a vertebrate sensory system.
Collapse
Affiliation(s)
- Elias T Lunsford
- Department of Biology, University of Florida, Saint Augustine, United States
| | - Alexandra Paz
- Department of Biological Sciences, Florida Atlantic University, Jupiter, United States
| | - Alex C Keene
- Texas A&M University, College Station, United States
| | - James C Liao
- Department of Biology, University of Florida, Saint Augustine, United States
| |
Collapse
|
15
|
van der Weele CM, Jeffery WR. Cavefish cope with environmental hypoxia by developing more erythrocytes and overexpression of hypoxia-inducible genes. eLife 2022; 11:69109. [PMID: 34984980 PMCID: PMC8765751 DOI: 10.7554/elife.69109] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 12/31/2021] [Indexed: 12/24/2022] Open
Abstract
Dark caves lacking primary productivity can expose subterranean animals to hypoxia. We used the surface-dwelling (surface fish) and cave-dwelling (cavefish) morphs of Astyanax mexicanus as a model for understanding the mechanisms of hypoxia tolerance in the cave environment. Primitive hematopoiesis, which is restricted to the posterior lateral mesoderm in other teleosts, also occurs in the anterior lateral mesoderm in Astyanax, potentially pre-adapting surface fish for hypoxic cave colonization. Cavefish have enlarged both hematopoietic domains and develop more erythrocytes than surface fish, which are required for normal development in both morphs. Laboratory-induced hypoxia suppresses growth in surface fish but not in cavefish. Both morphs respond to hypoxia by overexpressing hypoxia-inducible factor 1 (hif1) pathway genes, and some hif1 genes are constitutively upregulated in normoxic cavefish to similar levels as in hypoxic surface fish. We conclude that cavefish cope with hypoxia by increasing erythrocyte development and constitutive hif1 gene overexpression.
Collapse
Affiliation(s)
| | - William R Jeffery
- Department of Biology, University of Maryland, College Park, United States
| |
Collapse
|
16
|
Liu H, Chen C, Lv M, Liu N, Hu Y, Zhang H, Enbody ED, Gao Z, Andersson L, Wang W. A chromosome-level assembly of blunt snout bream (Megalobrama amblycephala) reveals an expansion of olfactory receptor genes in freshwater fish. Mol Biol Evol 2021; 38:4238-4251. [PMID: 34003267 PMCID: PMC8476165 DOI: 10.1093/molbev/msab152] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The number of olfactory receptor genes (ORs), which are responsible for detecting diverse odor molecules varies extensively among mammals as a result of frequent gene gains and losses that contribute to olfactory specialization. However, how OR expansions/contractions in fish are influenced by habitat and feeding habit and which OR subfamilies are important in each ecological niche is unknown. Here, we report a major OR expansion in a freshwater herbivorous fish, Megalobrama amblycephala, using a highly contiguous, chromosome-level assembly. We evaluate the possible contribution of OR expansion to habitat and feeding specialization by comparing the OR repertoire in 28 phylogenetically and ecologically diverse teleosts. In total, we analyzed > 4,000 ORs including 3,253 intact, 122 truncated, and 913 pseudogenes. The number of intact ORs is highly variable ranging from 20 to 279. We estimate that the most recent common ancestor of Osteichthyes had 62 intact ORs, which declined in most lineages except the freshwater Otophysa clade that has a substantial expansion in subfamily β and ε ORs. Across teleosts, we found a strong association between duplications of β and ε ORs and freshwater habitat. Nearly, all ORs were expressed in the olfactory epithelium (OE) in three tested fish species. Specifically, all the expanded β and ε ORs were highly expressed in OE of M. amblycephala. Together, we provide molecular and functional evidence for how OR repertoires in fish have undergone gain and loss with respect to ecological factors and highlight the role of β and ε OR in freshwater adaptation.
