1
|
Olander A, Ramirez CM, Acosta VH, Medina P, Kaushik S, Jonsson VD, Sikandar SS. Pregnancy Reduces Il33+ Hybrid Progenitor Accumulation in the Aged Mammary Gland. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606240. [PMID: 39149387 PMCID: PMC11326159 DOI: 10.1101/2024.08.01.606240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Aging increases breast cancer risk while an early first pregnancy reduces a woman's life-long risk. Several studies have explored the effect of either aging or pregnancy on mammary epithelial cells (MECs), but the combined effect of both remains unclear. Here, we interrogate the functional and transcriptomic changes at single cell resolution in the mammary gland of aged nulliparous and parous mice to discover that pregnancy normalizes age-related imbalances in lineage composition, while also inducing a differentiated cell state. Importantly, we uncover a minority population of Il33-expressing hybrid MECs with high cellular potency that accumulate in aged nulliparous mice but is significantly reduced in aged parous mice. Functionally, IL33 treatment of basal, but not luminal, epithelial cells from young mice phenocopies aged nulliparous MECs and promotes formation of organoids with Trp53 knockdown. Collectively, our study demonstrates that pregnancy blocks the age-associated loss of lineage integrity in the basal layer through a decrease in Il33+ hybrid MECs, potentially contributing to pregnancy-induced breast cancer protection.
Collapse
Affiliation(s)
- Andrew Olander
- Department of Molecular, Cell and Developmental Biology, University of California - Santa Cruz
| | - Cynthia M Ramirez
- Department of Applied Mathematics, University of California - Santa Cruz
| | - Veronica Haro Acosta
- Department of Molecular, Cell and Developmental Biology, University of California - Santa Cruz
| | - Paloma Medina
- Department of Molecular, Cell and Developmental Biology, University of California - Santa Cruz
- Department of Biomolecular Engineering, University of California - Santa Cruz
- Institute for the Biology of Stem Cells, University of California - Santa Cruz
| | - Sara Kaushik
- Department of Molecular, Cell and Developmental Biology, University of California - Santa Cruz
| | - Vanessa D Jonsson
- Department of Biomolecular Engineering, University of California - Santa Cruz
- Genomics Institute, University of California - Santa Cruz
| | - Shaheen S Sikandar
- Department of Molecular, Cell and Developmental Biology, University of California - Santa Cruz
- Genomics Institute, University of California - Santa Cruz
- Institute for the Biology of Stem Cells, University of California - Santa Cruz
| |
Collapse
|
2
|
Chen J, Huang G, Wei B, Yue S, Chang X, Han S, Dong X, Zhao Y, Zhang X, Zhao Z, Dong G, Sun Y. Effects of rumen-protected 5-hydroxytryptophan on circulating serotonin concentration, behaviour, and mammary gland involution in goats. Animal 2024; 18:101254. [PMID: 39106553 DOI: 10.1016/j.animal.2024.101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/09/2024] Open
Abstract
The risk of acquiring new intramammary infections is high at the end of lactation, especially for the high milk-producing dairy animals. Resistance to bacterial infection increases following the completion of mammary gland involution after milking cessation. The serotonin precursor 5-hydroxytryptophan (5-HTP) could accelerate involution by increasing circulating serotonin levels, but ruminal microbes may degrade 5-HTP if orally administered to adult ruminants. It is unclear whether rumen-protected 5-HTP could effectively mediate circulating serotonin (5-hydroxytryptamine, 5-HT) and therefore accelerate mammary gland involution in ruminants. Goats were used as a model in the current study to investigate the effects of rumen-protected 5-HTP on behaviour, 5-HT metabolism, and mammary involution in ruminants. In the first experiment, 16 female Dazu black goats were assigned to one of four groups in a randomised block design. The treatments included a basal diet plus 0, 4, 20, or 100 mg/kg BW of rumen-protected 5-HTP. Serum was collected at 0, 3, 6, 12, and 24 h after offering the rumen-protected 5-HTP in the morning feed, and the behaviours were monitored. In the second experiment, 12 female Dazu black goats (Somatic cell count < 250 000) were randomly assigned to the control (basal diet) or rumen-protected 5-HTP group (basal diet plus 20 mg/kg BW). Milk or mammary secretions were manually collected aseptically on d -1, 1, 2, 3, 4, and 5 around weaning. The results depicted that rumen-protected 5-HTP supplementation elevated circulating 5-HTP and 5-hydroxyindole acetic acid concentrations, while 20 mg/kg BW of rumen-protected 5-HTP supplementation lowered the goats' locomotive activity. A high concentration of rumen-protected 5-HTP (100 mg/kg BW) increased serum alkaline phosphatase and gamma-glutamyl transpeptidase concentrations. Moreover, oral supplementation with 20 mg/kg BW of rumen-protected 5-HTP accelerated mammary gland involution and reduced feed intake in goats after weaning. These results demonstrate that oral supplementation with rumen-protected 5-HTP influences 5-HT metabolism and accelerates mammary gland involution after milking cessation in ruminants.
Collapse
Affiliation(s)
- J Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - G Huang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - B Wei
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - S Yue
- Department of Bioengineering, Sichuan Water Conservancy Vocational College, Chengdu 611231, China
| | - X Chang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - S Han
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - X Dong
- Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Y Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - X Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Z Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - G Dong
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Y Sun
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China.
| |
Collapse
|
3
|
Farooq S, Xu L, Ullah S, Li J, Nie J, Ping J, Ying Y. Advancements and greenification potential of magnetic molecularly imprinted polymers for chromatographic analysis of veterinary drug residues in milk. Compr Rev Food Sci Food Saf 2024; 23:e13399. [PMID: 39072953 DOI: 10.1111/1541-4337.13399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024]
Abstract
Milk, as a widely consumed nutrient-rich food, is crucial for bone health, growth, and overall nutrition. The persistent application of veterinary drugs for controlling diseases and heightening milk yield has imparted substantial repercussions on human health and environmental ecosystems. Due to the high demand, fresh consumption, complex composition of milk, and the potential adverse impacts of drug residues, advanced greener analytical methods are necessitated. Among them, functional materials-based analytical methods attract wide concerns. The magnetic molecularly imprinted polymers (MMIPs), as a kind of typical functional material, possess excellent greenification characteristics and potencies, and they are easily integrated into various detection technologies, which have offered green approaches toward analytes such as veterinary drugs in milk. Despite their increasing applications and great potential, MMIPs' use in dairy matrices remains underexplored, especially regarding ecological sustainability. This work reviews recent advances in MMIPs' synthesis and application as efficient sorbents for veterinary drug extraction in milk followed by chromatographic analysis. The uniqueness and effectiveness of MMIPs in real milk samples are evaluated, current limitations are addressed, and greenification opportunities are proposed. MMIPs show promise in revolutionizing green analytical procedures for veterinary drug detection, aligning with the environmental goals of modern food production systems.
Collapse
Affiliation(s)
- Saqib Farooq
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Lizhou Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Safat Ullah
- School of Medicine, Keele University, Keele, Staffordshire, UK
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agriculture University/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Jianfeng Ping
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Confuorti C, Jaramillo M, Plante I. Hormonal regulation of miRNA during mammary gland development. Biol Open 2024; 13:bio060308. [PMID: 38712984 PMCID: PMC11190577 DOI: 10.1242/bio.060308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024] Open
Abstract
The mammary gland is a unique organ as most of its development occurs after birth through stages of proliferation, differentiation and apoptosis that are tightly regulated by circulating hormones and growth factors. Throughout development, hormonal cues induce the regulation of different pathways, ultimately leading to differential transcription and expression of genes involved in this process, but also in the activation or inhibition of post-transcriptional mechanisms of regulation. However, the role of microRNAs (miRNAs) in the different phases of mammary gland remodeling is still poorly understood. The objectives of this study were to analyze the expression of miRNA in key stages of mammary gland development in mice and to determine whether it could be associated with hormonal variation between stages. To do so, miRNAs were isolated from mouse mammary glands at stages of adulthood, pregnancy, lactation and involution, and sequenced. Results showed that 490, 473, 419, and 460 miRNAs are detected in adult, pregnant, lactating and involuting mice, respectively, most of them being common to all four groups, and 58 unique to one stage. Most genes could be divided into six clusters of expression, including two encompassing the highest number of miRNA (clusters 1 and 3) and showing opposite profiles of expression, reaching a peak at adulthood and valley at lactation, or showing the lowest expression at adulthood and peaking at lactation. GO and KEGG analyses suggest that the miRNAs differentially expressed between stages influence the expression of targets associated with mammary gland homeostasis and hormone regulation. To further understand the links between miRNA expression and hormones involved in mammary gland development, miRNAs were then sequenced in breast cells exposed to estradiol, progesterone, prolactin and oxytocin. Four, 38, 24 and 66 miRNAs were associated with progesterone, estradiol, prolactin, and oxytocin exposure, respectively. Finally, when looking at miRNAs modulated by the hormones, differentially expressed during mammary gland development, and having a pattern of expression that could be correlated with the relative levels of hormones known to be found in vivo, 16 miRNAs were identified as likely regulated by circulating hormones. Overall, our study brings a better understanding of the regulation of miRNAs throughout mammary gland development and suggests that there is a relationship between their expression and the main hormones involved in mammary gland development. Future studies will examine this role more in detail.
Collapse
Affiliation(s)
- Cameron Confuorti
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Maritza Jaramillo
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Isabelle Plante
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, QC, H7V 1B7, Canada
| |
Collapse
|
5
|
Fluck AC, Skonieski FR, Cardinal KM, de Borba LP, Costa OAD, Macagnan R, Stefanello S, Vaz RZ. Lactation performance, feed efficiency, and blood metabolites of dairy cows treated with recombinant bovine somatotropin: A systematic review and meta-analysis. Res Vet Sci 2024; 173:105274. [PMID: 38669867 DOI: 10.1016/j.rvsc.2024.105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/30/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
A systematic review and meta-analysis were conducted to assess the impact of recombinant bovine somatotropin (rbST) on lactation performance, feed efficiency, and blood metabolites in dairy cows. In the systematic review, articles were selected based on the following criteria: (1) Data focusing on the influence of bovine somatotropin doses on milk production; (2) Submission of original data; (3) Articles published in journals; and (4) Articles in English or Portuguese. The analysis of variance was used with a completely randomized design and mixed models methodology. Polynomial regression was applied to significant fixed effects (rbST dose). The use of rbST resulted in increased milk yield and 4% fat-corrected milk yield, while fat, protein, and lactose contents remained unaffected. Dry matter and metabolizable energy intakes, as well as milk/feed efficiency, exhibited a linear increase, but body condition score (BCS) was negatively impacted. The administration of rbST led to higher blood concentrations of triglycerides and insulin. Cows treated with rbST showed a 23% increase in non-esterified fatty acid (NEFA) concentrations compared to non-treated cows. Additionally, growth factors IGF-1 and IGF-2 displayed a linear increase with rbST treatment. In summary, rbST administration increased milk yield and fat-corrected milk yield without affecting milk components. However, despite increasing intake, it resulted in BCS losses and alterations in blood parameters such as NEFA, IGF-1, and IGF-2.