Collapse
Affiliation(s)
- Han Liu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China.,Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan, 430070, China
| | - Chunhai Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Maolin Lv
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ning Liu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yafei Hu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hailin Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Erik D Enbody
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE75237, Sweden
| | - Zexia Gao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China.,Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan, 430070, China
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE75237, Sweden.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Weimin Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
17
|
Torres-Paz J, Rétaux S. Pescoids and Chimeras to Probe Early Evo-Devo in the Fish Astyanax mexicanus. Front Cell Dev Biol 2021; 9:667296. [PMID: 33928092 PMCID: PMC8078105 DOI: 10.3389/fcell.2021.667296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/25/2021] [Indexed: 12/31/2022] Open
Abstract
The fish species Astyanax mexicanus with its sighted and blind eco-morphotypes has become an original model to challenge vertebrate developmental evolution. Recently, we demonstrated that phenotypic evolution can be impacted by early developmental events starting from the production of oocytes in the fish ovaries. A. mexicanus offers an amenable model to test the influence of maternal determinants on cell fate decisions during early development, yet the mechanisms by which the information contained in the eggs is translated into specific developmental programs remain obscure due to the lack of specific tools in this emergent model. Here we describe methods for the generation of pescoids from yolkless-blastoderm explants to test the influence of embryonic and extraembryonic tissues on cell fate decisions, as well as the production of chimeric embryos obtained by intermorph cell transplantations to probe cell autonomous or non-autonomous processes. We show that Astyanax pescoids have the potential to recapitulate the main ontogenetic events observed in intact embryos, including the internalization of mesodermal progenitors and eye development, as followed with zic:GFP reporter lines. In addition, intermorph cell grafts resulted in proper integration of exogenous cells into the embryonic tissues, with lineages becoming more restricted from mid-blastula to gastrula. The implementation of these approaches in A. mexicanus will bring new light on the cascades of events, from the maternal pre-patterning of the early embryo to the evolution of brain regionalization.
Collapse
Affiliation(s)
- Jorge Torres-Paz
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| | - Sylvie Rétaux
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
18
|
Espinasa L, Heintz C, Rétaux S, Yoshisawa M, Agnès F, Ornelas-Garcia P, Balogh-Robinson R. Vibration attraction response is a plastic trait in blind Mexican tetra (Astyanax mexicanus), variable within subpopulations inhabiting the same cave. JOURNAL OF FISH BIOLOGY 2021; 98:304-316. [PMID: 33047311 DOI: 10.1111/jfb.14586] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/30/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Animals evolve their sensory systems and foraging behaviours to adapt and colonize new and challenging habitats such as the dark cave environment. Vibration attraction behaviour (VAB) gives fish the ability to locate the source of a water disturbance in the darkness. VAB evolved in the blind Mexican cave tetra, Astyanax mexicanus. VAB is triggered in cavefish by vibration stimuli peaking at 35 Hz, which is within the main spectrum of water fluctuations produced by many prey crustaceans and insects. VAB has a genetic component and is correlated to an increased number of head mechanosensory neuromasts in the eye orbital region when compared to surface fish. Previous competitive prey capture assays have supported the advantage of VAB for foraging in the dark. Despite its putative adaptive function, VAB has been described as absent in some Astyanax cave populations (Tinaja and Molino) but present in others (Pachón, Piedras, Toro and Sabinos). Here we have tested the occurrence of VAB in the field and in multiple cave populations using a vibrating device in natural pools. Our results confirmed the presence of VAB in caves such as Pachón, Toro and Sabinos but showed that VAB is also present in the Tinaja and Molino cave populations, previously reported as VAB-negative in laboratory experiments. Thus, VAB is available throughout the range of hypogean A. mexicanus. However, and most notably, within a given cave the levels of VAB were highly variable among different pools. Fish at one pool may express no VAB, while fish at another nearby pool of the same cave may actively show VAB. While a variety of environmental conditions may foster this diversity, we found that individuals inhabiting pools with a high abundance of organic matter have reduced expression of VAB. In contrast, in pools with little organic debris where fish probably depend more on hunting than on scavenging, VAB is enhanced. Our results suggest that expression of VAB is a plastic trait whose variability can depend on local conditions. Such plasticity may be required within and among caves where high environmental variability between pools results in a diverse availability of food.
Collapse
Affiliation(s)
- Luis Espinasa
- School of Science, Marist College, Poughkeepsie, New York, USA
| | - Carly Heintz
- School of Science, Marist College, Poughkeepsie, New York, USA
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, Gif-sur-Yvette, France
| | - Masato Yoshisawa
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - François Agnès
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, Gif-sur-Yvette, France
| | | | | |
Collapse
|
19
|
Diversity of Olfactory Responses and Skills in Astyanax Mexicanus Cavefish Populations Inhabiting different Caves. DIVERSITY 2020. [DOI: 10.3390/d12100395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Animals in many phyla are adapted to and thrive in the constant darkness of subterranean environments. To do so, cave animals have presumably evolved mechano- and chemosensory compensations to the loss of vision, as is the case for the blind characiform cavefish, Astyanax mexicanus. Here, we systematically assessed the olfactory capacities of cavefish and surface fish of this species in the lab as well as in the wild, in five different caves in northeastern Mexico, using an olfactory setup specially developed to test and record olfactory responses during fieldwork. Overall cavefish showed lower (i.e., better) olfactory detection thresholds than surface fish. However, wild adult cavefish from the Pachón, Sabinos, Tinaja, Chica and Subterráneo caves showed highly variable responses to the three different odorant molecules they were exposed to. Pachón and Subterráneo cavefish showed the highest olfactory capacities, and Chica cavefish showed no response to the odors presented. We discuss these data with regard to the environmental conditions in which these different cavefish populations live. Our experiments in natural settings document the diversity of cave environments inhabited by a single species of cavefish, A. mexicanus, and highlight the complexity of the plastic and genetic mechanisms that underlie cave adaptation.
Collapse
|
20
|
McGaugh SE, Kowalko JE, Duboué E, Lewis P, Franz-Odendaal TA, Rohner N, Gross JB, Keene AC. Dark world rises: The emergence of cavefish as a model for the study of evolution, development, behavior, and disease. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:397-404. [PMID: 32638529 DOI: 10.1002/jez.b.22978] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/24/2022]
Abstract
A central question in biology is how naturally occurring genetic variation accounts for morphological and behavioral diversity within a species. The Mexican tetra, Astyanax mexicanus, has been studied for nearly a century as a model for investigating trait evolution. In March of 2019, researchers representing laboratories from around the world met at the Sixth Astyanax International Meeting in Santiago de Querétaro, Mexico. The meeting highlighted the expanding applications of cavefish to investigations of diverse aspects of basic biology, including development, evolution, and disease-based applications. A broad range of integrative approaches are being applied in this system, including the application of state-of-the-art functional genetic assays, brain imaging, and genome sequencing. These advances position cavefish as a model organism for addressing fundamental questions about the genetics and evolution underlying the impressive trait diversity among individual populations within this species.
Collapse
Affiliation(s)
- Suzanne E McGaugh
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota
| | - Johanna E Kowalko
- The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Erik Duboué
- The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Peter Lewis
- The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida
| | | | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Alex C Keene
- The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida
| |
Collapse
|
21
|
Abstract
Abstract
The forces driving regression of biologically functionless traits remain disputed. There is ongoing debate regarding whether selection, as opposed to disuse and neutral mutations, is involved in this process. Cave species are of particular relevance for study in this regard because in continuous darkness all traits that depend on information from light, such as eyes, dark pigmentation and certain behaviours, abruptly lose their function. Recently, strong selection driving reduction has again been proposed, which relied on modelling analyses based on assumptions such as immigration of surface alleles into the cave forms or no fitness difference existing between Astyanax surface and cave fish. The validity of these assumptions, often applied to reject neutral processes in functionless traits, is questioned in this review. Morphological variation in a trait resulting from genetic variability is typical of biologically functionless traits and is particularly notable in phylogenetically young cave species. It is the most evident indicator of loss of selection, which normally enforces uniformity to guarantee optimal functionality. Phenotypic and genotypic variability in Astyanax cave fish eyes does not derive from genetic introgression by the surface form, but from regressive mutations not being eliminated by selection. This matches well with the principles of Kimura’s neutral theory of molecular evolution.
Collapse
Affiliation(s)
- Horst Wilkens
- CeNak/Zoological Museum Hamburg, University of Hamburg, Martin-Luther-King-Platz, Hamburg, Germany
| |
Collapse
|
22
|
Riddle MR, Tabin CJ. Little Fish, Big Questions: A Collection of Modern Techniques for Mexican Tetra Research. J Vis Exp 2020. [PMID: 32092048 PMCID: PMC7373155 DOI: 10.3791/60592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Articles Discussed: Stahl, B. A. et al. Manipulation of Gene Function in Mexican Cavefish. Journal of Visualized Experiments. (146) (2019). Peuß, R. et al. Gamete Collection and In Vitro Fertilization of Astyanax mexicanus. Journal of Visualized Experiments. (147) (2019). Worsham, M. et al. Behavioral Tracking and Neuromast Imaging of Mexican Cavefish.Journal of Visualized Experiments. (147) (2019). Jaggard, J.B., Lloyd, E., Lopatto, A., Duboue, E.R., Keene, A.C. Automated Measurements of Sleep and Locomotor Activity in Mexican Cavefish. Journal of Visualized Experiments. (145) (2019). Luc, H., Sears, C., Raczka, A., Gross, J.B. Wholemount In Situ Hybridization for Astyanax Embryos. Journal of Visualized Experiments. (145) (2019). Riddle, M., Martineau, B., Peavey, M., Tabin, C. Raising the Mexican Tetra Astyanax mexicanus for Analysis of Post-larval Phenotypes and Whole-mount Immunohistochemistry. Journal of Visualized Experiments. (142) (2018).