Collapse
Affiliation(s)
- Ana Carolina Fluck
- Universidade Tecnológica Federal do Paraná, Estrada para Boa Esperança, km 4, Dois Vizinhos, PR 85660-000, Brazil.
| | - Fernando Reimann Skonieski
- Universidade Tecnológica Federal do Paraná, Estrada para Boa Esperança, km 4, Dois Vizinhos, PR 85660-000, Brazil
| | - Kátia Maria Cardinal
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, Rod. RS-377 S/N, Alegrete, RS 97541-000, Brazil
| | - Leonardo Piffer de Borba
- Universidade Tecnológica Federal do Paraná, Estrada para Boa Esperança, km 4, Dois Vizinhos, PR 85660-000, Brazil
| | - Olmar Antônio Denardin Costa
- Universidade Tecnológica Federal do Paraná, Estrada para Boa Esperança, km 4, Dois Vizinhos, PR 85660-000, Brazil
| | - Rodrigo Macagnan
- Universidade Tecnológica Federal do Paraná, Estrada para Boa Esperança, km 4, Dois Vizinhos, PR 85660-000, Brazil
| | - Simone Stefanello
- Universidade de Cruz Alta - UNICRUZ, Rodovia Municipal Jacob Della Méa, km 5.6 - Parada Benito, Cruz Alta, RS 98005-972, Brazil
| | - Ricardo Zambarda Vaz
- Universidade Federal de Santa Maria, Av. Independência 3751, Palmeira das Missões, RS 98300-000, Brazil
| |
Collapse
|
6
|
Fu S, Ke H, Yuan H, Xu H, Chen W, Zhao L. Dual role of pregnancy in breast cancer risk. Gen Comp Endocrinol 2024; 352:114501. [PMID: 38527592 DOI: 10.1016/j.ygcen.2024.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Reproductive history is one of the strongest risk factors for breast cancer in women. Pregnancy can promote short-term breast cancer risk, but also reduce a woman's lifetime risk of breast cancer. Changes in hormone levels before and after pregnancy are one of the key factors in breast cancer risk. This article summarizes the changes in hormone levels before and after pregnancy, and the roles of hormones in mammary gland development and breast cancer progression. Other factors, such as changes in breast morphology and mammary gland differentiation, changes in the proportion of mammary stem cells (MaSCs), changes in the immune and inflammatory environment, and changes in lactation before and after pregnancy, also play key roles in the occurrence and development of breast cancer. This review discusses the dual effects and the potential mechanisms of pregnancy on breast cancer risk from the above aspects, which is helpful to understand the complexity of female breast cancer occurrence.
Collapse
Affiliation(s)
- Shiting Fu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Hao Ke
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | | | - Huaimeng Xu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Wenyan Chen
- Department of Medical Oncology, The Third Hospital of Nanchang, Nanchang 330009, China
| | - Limin Zhao
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| |
Collapse
|
7
|
Wang W, Wang S, Wang H, Zheng E, Wu Z, Li Z. Protein Dynamic Landscape during Mouse Mammary Gland Development from Virgin to Pregnant, Lactating, and Involuting Stages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7546-7557. [PMID: 38513219 DOI: 10.1021/acs.jafc.3c09647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The mammary gland undergoes significant physiological changes as it undergoes a transition from virgin to pregnancy, lactation, and involution. However, the dynamic role of proteins in regulating these processes during mouse mammary gland development has not been thoroughly explored. In this study, we collected mouse mammary gland tissues from mature virgins aged 8-10 weeks (V), day 16 of pregnancy (P16d), day 12 of lactation (L12d), day 1 of forced weaning (FW 1d), and day 3 of forced weaning (FW 3d) stages for analysis using DIA-based quantitative proteomics technology. A total of 3,312 proteins were identified, of which 843 were DAPs that were categorized into nine clusters based on their abundance changes across developmental stages. Notably, DAPs in cluster 2, which peaked at the L12d stage, were primarily associated with mammary gland development and lactation. The protein-protein interaction network revealed that the epidermal growth factor (EGF) was central to this cluster. Our study provides a comprehensive overview of the mouse mammary gland development proteome and identifies some important proteins, such as EGF, Janus kinase 1 (JAK1), and signal transducer and activator of transcription 6 (STAT6) that may serve as potential targets for future research to provide guidelines for a deeper understanding of the developmental biology of mammary glands.
Collapse
Affiliation(s)
- Wenjing Wang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and local joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Shunbo Wang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and local joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Hao Wang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and local joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and local joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and local joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and local joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
| |
Collapse
|
8
|
Mota-Rojas D, Napolitano F, Chay-Canul A, Ghezzi M, Braghieri A, Domínguez-Oliva A, Bragaglio A, Álvarez-Macías A, Olmos-Hernández A, De Rosa G, García-Herrera R, Lendez P, Pacelli C, Bertoni A, Barile VL. Anatomy and Physiology of Water Buffalo Mammary Glands: An Anatomofunctional Comparison with Dairy Cattle. Animals (Basel) 2024; 14:1066. [PMID: 38612305 PMCID: PMC11011071 DOI: 10.3390/ani14071066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The present review aims to analyze the anatomical and physiological characteristics of the mammary gland and udders of water buffalo by making an anatomofunctional comparison with dairy cattle. It will also discuss the knowledge generated around the physiological regulation of milk ejection in the water buffalo. It was found that buffalo's average udder depth and width is approximately 20 cm smaller than Bos cattle. One of the main differences with dairy cattle is a longer teat canal length (around 8.25-11.56 cm), which highly influences buffalo milking. In this sense, a narrower teat canal (2.71 ± 0.10 cm) and thicker sphincter muscle are associated with needing higher vacuum levels when using machine milking in buffalo. Moreover, the predominant alveolar fraction of water buffalo storing 90-95% of the entire milk production is another element that can be related to the lower milk yields in buffalo (when compared to Bos cattle) and the requirements for prolonged prestimulation in this species. Considering the anatomical characteristics of water buffalo's udder could help improve bubaline dairy systems.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Fabio Napolitano
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Alfonso Chay-Canul
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Villahermosa 86040, Mexico
| | - Marcelo Ghezzi
- Anatomy Area, Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), University Campus, Tandil 7000, Argentina
| | - Ada Braghieri
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Andrea Bragaglio
- Research Centre for Engineering and Food Processing, Council for Agricultural Research and Agricultural Economy Analysis (CREA), Via Milano 43, 24047 Treviglio, Italy
| | - Adolfo Álvarez-Macías
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Giuseppe De Rosa
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Ricardo García-Herrera
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Villahermosa 86040, Mexico
| | - Pamela Lendez
- Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires, CIVETAN, UNCPBA-CICPBA-CONICET (UNCPBA), University Campus, Tandil 7000, Argentina
| | - Corrado Pacelli
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Aldo Bertoni
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Vittoria Lucia Barile
- Research Centre for Animal Production and Aquaculture, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Via Salaria 31, 00015 Monterotondo, Italy
| |
Collapse
|
9
|
Poddar A, Ahmady F, Rao SR, Sharma R, Kannourakis G, Prithviraj P, Jayachandran A. The role of pregnancy associated plasma protein-A in triple negative breast cancer: a promising target for achieving clinical benefits. J Biomed Sci 2024; 31:23. [PMID: 38395880 PMCID: PMC10885503 DOI: 10.1186/s12929-024-01012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Pregnancy associated plasma protein-A (PAPP-A) plays an integral role in breast cancer (BC), especially triple negative breast cancer (TNBC). This subtype accounts for the most aggressive BC, possesses high tumor heterogeneity, is least responsive to standard treatments and has the poorest clinical outcomes. There is a critical need to address the lack of effective targeted therapeutic options available. PAPP-A is a protein that is highly elevated during pregnancy. Frequently, higher PAPP-A expression is detected in tumors than in healthy tissues. The increase in expression coincides with increased rates of aggressive cancers. In BC, PAPP-A has been demonstrated to play a role in tumor initiation, progression, metastasis including epithelial-mesenchymal transition (EMT), as well as acting as a biomarker for predicting patient outcomes. In this review, we present the role of PAPP-A, with specific focus on TNBC. The structure and function of PAPP-A, belonging to the pappalysin subfamily, and its proteolytic activity are assessed. We highlight the link of BC and PAPP-A with respect to the IGFBP/IGF axis, EMT, the window of susceptibility and the impact of pregnancy. Importantly, the relevance of PAPP-A as a TNBC clinical marker is reviewed and its influence on immune-related pathways are explored. The relationship and mechanisms involving PAPP-A reveal the potential for more treatment options that can lead to successful immunotherapeutic targets and the ability to assist with better predicting clinical outcomes in TNBC.
Collapse
Affiliation(s)
- Arpita Poddar
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
- RMIT University, Victoria, Australia
| | - Farah Ahmady
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
| | - Sushma R Rao
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Revati Sharma
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
| | - Prashanth Prithviraj
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
| | - Aparna Jayachandran
- Fiona Elsey Cancer Research Institute, Victoria, Australia.