Collapse
Affiliation(s)
- Misty R Riddle
- Genetics Department, Blavatnik Institute, Harvard Medical School
| | - Clifford J Tabin
- Genetics Department, Blavatnik Institute, Harvard Medical School;
| |
Collapse
|
23
|
Kowalko J. Utilizing the blind cavefish Astyanax mexicanus to understand the genetic basis of behavioral evolution. J Exp Biol 2020; 223:223/Suppl_1/jeb208835. [DOI: 10.1242/jeb.208835] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ABSTRACT
Colonization of novel habitats often results in the evolution of diverse behaviors. Comparisons between individuals from closely related populations that have evolved divergent behaviors in different environments can be used to investigate behavioral evolution. However, until recently, functionally connecting genotypes to behavioral phenotypes in these evolutionarily relevant organisms has been difficult. The development of gene editing tools will facilitate functional genetic analysis of genotype–phenotype connections in virtually any organism, and has the potential to significantly transform the field of behavioral genetics when applied to ecologically and evolutionarily relevant organisms. The blind cavefish Astyanax mexicanus provides a remarkable example of evolution associated with colonization of a novel habitat. These fish consist of a single species that includes sighted surface fish that inhabit the rivers of Mexico and southern Texas and at least 29 populations of blind cavefish from the Sierra Del Abra and Sierra de Guatemala regions of Northeast Mexico. Although eye loss and albinism have been studied extensively in A. mexicanus, derived behavioral traits including sleep loss, alterations in foraging and reduction in social behaviors are now also being investigated in this species to understand the genetic and neural basis of behavioral evolution. Astyanax mexicanus has emerged as a powerful model system for genotype–phenotype mapping because surface and cavefish are interfertile. Further, the molecular basis of repeated trait evolution can be examined in this species, as multiple cave populations have independently evolved the same traits. A sequenced genome and the implementation of gene editing in A. mexicanus provides a platform for gene discovery and identification of the contributions of naturally occurring variation to behaviors. This review describes the current knowledge of behavioral evolution in A. mexicanus with an emphasis on the molecular and genetic underpinnings of evolved behaviors. Multiple avenues of new research that can be pursued using gene editing tools are identified, and how these will enhance our understanding of behavioral evolution is discussed.
Collapse
Affiliation(s)
- Johanna Kowalko
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
- Program of Neurogenetics, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
24
|
Ma L, Ng M, van der Weele CM, Yoshizawa M, Jeffery WR. Dual roles of the retinal pigment epithelium and lens in cavefish eye degeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:438-449. [PMID: 31930686 DOI: 10.1002/jez.b.22923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/04/2019] [Accepted: 12/21/2019] [Indexed: 01/03/2023]
Abstract
Astyanax mexicanus consists of two forms, a sighted surface dwelling form (surface fish) and a blind cave-dwelling form (cavefish). Embryonic eyes are initially formed in cavefish but they are subsequently arrested in growth and degenerate during larval development. Previous lens transplantation studies have shown that the lens plays a central role in cavefish eye loss. However, several lines of evidence suggest that additional factors, such as the retinal pigment epithelium (RPE), which is morphologically altered in cavefish, could also be involved in the eye regression process. To explore the role of the RPE in cavefish eye degeneration, we generated an albino eyed (AE) strain by artificial selection for hybrid individuals with large eyes and a depigmented RPE. The AE strain exhibited an RPE lacking pigment granules and showed reduced expression of the RPE specific enzyme retinol isomerase, allowing eye development to be studied by lens ablation in an RPE background resembling cavefish. We found that lens ablation in the AE strain had stronger negative effects on eye growth than in surface fish, suggesting that an intact RPE is required for normal eye development. We also found that the AE strain develops a cartilaginous sclera lacking boney ossicles, a trait similar to cavefish. Extrapolation of the results to cavefish suggests that the RPE and lens have dual roles in eye degeneration, and that deficiencies in the RPE may be associated with evolutionary changes in scleral ossification.
Collapse
Affiliation(s)
- Li Ma
- Department of Biology, University of Maryland, College Park, Maryland
| | - Mandy Ng
- Department of Biology, University of Maryland, College Park, Maryland
| | | | - Masato Yoshizawa
- Department of Biology, University of Maryland, College Park, Maryland
| | - William R Jeffery
- Department of Biology, University of Maryland, College Park, Maryland
| |
Collapse
|
25
|
Jiang H, Du K, Gan X, Yang L, He S. Massive Loss of Olfactory Receptors But Not Trace Amine-Associated Receptors in the World's Deepest-Living Fish ( Pseudoliparis swirei). Genes (Basel) 2019; 10:E910. [PMID: 31717379 PMCID: PMC6895882 DOI: 10.3390/genes10110910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
Olfactory receptor repertoires show highly dynamic evolution associated with ecological adaptations in different species. The Mariana snailfish (Pseudoliparis swirei) living below a depth of 6000 m in the Mariana Trench evolved degraded vision and occupies a specific feeding habitat in a dark, low-food environment. However, whether such adaptations involve adaptive changes in the chemosensory receptor repertoire is not known. Here, we conducted a comparative analysis of the olfactory receptor (OR) and trace amine-associated receptor (TAAR) gene repertoires in nine teleosts with a focus on the evolutionary divergence between the Mariana snailfish and its shallow-sea relative, Tanaka's snailfish (Liparis tanakae). We found many fewer functional OR genes and a significantly higher fraction of pseudogenes in the Mariana snailfish, but the numbers of functional TAAR genes in the two species were comparable. Phylogenetic analysis showed that the expansion patterns of the gene families were shared by the two species, but that Mariana snailfish underwent massive gene losses in its OR repertoire. Despite an overall decreased size in OR subfamilies and a reduced number of TAAR subfamilies in the Mariana snailfish, expansion of certain subfamilies was observed. Selective pressure analysis indicated greatly relaxed selective strength in ORs but a slightly enhanced selective strength in TAARs of Mariana snailfish. Overall, our study reveals simplified but specific OR and TAAR repertoires in the Mariana snailfish shaped by natural selection with respect to ecological adaptations in the hadal environment. This is the first study on the chemosensation evolution in vertebrates living in the hadal zone, which could provide new insights into evolutionary adaptation to the hadal environment.
Collapse
Affiliation(s)
- Haifeng Jiang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (H.J.); (K.D.); (X.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Kang Du
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (H.J.); (K.D.); (X.G.)
| | - Xiaoni Gan
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (H.J.); (K.D.); (X.G.)
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Liandong Yang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (H.J.); (K.D.); (X.G.)
| | - Shunping He
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
26
|
Torres-Paz J, Leclercq J, Rétaux S. Maternally regulated gastrulation as a source of variation contributing to cavefish forebrain evolution. eLife 2019; 8:50160. [PMID: 31670659 PMCID: PMC6874477 DOI: 10.7554/elife.50160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/30/2019] [Indexed: 11/24/2022] Open
Abstract
Sequential developmental events, starting from the moment of fertilization, are crucial for the acquisition of animal body plan. Subtle modifications in such early events are likely to have major impacts in later morphogenesis, bringing along morphological diversification. Here, comparing the blind cave and the surface morphotypes of Astyanax mexicanus fish, we found heterochronies during gastrulation that produce organizer and axial mesoderm tissues with different properties (including differences in the expression of dkk1b) that may have contributed to cavefish brain evolution. These variations observed during gastrulation depend fully on maternal factors. The developmental evolution of retinal morphogenesis and hypothalamic patterning are among those traits that retained significant maternal influence at larval stages. Transcriptomic analysis of fertilized eggs from both morphotypes and reciprocal F1 hybrids showed a strong and specific maternal signature. Our work strongly suggests that maternal effect genes and developmental heterochronies that occur during gastrulation have impacted morphological brain change during cavefish evolution.