- Federation University, Victoria, Australia.
| |
Collapse
|
10
|
Kivlighan KT, Schneider SS, Browne EP, Pentecost BT, Anderton DL, Arcaro KF. Mammary epithelium permeability during established lactation: associations with cytokine levels in human milk. Front Nutr 2024; 11:1258905. [PMID: 38419845 PMCID: PMC10900798 DOI: 10.3389/fnut.2024.1258905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Objective The cytokine profile of human milk may be a key indicator of mammary gland health and has been linked to infant nutrition, growth, and immune system development. The current study examines the extent to which mammary epithelium permeability (MEP) is associated with cytokine profiles during established lactation within a sample of US mothers. Methods Participants were drawn from a previous study of human milk cytokines. The present analysis includes 162 participants (98 Black, 64 White) with infants ranging from 1 to 18 months of age. Levels of cytokines were determined previously. Here we measure milk sodium (Na) and potassium (K) levels with ion-selective probes. Two approaches were used to define elevated MEP: Na levels ≥10 mmol/L and Na/K ratios greater than 0.6. Associations between maternal-infant characteristics, elevated MEP, and twelve analytes (IL-6, IL-8, TNFα, IL-1β, FASL, VEGFD, FLT1, bFGF, PLGF, EGF, leptin, adiponectin) were examined using bivariate associations, principal components analysis, and multivariable logistic regression models. Results Elevated MEP was observed in 12 and 15% of milk samples as defined by Na and Na/K cutoffs, respectively. The odds of experiencing elevated MEP (defined by Na ≥ 10 mmol/L) were higher among Black participants and declined with older infant age. All cytokines, except leptin, were positively correlated with either Na or the Na/K ratio. A pro-inflammatory factor (IL-6, IL-8, TNFα, IL-1β, EGF) and a tissue remodeling factor (FASL, VEGFD, FLT1, bFGF, PLGF, adiponectin) each contributed uniquely to raising the odds of elevated MEP as defined by either Na or the Na/K ratio. Conclusion This exploratory analysis of MEP and cytokine levels during established lactation indicates that elevated MEP may be more common in US populations than previously appreciated and that individuals identifying as Black may have increased odds of experiencing elevated MEP based on current definitions. Research aimed at understanding the role of MEP in mammary gland health or infant growth and development should be prioritized.
Collapse
Affiliation(s)
- Katie T. Kivlighan
- College of Nursing, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA, United States
| | - Eva P. Browne
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Brian T. Pentecost
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Douglas L. Anderton
- Department of Sociology, University of South Carolina, Columbia, SC, United States
| | - Kathleen F. Arcaro
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
11
|
Jeong J, Lee J, Talaia G, Kim W, Song J, Hong J, Yoo K, Gonzalez DG, Athonvarangkul D, Shin J, Dann P, Haberman AM, Kim LK, Ferguson SM, Choi J, Wysolmerski J. Intracellular calcium links milk stasis to lysosome-dependent cell death during early mammary gland involution. Cell Mol Life Sci 2024; 81:29. [PMID: 38212474 PMCID: PMC10784359 DOI: 10.1007/s00018-023-05044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/17/2023] [Accepted: 11/07/2023] [Indexed: 01/13/2024]
Abstract
Involution of the mammary gland after lactation is a dramatic example of coordinated cell death. Weaning causes distension of the alveolar structures due to the accumulation of milk, which, in turn, activates STAT3 and initiates a caspase-independent but lysosome-dependent cell death (LDCD) pathway. Although the importance of STAT3 and LDCD in early mammary involution is well established, it has not been entirely clear how milk stasis activates STAT3. In this report, we demonstrate that protein levels of the PMCA2 calcium pump are significantly downregulated within 2-4 h of experimental milk stasis. Reductions in PMCA2 expression correlate with an increase in cytoplasmic calcium in vivo as measured by multiphoton intravital imaging of GCaMP6f fluorescence. These events occur concomitant with the appearance of nuclear pSTAT3 expression but prior to significant activation of LDCD or its previously implicated mediators such as LIF, IL6, and TGFβ3, all of which appear to be upregulated by increased intracellular calcium. We further demonstrate that increased intracellular calcium activates STAT3 by inducing degradation of its negative regulator, SOCS3. We also observed that milk stasis, loss of PMCA2 expression and increased intracellular calcium levels activate TFEB, an important regulator of lysosome biogenesis through a process involving inhibition of CDK4/6 and cell cycle progression. In summary, these data suggest that intracellular calcium serves as an important proximal biochemical signal linking milk stasis to STAT3 activation, increased lysosomal biogenesis, and lysosome-mediated cell death.
Collapse
Affiliation(s)
- Jaekwang Jeong
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Jongwon Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Gabriel Talaia
- Departments of Cell Biology and of Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Wonnam Kim
- Division of Phamacology, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Junho Song
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Juhyeon Hong
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kwangmin Yoo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - David G Gonzalez
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Diana Athonvarangkul
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jaehun Shin
- Integrated Science Engineering Division, Underwood International College, Yonsei University, Seoul, Republic of Korea
| | - Pamela Dann
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ann M Haberman
- Departments of Immunobiology and Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Lark Kyun Kim
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06230, Republic of Korea
| | - Shawn M Ferguson
- Departments of Cell Biology and of Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - John Wysolmerski
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
12
|
Li A, Liu C, Han X, Zheng J, Zhang G, Qi X, Du P, Liu L. Tibetan Plateau yak milk: A comprehensive review of nutritional values, health benefits, and processing technology. Food Chem X 2023; 20:100919. [PMID: 38144800 PMCID: PMC10739763 DOI: 10.1016/j.fochx.2023.100919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/18/2023] [Accepted: 10/01/2023] [Indexed: 12/26/2023] Open
Abstract
Yak milk is a characteristic animal product of yaks in the Qinghai-Tibet Plateau. Although yak milk production is low, it is richer in nutrients such as protein, fat, and lactose, a more comprehensive range of bioactive components, and unique microbial resources than Holstein cow milk. The plateau environment makes yak milk resistant to hypoxia, anti-fatigue, antioxidant, antibacterial, and relieves chronic diseases. In this paper, based on the systematic analysis of yak milk research results in the past 20 years using CiteSpace 6.1.R2, we reviewed yak lactation performance and nutritional efficacy of yak milk. This paper summarizes the improvement of traditional yak dairy processing technology, and also focuses on the microbial diversity of yak milk sources and their beneficial effects. The purpose of this review is to provide scientific support for the development of a quality yak milk industry on the Tibetan plateau.
Collapse
Affiliation(s)
- Aili Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chuan Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xueting Han
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Jie Zheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Guofang Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaoxi Qi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Peng Du
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Libo Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
13
|
Mogus JP, Matouskova K, Clark ZW, Jerry DJ, Vandenberg LN. Effects of butyl benzyl phthalate exposure during pregnancy and lactation on the post-involution mammary gland. Reprod Toxicol 2023; 122:108470. [PMID: 37743007 DOI: 10.1016/j.reprotox.2023.108470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
The mammary gland undergoes comprehensive reorganization during pregnancy, lactation, and subsequent involution. Following involution, the mammary gland has structural and functional differences compared to the gland of a nulliparous female. These parity-associated changes are regulated by hormones and may be vulnerable to endocrine-disrupting chemicals (EDCs). In this study, we evaluated the long-term effects of butyl benzyl phthalate (BBP), an estrogenic plasticizer, on the parous mouse mammary gland. Pregnant BALB/c mice were treated with 0, 3, 500, or 18000 µg/kg/day BBP throughout both pregnancy and the lactational period. The litters born to these females were evaluated for litter size and growth. The parous females were then kept for five weeks following weaning of the pups, during which period there was no exposure to BBP. After five weeks of post-weaning, mammary glands were collected and assessed for changes in histomorphology, steroid receptor expression, innate immune cell number, and gene expression. An unexposed age-matched nulliparous control was also evaluated as a comparator group. BBP increased male and female pup weight at puberty and female offspring in adulthood. BBP also altered innate immune cells in the post-involution mammary gland, reducing the effect of parity on macrophages. Lastly, BBP modestly increased mammary gland ductal complexity and periductal structure, but had no effect on expression of estrogen receptor, progesterone receptor, or a marker of proliferation. These results suggest that BBP may interfere with some effects of parity on the mouse mammary gland and induce weight gain in exposed offspring.
Collapse
Affiliation(s)
- Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Klara Matouskova
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Zachary W Clark
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - D Joseph Jerry
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA; Pioneer Valley Life Sciences Institute, Springfield, MA, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
14
|
Yuan L, Xie S, Bai H, Liu X, Cai P, Lu J, Wang C, Lin Z, Li S, Guo Y, Cai S. Reconstruction of dynamic mammary mini gland in vitro for normal physiology and oncogenesis. Nat Methods 2023; 20:2021-2033. [PMID: 37919421 DOI: 10.1038/s41592-023-02039-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/22/2023] [Indexed: 11/04/2023]
Abstract
Organoid culture has been extensively exploited for normal tissue reconstruction and disease modeling. However, it is still challenging to establish organoids that mimic in vivo-like architecture, size and function under homeostatic conditions. Here we describe the development of a long-term adult stem cell-derived mammary mini gland culture system that supports robust three-dimensional outgrowths recapitulating the morphology, scale, cellular context and transcriptional heterogeneity of the normal mammary gland. The self-organization ability of stem cells and the stability of the outgrowths were determined by a coordinated combination of extracellular matrix, environmental signals and dynamic physiological cycles. We show that these mini glands were hormone responsive and could recapitulate the entire postnatal mammary development including puberty, estrus cycle, lactation and involution. We also observed that these mini glands maintained the presence of mammary stem cells and could also recapitulate the fate transition from embryonic bipotency to postnatal unipotency in lineage tracing assays. In addition, upon induction of oncogene expression in the mini glands, we observed tumor initiation in vitro and in vivo in a mouse model. Together, this study provides an experimental system that can support a dynamic miniature mammary gland for the study of physiologically relevant, complex biological processes.
Collapse
Affiliation(s)
- Lei Yuan
- Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shaofang Xie
- Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Huiru Bai
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaoqin Liu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Pei Cai
- Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jing Lu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Chunhui Wang
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Disease Modeling Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Zuobao Lin
- Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shuying Li
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Disease Modeling Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Yajing Guo
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shang Cai
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Disease Modeling Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
15
|
Kobayashi K, Han L, Lu SN, Ninomiya K, Isobe N, Nishimura T. Effects of hydrostatic compression on milk production-related signaling pathways in mouse mammary epithelial cells. Exp Cell Res 2023; 431:113762. [PMID: 37648075 DOI: 10.1016/j.yexcr.2023.113762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Mammary epithelial cells (MECs) secrete milk into the mammary alveolar lumen during lactation. The secreted milk accumulates in the alveolar lumen until milk ejection occurs, and excess milk accumulation downregulates milk production in alveolar MECs. Intramammary hydrostatic pressure also increases in the alveolar lumen in a manner dependent on milk accumulation. In this study, we investigated whether high hydrostatic compression directly affects lactating MECs, using a commercial compression device and a lactation culture model of MECs, which have milk production ability and less permeable tight junctions. High hydrostatic compression at 100 kPa for 8 h decreased β-casein and increased claudin-4 levels concurrently with inactivation of STAT5 and glucocorticoid receptor signaling pathways. In addition, high hydrostatic compression for 1 h inactivated STAT5 and activated p38 MAPK signaling. Furthermore, repeated rises and falls of the hourly hydrostatic compression induced activation of positive (Akt, mTOR) and negative (STAT3, NF-κB) signaling pathways for milk production concurrently with stimulation of casein and lactoferrin production in MECs. These results indicate that milk production-related signaling pathways in MECs change in response to hydrostatic compression. Hydrostatic compression of the alveolar lumen may directly regulate milk production in the alveolar MECs of lactating mammary glands.