Collapse
Affiliation(s)
- Jorge Torres-Paz
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Julien Leclercq
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
27
|
Evolution of acoustic communication in blind cavefish. Nat Commun 2019; 10:4231. [PMID: 31530801 PMCID: PMC6748933 DOI: 10.1038/s41467-019-12078-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
Acoustic communication allows the exchange of information within specific contexts and during specific behaviors. The blind, cave-adapted and the sighted, river-dwelling morphs of the species Astyanax mexicanus have evolved in markedly different environments. During their evolution in darkness, cavefish underwent a series of morphological, physiological and behavioral changes, allowing the study of adaptation to drastic environmental change. Here we discover that Astyanax is a sonic species, in the laboratory and in the wild, with sound production depending on the social contexts and the type of morph. We characterize one sound, the "Sharp Click", as a visually-triggered sound produced by dominant surface fish during agonistic behaviors and as a chemosensory-, food odor-triggered sound produced by cavefish during foraging. Sharp Clicks also elicit different reactions in the two morphs in play-back experiments. Our results demonstrate that acoustic communication does exist and has evolved in cavefish, accompanying the evolution of its behaviors.
Collapse
|
28
|
Torres-Paz J, Hyacinthe C, Pierre C, Rétaux S. Towards an integrated approach to understand Mexican cavefish evolution. Biol Lett 2019; 14:rsbl.2018.0101. [PMID: 30089659 DOI: 10.1098/rsbl.2018.0101] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
The Mexican tetra, Astyanax mexicanus, comes in two forms: a classical river-dwelling fish and a blind and depigmented cave-dwelling fish. The two morphotypes are used as models for evolutionary biology, to decipher mechanisms of morphological and behavioural evolution in response to environmental change. Over the past 40 years, insights have been obtained from genetics, developmental biology, physiology and metabolism, neuroscience, genomics, population biology and ecology. Here, we promote the idea that A. mexicanus, as a model, has reached a stage where an integrated approach or a multi-disciplinary method of analysis, whereby a phenomenon is examined from several angles, is a powerful tool that can be applied to understand general evolutionary processes. Mexican cavefish have undergone considerable selective pressure and extreme morphological evolution, an obvious advantage to contribute to our understanding of evolution through comparative analyses and to pinpoint the specific traits that may have helped their ancestors to colonize caves.
Collapse
Affiliation(s)
- Jorge Torres-Paz
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Carole Hyacinthe
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Constance Pierre
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
29
|
Blin M, Rétaux S. Voir ou sentir, l’histoire d’ Astyanax mexicanus. Med Sci (Paris) 2019. [DOI: 10.1051/medsci/2019039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Blin M, Rétaux S. Voir ou sentir, l’histoire d’ Astyanax mexicanus. Med Sci (Paris) 2019; 35:19-23. [DOI: 10.1051/medsci/2018314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
31
|
Ornelas-García P, Pajares S, Sosa-Jiménez VM, Rétaux S, Miranda-Gamboa RA. Microbiome differences between river-dwelling and cave-adapted populations of the fish Astyanax mexicanus (De Filippi, 1853). PeerJ 2018; 6:e5906. [PMID: 30425894 PMCID: PMC6228550 DOI: 10.7717/peerj.5906] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/09/2018] [Indexed: 11/20/2022] Open
Abstract
Symbiotic relationships between host and microbiome can play a major role in local adaptation. Previous studies with freshwater organisms have shown that microbiome performs numerous important biochemical functions for the host, playing a key role in metabolism, physiology or health. Experimental studies in fish groups have found an effect of enzymatic activity of gut microbiota on a variety of metabolic processes. The goal of this study was to compare stomach microbiome from cave and surface Astyanax mexicanus, in order to evaluate the potential response of microbiota to contrasting environmental conditions and physiological adaptations of the host. Stomach microbiota was obtained from three different populations: Pachón cave, and two surface rivers (Rascón and Micos rivers). The stomach microbiome was analyzed using the Ion 16S Metagenomic kit considering seven variable regions: V2, V3, V4, V6-7, V8 and V9. A high diversity was observed across samples, including 16 phyla, 120 families and 178 genera. Gammaproteobacteria, Firmicutes, Bacteroidetes and Betaproteobacteria were the most abundant phyla across the samples. Although the relative abundance of the core OTUs at genus level were highly contrasting among populations, we did not recover differences in stomach microbiome between contrasting habitats (cave vs. surface rivers). Rather, we observed a consistent association between β-diversity and dissolved oxygen concentration in water. Therefore, and unexpectedly, the microbiota of A. mexicanus is not linked with the contrasting conditions of the habitat considered here but is related to water parameters.
Collapse
Affiliation(s)
- Patricia Ornelas-García
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Silvia Pajares
- Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Víctor M Sosa-Jiménez
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, CNRS UMR9197, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Ramsés A Miranda-Gamboa
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos, Mexico
| |
Collapse
|