Collapse
Affiliation(s)
- Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Liang Han
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Shan-Ni Lu
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Kazuki Ninomiya
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Naoki Isobe
- Laboratory of Animal Histophysiology, Graduate School of Integrated Science for Life Faculty of Applied Biological Science, Hiroshima University, 1-4-4, Kagamiyama, 739-8528, Higashi-Hiroshima, Japan.
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| |
Collapse
|
16
|
Luca E, Zitzmann K, Bornstein S, Kugelmeier P, Beuschlein F, Nölting S, Hantel C. Three Dimensional Models of Endocrine Organs and Target Tissues Regulated by the Endocrine System. Cancers (Basel) 2023; 15:4601. [PMID: 37760571 PMCID: PMC10526768 DOI: 10.3390/cancers15184601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Immortalized cell lines originating from tumors and cultured in monolayers in vitro display consistent behavior and response, and generate reproducible results across laboratories. However, for certain endpoints, these cell lines behave quite differently from the original solid tumors. Thereby, the homogeneity of immortalized cell lines and two-dimensionality of monolayer cultures deters from the development of new therapies and translatability of results to the more complex situation in vivo. Organoids originating from tissue biopsies and spheroids from cell lines mimic the heterogeneous and multidimensional characteristics of tumor cells in 3D structures in vitro. Thus, they have the advantage of recapitulating the more complex tissue architecture of solid tumors. In this review, we discuss recent efforts in basic and preclinical cancer research to establish methods to generate organoids/spheroids and living biobanks from endocrine tissues and target organs under endocrine control while striving to achieve solutions in personalized medicine.
Collapse
Affiliation(s)
- Edlira Luca
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Kathrin Zitzmann
- Department of Medicine IV, University Hospital, LMU Munich, 80336 München, Germany
| | - Stefan Bornstein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | | | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Department of Medicine IV, University Hospital, LMU Munich, 80336 München, Germany
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| |
Collapse
|
17
|
Shi Y, Zhao Z, He X, Luo J, Chen T, Xi Q, Zhang Y, Sun J. The Characteristic Function of Blood-Derived Exosomes and Exosomal circRNAs Isolated from Dairy Cattle during the Dry Period and Mid-Lactation. Int J Mol Sci 2023; 24:12166. [PMID: 37569544 PMCID: PMC10419012 DOI: 10.3390/ijms241512166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Exosomes are key mediators of intercellular communication. They are secreted by most cells and contain a cargo of protein-coding genes, long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), which modulate recipient cell behavior. Herein, we collected blood samples from Holstein cows at days 30 (mid-lactation) and 250 (dry period) of pregnancy. Prolactin, follicle-stimulating hormone, luteinizing hormone, estrogen, and progesterone levels showed an obvious increase during D250. We then extracted exosomes from bovine blood samples and found that their sizes generally ranged from 100 to 200 nm. Further, Western blotting validated that they contained CD9, CD63, and TSG101, but not calnexin. Blood-derived exosomes significantly promoted the proliferation of mammary epithelial cells, particularly from D250. This change was accompanied by increased expression levels of proliferation marker proteins PCNA, cyclin D, and cyclin E, as detected by EdU assay, cell counting kit-8 assay, and flow cytometric cell cycle analysis. Moreover, we treated mammary epithelial cells with blood-derived exosomes that were isolated from the D30 and D250 periods. And RNA-seq of two groups of cells led to the identification of 839 differentially expressed genes that were significantly enriched in KEGG signaling pathways associated with apoptosis, cell cycle and proliferation. In bovine blood-derived exosomes, we found 12,747 protein-coding genes, 31,181 lncRNAs, 9374 transcripts of uncertain coding potential (TUCP) candidates, and 460 circRNAs, and 32 protein-coding genes, 806 lncRNAs, 515 TUCP candidates, and 45 circRNAs that were differentially expressed between the D30 and D250 groups. We selected six highly expressed and four differentially expressed circRNAs to verify their head-to-tail splicing using PCR and Sanger sequencing. To summarize, our findings improve our understanding of the key roles of blood-derived exosomes and the characterization of exosomal circRNAs in mammary gland development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (Z.Z.); (X.H.); (J.L.); (T.C.); (Q.X.)
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (Z.Z.); (X.H.); (J.L.); (T.C.); (Q.X.)
| |
Collapse
|
18
|
Jeong J, Lee J, Talaia G, Kim W, Song J, Hong J, Yoo K, Gonzalez D, Athonvarangkul D, Shin J, Dann P, Haberman A, Kim LK, Ferguson S, Choi J, Wysolmerski J. Intracellular Calcium links Milk Stasis to Lysosome Dependent Cell Death by Activating a TGFβ3/TFEB/STAT3 Pathway Early during Mammary Gland Involution. RESEARCH SQUARE 2023:rs.3.rs-3030763. [PMID: 37398309 PMCID: PMC10312953 DOI: 10.21203/rs.3.rs-3030763/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Involution of the mammary gland after lactation is a dramatic example of coordinated cell death. Weaning causes distension of the alveolar structures due to the accumulation of milk, which, in turn, activates STAT3 and initiates a caspase-independent but lysosome-dependent cell death (LDCD) pathway. Although the importance of STAT3 and LDCD in early mammary involution is well established, it has not been entirely clear how milk stasis activates STAT3. In this report, we demonstrate that protein levels of the PMCA2 calcium pump are significantly downregulated within 2-4 hours of experimental milk stasis. Reductions in PMCA2 expression correlate with an increase in cytoplasmic calcium in vivo as measured by multiphoton intravital imaging of GCaMP6f fluorescence. These events occur concomitant with the appearance of nuclear pSTAT3 expression but prior to significant activation of LDCD or its previously implicated mediators such as LIF, IL6 and TGFβ3, all of which appear to be upregulated by increased intracellular calcium. We also observed that milk stasis, loss of PMCA2 expression and increased intracellular calcium levels activate TFEB, an important regulator of lysosome biogenesis. This is the result of increased TGFβ signaling and inhibition of cell cycle progression. Finally, we demonstrate that increased intracellular calcium activates STAT3 by inducing degradation of its negative regulator, SOCS3, a process which also appears to be mediated by TGFβ signaling. In summary, these data suggest that intracellular calcium serves as an important proximal biochemical signal linking milk stasis to STAT3 activation, increased lysosomal biogenesis, and lysosome-mediated cell death.
Collapse
Affiliation(s)
- Jaekwang Jeong
- Yale School of Medicine: Yale University School of Medicine
| | | | - Gabriel Talaia
- Yale School of Medicine: Yale University School of Medicine
| | | | | | | | | | - David Gonzalez
- Yale School of Medicine: Yale University School of Medicine
| | | | | | - Pamela Dann
- Yale School of Medicine: Yale University School of Medicine
| | - Ann Haberman
- Yale School of Medicine: Yale University School of Medicine
| | | | - Shawn Ferguson
- Yale School of Medicine: Yale University School of Medicine
| | | | | |
Collapse
|
19
|
Ahmad W, Panicker NG, Akhlaq S, Gull B, Baby J, Khader TA, Rizvi TA, Mustafa F. Global Down-regulation of Gene Expression Induced by Mouse Mammary Tumor Virus (MMTV) in Normal Mammary Epithelial Cells. Viruses 2023; 15:v15051110. [PMID: 37243196 DOI: 10.3390/v15051110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Mouse mammary tumor virus (MMTV) is a betaretrovirus that causes breast cancer in mice. The mouse mammary epithelial cells are the most permissive cells for MMTV, expressing the highest levels of virus upon infection and being the ones later transformed by the virus due to repeated rounds of infection/superinfection and integration, leading eventually to mammary tumors. The aim of this study was to identify genes and molecular pathways dysregulated by MMTV expression in mammary epithelial cells. Towards this end, mRNAseq was performed on normal mouse mammary epithelial cells stably expressing MMTV, and expression of host genes was analyzed compared with cells in its absence. The identified differentially expressed genes (DEGs) were grouped on the basis of gene ontology and relevant molecular pathways. Bioinformatics analysis identified 12 hub genes, of which 4 were up-regulated (Angp2, Ccl2, Icam, and Myc) and 8 were down-regulated (Acta2, Cd34, Col1a1, Col1a2, Cxcl12, Eln, Igf1, and Itgam) upon MMTV expression. Further screening of these DEGs showed their involvement in many diseases, especially in breast cancer progression when compared with available data. Gene Set Enrichment Analysis (GSEA) identified 31 molecular pathways dysregulated upon MMTV expression, amongst which the PI3-AKT-mTOR was observed to be the central pathway down-regulated by MMTV. Many of the DEGs and 6 of the 12 hub genes identified in this study showed expression profile similar to that observed in the PyMT mouse model of breast cancer, especially during tumor progression. Interestingly, a global down-regulation of gene expression was observed, where nearly 74% of the DEGs in HC11 cells were repressed by MMTV expression, an observation similar to what was observed in the PyMT mouse model during tumor progression, from hyperplasia to adenoma to early and late carcinomas. Comparison of our results with the Wnt1 mouse model revealed further insights into how MMTV expression could lead to activation of the Wnt1 pathway independent of insertional mutagenesis. Thus, the key pathways, DEGs, and hub genes identified in this study can provide important clues to elucidate the molecular mechanisms involved in MMTV replication, escape from cellular anti-viral response, and potential to cause cell transformation. These data also validate the use of the MMTV-infected HC11 cells as an important model to study early transcriptional changes that could lead to mammary cell transformation.
Collapse
Affiliation(s)
- Waqar Ahmad
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Neena G Panicker
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Shaima Akhlaq
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Bushra Gull
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Jasmin Baby
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Thanumol A Khader
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Tahir A Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), UAE University, Al Ain 15551, United Arab Emirates
- Zayed Center for Health Sciences (ZCHS), UAE University, Al Ain 15551, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, UAE University, Al Ain 15551, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
- Zayed Center for Health Sciences (ZCHS), UAE University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
20
|
Neville MC, Demerath EW, Hahn-Holbrook J, Hovey RC, Martin-Carli J, McGuire MA, Newton ER, Rasmussen KM, Rudolph MC, Raiten DJ. Parental factors that impact the ecology of human mammary development, milk secretion, and milk composition-a report from "Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)" Working Group 1. Am J Clin Nutr 2023; 117 Suppl 1:S11-S27. [PMID: 37173058 PMCID: PMC10232333 DOI: 10.1016/j.ajcnut.2022.11.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 05/15/2023] Open
Abstract
The goal of Working Group 1 in the Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN) Project was to outline factors influencing biological processes governing human milk secretion and to evaluate our current knowledge of these processes. Many factors regulate mammary gland development in utero, during puberty, in pregnancy, through secretory activation, and at weaning. These factors include breast anatomy, breast vasculature, diet, and the lactating parent's hormonal milieu including estrogen, progesterone, placental lactogen, cortisol, prolactin, and growth hormone. We examine the effects of time of day and postpartum interval on milk secretion, along with the role and mechanisms of lactating parent-infant interactions on milk secretion and bonding, with particular attention to the actions of oxytocin on the mammary gland and the pleasure systems in the brain. We then consider the potential effects of clinical conditions including infection, pre-eclampsia, preterm birth, cardiovascular health, inflammatory states, mastitis, and particularly, gestational diabetes and obesity. Although we know a great deal about the transporter systems by which zinc and calcium pass from the blood stream into milk, the interactions and cellular localization of transporters that carry substrates such as glucose, amino acids, copper, and the many other trace metals present in human milk across plasma and intracellular membranes require more research. We pose the question of how cultured mammary alveolar cells and animal models can help answer lingering questions about the mechanisms and regulation of human milk secretion. We raise questions about the role of the lactating parent and the infant microbiome and the immune system during breast development, secretion of immune molecules into milk, and protection of the breast from pathogens. Finally, we consider the effect of medications, recreational and illicit drugs, pesticides, and endocrine-disrupting chemicals on milk secretion and composition, emphasizing that this area needs much more research attention.
Collapse
Affiliation(s)
- Margaret C Neville
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, CO, USA.
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, United States
| | - Jennifer Hahn-Holbrook
- Department of Psychological Sciences, University of California Merced, Merced, CA, United States
| | - Russell C Hovey
- Department of Animal Science, University of California Davis, Davis, CA, United States
| | - Jayne Martin-Carli
- Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Mark A McGuire
- Idaho Agricultural Experiment Station, University of Idaho, Moscow, ID, United States
| | - Edward R Newton
- Department of Obstetrics and Gynecology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Kathleen M Rasmussen
- Nancy Schlegel Meinig Professor of Maternal and Child Nutrition, Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Michael C Rudolph
- The University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Daniel J Raiten
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
21
|
Fur removal promotes an earlier expression of involution-related genes in mammary gland of lactating mice. J Comp Physiol B 2023; 193:171-192. [PMID: 36650338 PMCID: PMC9992052 DOI: 10.1007/s00360-023-01474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Peak lactation occurs when milk production is at its highest. The factors limiting peak lactation performance have been subject of intense debate. Milk production at peak lactation appears limited by the capacity of lactating females to dissipate body heat generated as a by-product of processing food and producing milk. As a result, manipulations that enhance capacity to dissipate body heat (such as fur removal) increase peak milk production. We investigated the potential correlates of shaving-induced increases in peak milk production in laboratory mice. By transcriptomic profiling of the mammary gland, we searched for the mechanisms underlying experimentally increased milk production and its consequences for mother-young conflict over weaning, manifested by advanced or delayed involution of mammary gland. We demonstrated that shaving-induced increases in milk production were paradoxically linked to reduced expression of some milk synthesis-related genes. Moreover, the mammary glands of shaved mice had a gene expression profile indicative of earlier involution relative to unshaved mice. Once provided with enhanced capacity to dissipate body heat, shaved mice were likely to rear their young to independence faster than unshaved mothers.
Collapse
|
22
|
Palin MF, Caron A, Farmer C. Effects of sustained hyperprolactinemia in late gestation on the mammary parenchymal tissue transcriptome of gilts. BMC Genomics 2023; 24:40. [PMID: 36694114 PMCID: PMC9875420 DOI: 10.1186/s12864-023-09136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Gilts experiencing sustained hyperprolactinemia from d 90 to 109 of gestation showed an early onset of lactogenesis coupled with premature mammary involution. To better understand the molecular mechanisms underlying the premature mammary involution observed in these gilts, a transcriptomic analysis was undertaken. Therefore, this study aimed to explore the effect of hyperprolactinemia on the global transcriptome in the mammary tissue of late gestating gilts and identify the molecular pathways involved in triggering premature mammary involution. METHODS On d 90 of gestation, gilts received daily injections of (1) canola oil until d 109 ± 1 of gestation (CTL, n = 18); (2) domperidone (to induce hyperprolactinemia) until d 96 ± 1 of gestation (T7, n = 17) or; (3) domperidone (until d 109 ± 1 of gestation (T20, n = 17). Mammary tissue was collected on d 110 of gestation and total RNA was isolated from six CTL and six T20 gilts for microarray analysis. The GeneChip® Porcine Gene 1.0 ST Array was used for hybridization. Functional enrichment analyses were performed to explore the biological significance of differentially expressed genes, using the DAVID bioinformatics resource. RESULTS The expression of 335 genes was up-regulated and that of 505 genes down-regulated in the mammary tissue of T20 vs CTL gilts. Biological process GO terms and KEGG pathways enriched in T20 vs CTL gilts reflected the concurrent premature lactogenesis and mammary involution. When looking at individual genes, it appears that mammary cells from T20 gilts can simultaneously upregulate the transcription of milk proteins such as WAP, CSN1S2 and LALBA, and genes triggering mammary involution such as STAT3, OSMR and IL6R. The down-regulation of PRLR expression and up-regulation of genes known to inactivate the JAK-STAT5 pathway (CISH, PTPN6) suggest the presence of a negative feedback loop trying to counteract the effects of hyperprolactinemia. CONCLUSIONS Genes and pathways identified in this study suggest that sustained hyperprolactinemia during late-pregnancy, in the absence of suckling piglets, sends conflicting pro-survival and cell death signals to mammary epithelial cells. Reception of these signals results in a mammary gland that can simultaneously synthesize milk proteins and initiate mammary involution.
Collapse
Affiliation(s)
- Marie-France Palin
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, Sherbrooke R & D Centre, Sherbrooke, QC Canada
| | - Anouk Caron
- grid.23856.3a0000 0004 1936 8390Université Laval, Québec, QC Canada
| | - Chantal Farmer
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, Sherbrooke R & D Centre, Sherbrooke, QC Canada
| |
Collapse
|
23
|
Mironov A, Fisher M, Narayanan P, Elsayed R, Karabulutoglu M, Akhtar N. Rac1 controls cell turnover and reversibility of the involution process in postpartum mammary glands. PLoS Biol 2023; 21:e3001583. [PMID: 36656812 PMCID: PMC9851507 DOI: 10.1371/journal.pbio.3001583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 12/11/2022] [Indexed: 01/20/2023] Open
Abstract
Cell turnover in adult tissues is essential for maintaining tissue homeostasis over a life span and for inducing the morphological changes associated with the reproductive cycle. However, the underlying mechanisms that coordinate the balance of cell death and proliferation remain unsolved. Using the mammary gland, we have discovered that Rac1 acts as a nexus to control cell turnover. Postlactational tissue regression is characterised by the death of milk secreting alveoli, but the process is reversible within the first 48 h if feeding recommences. In mice lacking epithelial Rac1, alveolar regression was delayed. This defect did not result from failed cell death but rather increased cell turnover. Fitter progenitor cells inappropriately divided, regenerating the alveoli, but cell death also concomitantly accelerated. We discovered that progenitor cell hyperproliferation was linked to nonautonomous effects of Rac1 deletion on the macrophageal niche with heightened inflammation. Moreover, loss of Rac1 impaired cell death with autophagy but switched the cell death route to apoptosis. Finally, mammary gland reversibility failed in the absence of Rac1 as the alveoli failed to recommence lactation upon resuckling.
Collapse
Affiliation(s)
- Aleksandr Mironov
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Matthew Fisher
- The Bateson Centre and Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Priya Narayanan
- The Bateson Centre and Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Randa Elsayed
- The Bateson Centre and Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Melis Karabulutoglu
- The Bateson Centre and Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Nasreen Akhtar
- The Bateson Centre and Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
He Q, Gao L, Zhang F, Yao W, Wu J, Song N, Luo J, Zhang Y. The FoxO1-ATGL axis alters milk lipolysis homeostasis through PI3K/AKT signaling pathway in dairy goat mammary epithelial cells. J Anim Sci 2023; 101:skad286. [PMID: 37638641 PMCID: PMC10699848 DOI: 10.1093/jas/skad286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023] Open
Abstract
Goat milk is enriched in fatty acids which are beneficial to human health. Previous research has revealed that 98% of milk fat is composed of triglycerides. However, the mechanisms regulating milk fat composition remain unclear. Forkhead box protein O1 (FoxO1) is a crucial regulatory factor involved in lipid metabolism across various cell types. Chromatin immunoprecipitation sequencing (ChIP)-seq data) and RNA sequencing (RNA-seq) data revealed that have indicated a close association between FoxO1 was closely related to lipid metabolism during lactation in dairy goats. The objective of this study was to investigate the mechanisms by which FoxO1 regulates lipid metabolism in goat mammary epithelial cells (GMECs). FoxO1 knockdown significantly downregulated the expression of adipose triglyceride lipase (ATGL) and suppressed the activity of the ATGL promoter. Consistently, the number of lipid droplets decreased significantly in FoxO1-overexpressing cells and increased in ATGL-knockdown cells. To further verify the effect of FoxO1 on ATGL promoter activity, cells were transfected with four promoter fragments of different lengths. We found that the core region of the ATGL promoter was located between -882 bp and -524 bp, encompassing two FoxO1 binding sites (FKH1 and FKH2). Mutations in the FoxO1 binding sites significantly downregulated ATGL promoter activity in GMECs. Luciferase reporter assays demonstrated that FoxO1 overexpression markedly enhanced ATGL promoter activity. Furthermore, site-directed mutation confirmed that FKH1 and FKH2 sites were simultaneously mutated significantly attenuated the stimulatory effect of FoxO1 on ATGL promoter activities simultaneous mutation of FKH1 and FKH2 sites significantly attenuated the stimulatory effect of FoxO1 on ATGL promoter activity. ChIP assays showed that FoxO1 directly binds to the FKH2 element located in the ATGL promoter in vivo. Finally, immunofluorescence staining revealed that insulin promotes the translocation of FoxO1 from the nucleus to the cytoplasm, thereby attenuating the FoxO1-induced activation of the ATGL promoter. Collectively, these findings uncover a novel pathway where by FoxO1 may regulate lipid metabolism in GMECs specifically by modulating the transcriptional activity of ATGL.
Collapse
Affiliation(s)
- Qiuya He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Liangjiahui Gao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Fuhong Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ning Song
- College of Animal Science and Technology, Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yong Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
25
|
Luzardo-Ocampo I, Dena-Beltrán JL, Ruiz-Herrera X, Ocampo-Ruiz AL, Martínez de la Escalera G, Clapp C, Macotela Y. Obesity-derived alterations in the lactating mammary gland: Focus on prolactin. Mol Cell Endocrinol 2023; 559:111810. [PMID: 36374835 DOI: 10.1016/j.mce.2022.111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
Obesity is a modern pandemic with negative consequences in women's reproductive health. Women with overweight and obesity can develop mammary gland alterations that unable exclusive breastfeeding. Obesity associates with a disturbed lactating mammary gland endocrine environment including a decreased action of the hormone prolactin (PRL), the master regulator of lactation. The PRL receptor and the action of PRL are reduced in the mammary gland of lactating rodents fed an obesogenic diet and are contributing factors to impaired lactation in obesity. Also, treatment with PRL improves milk yield in women with lactation insufficiency. This review focuses on the impact of diet-induced obesity in the lactating mammary gland and how obesity impairs the lactogenic action of PRL. Although obesity alters lactation performance in humans and rodents, the responsible mechanisms have been mainly addressed in rodents.
Collapse
Affiliation(s)
- Ivan Luzardo-Ocampo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230, Querétaro, Mexico
| | - José L Dena-Beltrán
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230, Querétaro, Mexico
| | - Xarubet Ruiz-Herrera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230, Querétaro, Mexico
| | - Ana Luisa Ocampo-Ruiz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230, Querétaro, Mexico
| | - Gonzalo Martínez de la Escalera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230, Querétaro, Mexico
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230, Querétaro, Mexico
| | - Yazmín Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230, Querétaro, Mexico.
| |
Collapse
|
26
|
Taylor VJ. Lactation from the inside out: Maternal homeorhetic gastrointestinal adaptations regulating energy and nutrient flow into milk production. Mol Cell Endocrinol 2023; 559:111797. [PMID: 36243202 DOI: 10.1016/j.mce.2022.111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Lactation invokes homeorhetic processes to ramp up and supply milk synthesis components to fulfil nutritional, immunological and microbiological requirements of developing offspring, overseen by complex neuroendocrine networks. The maternal gut meets these intense metabolic demands, supported by hyperphagia and rapid adjustments to process larger food quantities. Enteroplasticity describes an inherent ability of the gastrointestinal tract to harness metabolic and structural adaptations that increase nutrient absorption. Most shifts in response to increased demands are transitory and by secreting milk, the continuous energetic drain out of the maternal body avoids development of pathological metabolic diseases. Lactation has various positive benefits for long-term maternal health but many females do not lactate for long post pregnancy and younger women are increasingly pre-disposed to excessive body mass and/or metabolic complications prior to reproducing. Inadvertently invoking intestinal adaptations to harvest and store excess nutrients has negative health implications with increased risks for both mother and offspring.
Collapse
Affiliation(s)
- Vicky J Taylor
- School of Life, Health and Chemical Sciences (LHCS), Faculty of Science, Technology, Engineering and Mathematics (STEM), The Open University, United Kingdom.
| |
Collapse
|
27
|
Dong X, Liu C, Miao J, Lin X, Wang Y, Wang Z, Hou Q. Effect of serotonin on the cell viability of the bovine mammary alveolar cell-T (MAC-T) cell line. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:922-936. [PMID: 36287778 PMCID: PMC9574616 DOI: 10.5187/jast.2022.e50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022]
Abstract
5-Hydroxytryptamine (5-HT), a monoamine, as a local regulator in the mammary gland is a chemical signal produced by the mammary epithelium cell. In cows, studies have shown that 5-HT is associated with epithelial cell apoptosis during the degenerative phase of the mammary gland. However, studies in other tissues have shown that 5-HT can effectively promote cell viability. Whether 5-HT could have an effect on mammary cell viability in dairy cows is still unknown. The purpose of this study was to determine: (1) effect of 5-HT on the viability of bovine mammary epithelial cells and its related signaling pathways, (2) interaction between prolactin (PRL) and 5-HT on the cell viability. The bovine mammary alveolar cell-T (MAC-T) were cultured with different concentrations of 5-HT for 12, 24, 48 or 72 hours, and then were assayed using cell counting kit-8, polymerase chain reaction (PCR) and immunobloting. The results suggested that 20 μM 5-HT treatment for 12 or 24 h promote cell viability, which was mainly induced by the activation of 5-HT receptor (5-HTR) 1B and 4, because the increase caused by 5-HT vanished when 5-HTR 1B and 4 was blocked by SB224289 and SB204070. And protein expression of mammalian target of rapamycin (mTOR), eukaryotic translation elongation factor 2 (eEF2), janus kinase 2 (JAK2) and signal transducer and activator of transcription 5 (STAT5) were decreased after blocking 5-HT 1B and 4 receptors. When MAC-T cells were treated with 5-HT and PRL simultaneously for 24 h, both the cell viability and the level of mTOR protein were significantly higher than that cultured with 5-HT or PRL alone. In conclusion, our study suggested that 5-HT promotes the viability of MAC-T cells by 5-HTR 1B and/or 4. Furthermore, there is a reciprocal relationship between PRL and 5-HT.
Collapse
Affiliation(s)
- Xusheng Dong
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China
| | - Chen Liu
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China
| | - Jialin Miao
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China
| | - Xueyan Lin
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China
| | - Yun Wang
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China
| | - Zhonghua Wang
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China,Corresponding author: Zhonghua Wang,
Ruminant Nutrition and Physiology Laboratory, College of Animal Science and
Technology, Shandong Agricultural University, Taian, Shandong 271018, China.
Tel: +86-15005485951, E-mail:
| | - Qiuling Hou
- Ruminant Nutrition and Physiology
Laboratory, College of Animal Science and Technology, Shandong Agricultural
University, Taian, Shandong 271018, China,Corresponding author: Qiuling Hou,
Ruminant Nutrition and Physiology Laboratory, College of Animal Science and
Technology, Shandong Agricultural University, Taian, Shandong 271018, China.
Tel: +86-15064175925, E-mail:
| |
Collapse
|
28
|
Jiang N, Wu C, Li Y, Liu J, Yuan Y, Shi H. Identification and profiling of microRNAs involved in the regenerative involution of mammary gland. Genomics 2022; 114:110442. [PMID: 35931275 DOI: 10.1016/j.ygeno.2022.110442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/03/2022] [Accepted: 07/29/2022] [Indexed: 11/04/2022]
Abstract
Regenerative involution is important for the subsequent lactation, but molecular mechanism has not been revealed. The crucial miRNA in tissue development indicates that miRNAs might participate in regenerative involution. In the present study, the mammary tissues of the dairy goats (n = 3) were collected via biopsy at wk-8 (time to dry off), -6, -4, -1, and + 1 relative to lambing for the Hematoxylin and Eosin staining and miRNA sequencing. Alveolar structures collapsed during regenerative involution, but the structures remained intact and distended. Among the 50 miRNA expression trajectories categorized by short time-series expression miner, two significant patterns were clustered. The differentially expressed miRNAs in the two patterns were mainly related to the self-renewal of tissue and enriched in pathways containing vesical-mediated transport, tissue development, tube development, vasculature development and epithelial development. The identification of the miRNA will help in elucidating the regulatory roles of miRNAs in mammary gland development.
Collapse
Affiliation(s)
- Nannan Jiang
- Institute of Dairy Science, College of Animal Science, Zhejiang University, Hangzhou 310015, PR China
| | - Chaoqun Wu
- Institute of Dairy Science, College of Animal Science, Zhejiang University, Hangzhou 310015, PR China
| | - Yongtao Li
- Institute of Dairy Science, College of Animal Science, Zhejiang University, Hangzhou 310015, PR China
| | - Jianxin Liu
- Institute of Dairy Science, College of Animal Science, Zhejiang University, Hangzhou 310015, PR China
| | - Yuan Yuan
- School of Nursing, Yangzhou University, Yangzhou 225009, PR China.
| | - Hengbo Shi
- Institute of Dairy Science, College of Animal Science, Zhejiang University, Hangzhou 310015, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, PR China.
| |
Collapse
|
29
|
Combined Effects of Doxorubicin, Medroxyprogesterone Acetate, and Cold-Plasma-Treated Hanks Solution on the Production of Transforming Growth Factor β in Human Mononuclear Leukocytes. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Xuan R, Chao T, Zhao X, Wang A, Chu Y, Li Q, Zhao Y, Ji Z, Wang J. Transcriptome profiling of the nonlactating mammary glands of dairy goats reveals the molecular genetic mechanism of mammary cell remodeling. J Dairy Sci 2022; 105:5238-5260. [DOI: 10.3168/jds.2021-21039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/12/2022] [Indexed: 11/19/2022]
|
31
|
Cao M, Huang L, Jin S, Zhao M, Zheng Y. Comparative Proteomics Study of Yak Milk from Standard and Naturally Extended Lactation Using iTRAQ Technique. Animals (Basel) 2022; 12:ani12030391. [PMID: 35158713 PMCID: PMC8833776 DOI: 10.3390/ani12030391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Extended lactation is a common phenomenon in lactating yaks under grazing and natural reproduction conditions. To elucidate differences in milk protein compositions and mammary gland functions between yaks of standard lactation (TL yaks) and prolonged lactation (HL yaks), whole milk samples of TL yaks and HL yaks (n = 15 each) were collected from a yak pasture at the northwest highland of China. The iTRAQ technique was used to compare the skim milk proteins in the two yak groups. A total of 202 differentially expressed proteins (DEPs) were revealed, among which 109 proteins were up-regulated and 93 were down-regulated in the milk of HL yaks compared to TL yaks. Caseins including κ-casein, αs1-casein, αs2-casein, and β-casein were up-regulated in HL yak milk over 1.43-fold. The GO function annotation analysis showed that HL yaks produced milk with characteristics of milk at the degeneration stage, similar to that of dairy cows. KEGG enrichment showed that the metabolic pathways with the most differences are those that involve carbohydrate metabolism and the biosynthesis of amino acids. The present results highlight detailed differences in skim milk proteins produced by HL yaks and TL yaks and suggest that the mammary gland of HL yak is at the degeneration stage.
Collapse
|
32
|
Ruiz TFR, Leonel ECR, Colleta SJ, Bedolo CM, Pegorin de Campos SG, Taboga SR. Gestational and lactational xenoestrogen exposure disrupts morphology and inflammatory aspects in mammary gland of gerbil mothers during involution. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103785. [PMID: 34896274 DOI: 10.1016/j.etap.2021.103785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
In the mammary gland (MG), the developmental window for gestational/lactational differentiation and growth is highly vulnerable to hormonal disruption. Here we describe that the MG involution process in female gerbil mothers is delayed by bisphenol A (BPA) exposure during gestation and lactation. The process is directly influenced by changes in expression of extracellular matrix proteases MMP-2, MMP-9, and FAP, and the incidence of collagen and elastin is reduced after 7 and 14 days of weaning. A pro-inflammatory environment in the late involution process was confirmed by higher expression of TNF-α, COX-2 and phospho-STAT3 n the MG stroma, allied to increases in the incidence of macrophages and mast cells. These aspects impacted the proliferative pattern of epithelial cells, which decreased on the 14th post-weaning day. These data confirm that the milk production window of susceptibility is vulnerable to the impact of BPA, which promotes a suggestive pro-tumoral microenvironment during mammary involution.
Collapse
Affiliation(s)
- Thalles Fernando Rocha Ruiz
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil.
| | - Ellen Cristina Rivas Leonel
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil; Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Avenida Esperança, s/n, Câmpus Samambaia, 74690-900 Goiânia, Goiás, Brazil.
| | - Simone Jacovaci Colleta
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Carolina Marques Bedolo
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Silvana Gisele Pegorin de Campos
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
33
|
The Potential of Metalloproteinase-9 Administration to Accelerate Mammary Involution and Boost the Immune System at Dry-Off. Animals (Basel) 2021; 11:ani11123415. [PMID: 34944191 PMCID: PMC8697945 DOI: 10.3390/ani11123415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The cow dry period is a critical period presenting a high risk of contracting intramammary infections. Active molecules to boost the innate immunity of the mammary gland and increase infection resilience could be decisive for the milking performance of dairy cows in the next lactation. Metalloproteinase-9 is a protein with a relevant role in facilitating the immune function and activating the regeneration of the mammary gland. The focus of this study was to test the role of the infusion of a recombinant version of metalloproteinase 9 at cow dry off, showing, contrary to expectations, that it is not able to enhance the innate immunity nor to improve the involution and regeneration of the mammary gland. Abstract The dry period is decisive for the milking performance of dairy cows. The promptness of mammary gland involution at dry-off affects not only the productivity in the next lactation, but also the risk of new intra-mammary infections since it is closely related with the activity of the immune system. Matrix metalloproteinase-9 (MMP-9) is an enzyme present in the mammary gland and has an active role during involution by disrupting the extracellular matrix, mediating cell survival and the recruitment of immune cells. The objective of this study was to determine the potential of exogenous administration of a soluble and recombinant version of a truncated MMP-9 (rtMMP-9) to accelerate mammary involution and boost the immune system at dry-off, avoiding the use of antibiotics. Twelve Holstein cows were dried abruptly, and two quarters of each cow received an intra-mammary infusion of either soluble rtMMP-9 or a positive control based on immunostimulant inclusion bodies (IBs). The contralateral quarters were infused with saline solution as negative control. Samples of mammary secretion were collected during the week following dry-off to determine SCC, metalloproteinase activity, bovine serum albumin, lactoferrin, sodium, and potassium concentrations. The soluble form of rtMMP-9 increased endogenous metalloproteinase activity in the mammary gland compared with saline quarters but did not accelerate either the immune response or involution in comparison with control quarters. The results demonstrated that the strategy to increase the mammary gland immunocompetence by recombinant infusion of rtMMP-9 was unsuccessful.
Collapse
|
34
|
Methionine and leucine induce ARID1A degradation to promote mTOR expression and milk synthesis in mammary epithelial cells. J Nutr Biochem 2021; 101:108924. [PMID: 34843932 DOI: 10.1016/j.jnutbio.2021.108924] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/26/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Amino acids can activate mTOR to promote milk synthesis in mammary epithelial cells (MECs), but the underlying molecular mechanism is still largely unknown. The objective is to investigate the regulatory mechanism of amino acids (Met and Leu) in stimulating mRNA expression of mTOR in MECs. We found that the protein abundance of AT-rich interaction domain 1A (ARID1A) was poorly expressed in mouse mammary gland tissues of lactating period. ARID1A knockdown and gene activation experiments detected whether ARID1A negatively regulated milk protein and fat synthesis in bovine MECs, cell proliferation and the expression and activation of mTOR. ChIP-PCR detected that ARID1A, H3K27ac, H3K27me3 and H3K4me3 all bound to the mTOR promoter at -548∼-793 nt. Knockdown or gene activation of ARID1A enhanced or weakened the binding of H3K27ac on the mTOR promoter, respectively. The stimulation of Met and Leu on mTOR expression and phosphorylation were eliminated by ARID1A gene activation. Furthermore, Met and Leu decreased the protein level of ARID1A through ubiquitination and proteasomal degradation. TRIM21 bound to ARID1A, and TRIM21 knockdown blocked the stimulation of Met and Leu on ARID1A degradation. In summary, these data reveal that ARID1A blocks Met and Leu signaling to mTOR gene transcription through inhibiting H3K27ac deposition on its promoter, and Met and Leu decrease ARID1A protein level through TRIM21-mediated ubiquitination and proteasomal degradation. Our findings uncover that Met and Leu promote mTOR expression for milk synthesis through the TRIM21-ARID1A signaling pathway, providing a novel theoretical basis for the application of amino acids in milk production.
Collapse
|
35
|
Wang CC. Metabolic Stress Adaptations Underlie Mammary Gland Morphogenesis and Breast Cancer Progression. Cells 2021; 10:2641. [PMID: 34685621 PMCID: PMC8534177 DOI: 10.3390/cells10102641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Breast cancers display dynamic reprogrammed metabolic activities as cancers develop from premalignant lesions to primary tumors, and then metastasize. Numerous advances focus on how tumors develop pro-proliferative metabolic signaling that differs them from adjacent, non-transformed epithelial tissues. This leads to targetable oncogene-driven liabilities among breast cancer subtypes. Other advances demonstrate how microenvironments trigger stress-response at single-cell resolution. Microenvironmental heterogeneities give rise to cell regulatory states in cancer cell spheroids in three-dimensional cultures and at stratified terminal end buds during mammary gland morphogenesis, where stress and survival signaling juxtapose. The cell-state specificity in stress signaling networks recapture metabolic evolution during cancer progression. Understanding lineage-specific metabolic phenotypes in experimental models is useful for gaining a deeper understanding of subtype-selective breast cancer metabolism.
Collapse
Affiliation(s)
- Chun-Chao Wang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; ; Tel.: +886-3-516-2589
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
36
|
Zhang D, Wang G, Qin L, Liu Q, Zhu S, Ye S, Li X, Wu Y, Hu Y, Liu S, Jiao Y, Sun L, Lv D, Ma J, Luo M, Yao M, Li M, Zhou L, Pei S, Li L, Shi D, Huang B. Restoring mammary gland structures and functions with autogenous cell therapy. Biomaterials 2021; 277:121075. [PMID: 34428734 DOI: 10.1016/j.biomaterials.2021.121075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022]
Abstract
In somatic cell reprogramming, cells must escape the somatic cell-specific gene expression program to adopt other cell fates. Here, in vitro chemical induction with RepSox generated chemically induced mammary epithelial cells (CiMECs) with milk secreting functions from goat ear fibroblasts (GEFs). Transplanted CiMECs regenerated the normal mammary gland structure with milk-secreting functions in nude mice. Single-cell RNA sequencing revealed that during the reprogramming process, GEFs may sequentially undergo embryonic ectoderm (EE)-like and different MEC developmental states and finally achieve milk secreting functions, bypassing the pluripotent state. Mechanistically, Smad3 upregulation induced by transforming growth factor β (TGFβ) receptor 1 (TGFβR1) downregulation led to GEF reprogramming into CiMECs without other reprogramming factors. The TGFβR1-Smad3 regulatory effects will provide new insight into the TGFβ signaling pathway regulation of somatic cell reprogramming. These findings suggest an innovative strategy for autogenous cell therapy for mammary gland defects and the production of transgenic mammary gland bioreactors.
Collapse
Affiliation(s)
- Dandan Zhang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, China; School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Guodong Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, China; School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Liangshan Qin
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, China; School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Quanhui Liu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, China; School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Shaoqian Zhu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, China; School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Sheng Ye
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, China; School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xiaobo Li
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing, 100176, China
| | - Yulian Wu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, China; School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yanan Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, China; School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Shulin Liu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, China; School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yafei Jiao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, China; School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Longfei Sun
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, China; School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Danwei Lv
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, China; School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jiawen Ma
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, China; School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Man Luo
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, China; School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Mengcheng Yao
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing, 100176, China
| | - Mengmei Li
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Lei Zhou
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Surui Pei
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing, 100176, China
| | - Lanyu Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Deshun Shi
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, China; School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China.
| | - Ben Huang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, China; School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
37
|
Study and Experimental Validation of the Functional Components and Mechanisms of Hemerocallis citrina Baroni in the Treatment of Lactation Deficiency. Foods 2021; 10:foods10081863. [PMID: 34441640 PMCID: PMC8391212 DOI: 10.3390/foods10081863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
The function of Hemerocallis citrina Baroni (daylily) on promoting lactation is reported in several ancient Chinese medicine books. However, nowadays, there is no conclusive data to support this statement. In this study, we investigated the effect of Hemerocallis citrina Baroni extract (HCE) on lactation insufficiency in chronic unpredictable mild stress (CUMS) dams and further explored the mechanism and functional components through network pharmacology. The results showed that HCE could increase the offspring’s weight, serum prolactin (PRL), and oxytocin (OT) level of CUMS dams. Network pharmacology analysis revealed that the facilitation of HCE on lactation is the result of the comprehensive action of 62 components on 209 targets and 260 pathways, among this network, quercetin, kaempferol, thymidine, etc., were the vital material basis, signal transducer and activator of transcription 3 (STAT3), mitogen activity protein kinase 1 (MAPK1), tumor protein P53 (TP53), etc., were the core targets, and the prolactin signaling pathway was the core pathway. In addition, verification test results showed that HCE regulated the abnormal expression of the prolactin signaling pathway, including STAT3, cyclin D1 (CCND1), MAPK1, MAPK8, nuclear factor NF-kappa-B p105 subunit (NFKB1), and tyrosine-protein kinase (JAK2). In conclusion, HCE exhibited a facilitation of lactation insufficiency, in which quercetin, kaempferol, thymidine, etc., were the most important material basis. The mechanism of this promotional effect is mediated by the prolactin signaling pathway in mammary gland.
Collapse
|
38
|
Ruiz TFR, Taboga SR, Leonel ECR. Molecular mechanisms of mammary gland remodeling: A review of the homeostatic versus bisphenol a disrupted microenvironment. Reprod Toxicol 2021; 105:1-16. [PMID: 34343637 DOI: 10.1016/j.reprotox.2021.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022]
Abstract
Mammary gland (MG) undergoes critical points of structural changes throughout a woman's life. During the perinatal and pubertal stages, MG develops through growth and differentiation to establish a pre-mature feature. If pregnancy and lactation occur, the epithelial compartment branches and differentiates to create a specialized structure for milk secretion and nurturing of the newborn. However, the ultimate MG modification consists of a regression process aiming to reestablish the smaller and less energy demanding structure until another production cycle happens. The unraveling of these fascinating physiologic cycles has helped the scientific community elucidate aspects of molecular regulation of proliferative and apoptotic events and remodeling of the stromal compartment. However, greater understanding of the hormonal pathways involved in MG developmental stages led to concern that endocrine disruptors such as bisphenol A (BPA), may influence these specific development/involution stages, called "windows of susceptibility". Since it is used in the manufacture of polycarbonate plastics and epoxy resins, BPA is a ubiquitous chemical present in human everyday life, exerting an estrogenic effect. Thus, descriptions of its deleterious effects on the MG, especially in terms of serum hormone concentrations, hormonal receptor expression, molecular pathways, and epigenetic alterations, have been widely published. Therefore, allied to a didactic description of the main physiological mechanisms involved in different critical points of MG development, the current review provides a summary of key mechanisms by which the endocrine disruptor BPA impacts MG homeostasis at different windows of susceptibility, causing short- and long-term effects.
Collapse
Affiliation(s)
- Thalles Fernando Rocha Ruiz
- São Paulo State University (Unesp), Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São José Do Rio Preto, Brazil.
| | - Sebastião Roberto Taboga
- São Paulo State University (Unesp), Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São José Do Rio Preto, Brazil.
| | - Ellen Cristina Rivas Leonel
- São Paulo State University (Unesp), Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São José Do Rio Preto, Brazil; Federal University of Goiás (UFG), Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Goiânia, Brazil.
| |
Collapse
|
39
|
Slepicka PF, Somasundara AVH, Dos Santos CO. The molecular basis of mammary gland development and epithelial differentiation. Semin Cell Dev Biol 2021; 114:93-112. [PMID: 33082117 PMCID: PMC8052380 DOI: 10.1016/j.semcdb.2020.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Our understanding of the molecular events underpinning the development of mammalian organ systems has been increasing rapidly in recent years. With the advent of new and improved next-generation sequencing methods, we are now able to dig deeper than ever before into the genomic and epigenomic events that play critical roles in determining the fates of stem and progenitor cells during the development of an embryo into an adult. In this review, we detail and discuss the genes and pathways that are involved in mammary gland development, from embryogenesis, through maturation into an adult gland, to the role of pregnancy signals in directing the terminal maturation of the mammary gland into a milk producing organ that can nurture the offspring. We also provide an overview of the latest research in the single-cell genomics of mammary gland development, which may help us to understand the lineage commitment of mammary stem cells (MaSCs) into luminal or basal epithelial cells that constitute the mammary gland. Finally, we summarize the use of 3D organoid cultures as a model system to study the molecular events during mammary gland development. Our increased investigation of the molecular requirements for normal mammary gland development will advance the discovery of targets to predict breast cancer risk and the development of new breast cancer therapies.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Camila O Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
40
|
Mogus JP, LaPlante CD, Bansal R, Matouskova K, Schneider BR, Daniele E, Silva SJ, Hagen MJ, Dunphy KA, Jerry DJ, Schneider SS, Vandenberg LN. Exposure to Propylparaben During Pregnancy and Lactation Induces Long-Term Alterations to the Mammary Gland in Mice. Endocrinology 2021; 162:bqab041. [PMID: 33724348 PMCID: PMC8121128 DOI: 10.1210/endocr/bqab041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 12/13/2022]
Abstract
The mammary gland is a hormone sensitive organ that is susceptible to endocrine-disrupting chemicals (EDCs) during the vulnerable periods of parous reorganization (ie, pregnancy, lactation, and involution). Pregnancy is believed to have long-term protective effects against breast cancer development; however, it is unknown if EDCs can alter this effect. We examined the long-term effects of propylparaben, a common preservative used in personal care products and foods, with estrogenic properties, on the parous mouse mammary gland. Pregnant BALB/c mice were treated with 0, 20, 100, or 10 000 µg/kg/day propylparaben throughout pregnancy and lactation. Unexposed nulliparous females were also evaluated. Five weeks post-involution, mammary glands were collected and assessed for changes in histomorphology, hormone receptor expression, immune cell number, and gene expression. For several parameters of mammary gland morphology, propylparaben reduced the effects of parity. Propylparaben also increased proliferation, but not stem cell number, and induced modest alterations to expression of ERα-mediated genes. Finally, propylparaben altered the effect of parity on the number of several immune cell types in the mammary gland. These results suggest that propylparaben, at levels relevant to human exposure, can interfere with the effects of parity on the mouse mammary gland and induce long-term alterations to mammary gland structure. Future studies should address if propylparaben exposures negate the protective effects of pregnancy on mammary cancer development.
Collapse
Affiliation(s)
- Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Charlotte D LaPlante
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Ruby Bansal
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Klara Matouskova
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Benjamin R Schneider
- Biospecimen Resource and Molecular Analysis Facility, Baystate Medical Center, Springfield, MA 01199, USA
| | - Elizabeth Daniele
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Shannon J Silva
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Mary J Hagen
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Karen A Dunphy
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - D Joseph Jerry
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
- Pioneer Valley Life Sciences Institute, Springfield, MA 01199, USA
| | - Sallie S Schneider
- Biospecimen Resource and Molecular Analysis Facility, Baystate Medical Center, Springfield, MA 01199, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
41
|
Kufe DW. MUC1-C in chronic inflammation and carcinogenesis; emergence as a target for cancer treatment. Carcinogenesis 2021; 41:1173-1183. [PMID: 32710608 DOI: 10.1093/carcin/bgaa082] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation is a highly prevalent consequence of changes in environmental and lifestyle factors that contribute to the development of cancer. The basis for this critical association has largely remained unclear. The MUC1 gene evolved in mammals to protect epithelia from the external environment. The MUC1-C subunit promotes responses found in wound healing and cancer. MUC1-C induces EMT, epigenetic reprogramming, dedifferentiation and pluripotency factor expression, which when prolonged in chronic inflammation promote cancer progression. As discussed in this review, MUC1-C also drives drug resistance and immune evasion, and is an important target for cancer therapeutics now under development.
Collapse
Affiliation(s)
- Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Zhang Y, Wu Q, Liu J, An X, Cao B. Circ-140/chi-miR-8516/ STC1- MMP1 Regulates αs1-/β-Casein Secretion and Lipid Formation in Goat Mammary Epithelial Cells. Genes (Basel) 2021; 12:genes12050671. [PMID: 33946970 PMCID: PMC8146108 DOI: 10.3390/genes12050671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs play an essential role in mammary gland development, and involution is a factor that limits lactation. Chi-miR-8516 is one of the validated microRNAs that regulates the expression of STC1 and MMP1, which surge during the involution of the mammary gland. This study aims to explore the direct or indirect regulation of STC1 and MMP1 by chi-miR-8516 and the regulation of chi-miR-8516 by circ-140. In goat mammary epithelial cells, we found that chi-miR-8516 takes circ-140 as a sponge and regulates MMP1 expression by targeting STC1 and promoting the phosphorylation of MAPK. The examination of αs1-/β-casein and lipid showed the modulation of the circ-140/chi-miR-8516/STC1-MMP1 axis in casein secretion and lipid formation, which was regulated by the phosphorylation of mTOR and STAT5. This study illustrates an axis that regulates the synthesis of milk components, and explores the pathways in which the axis participates.
Collapse
Affiliation(s)
- Yue Zhang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Xianyang 712100, China; (Y.Z.); (Q.W.); (J.L.); (X.A.)
| | - Qiong Wu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Xianyang 712100, China; (Y.Z.); (Q.W.); (J.L.); (X.A.)
- Medical College, Qinghai University, Xining 810001, China
| | - Jidan Liu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Xianyang 712100, China; (Y.Z.); (Q.W.); (J.L.); (X.A.)
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Xianyang 712100, China; (Y.Z.); (Q.W.); (J.L.); (X.A.)
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Xianyang 712100, China; (Y.Z.); (Q.W.); (J.L.); (X.A.)
- Correspondence: ; Tel.: +86-29-87092102
| |
Collapse
|
43
|
Hughes LD, Wang Y, Meli AP, Rothlin CV, Ghosh S. Decoding Cell Death: From a Veritable Library of Babel to Vade Mecum? Annu Rev Immunol 2021; 39:791-817. [PMID: 33902311 DOI: 10.1146/annurev-immunol-102819-072601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Programmed cell death (PCD) is a requisite feature of development and homeostasis but can also be indicative of infections, injuries, and pathologies. In concordance with these heterogeneous contexts, an array of disparate effector responses occur downstream of cell death and its clearance-spanning tissue morphogenesis, homeostatic turnover, host defense, active dampening of inflammation, and tissue repair. This raises a fundamental question of how a single contextually appropriate response ensues after an event of PCD. To explore how complex inputs may together tailor the specificity of the resulting effector response, here we consider (a) the varying contexts during which different cell death modalities are observed, (b) the nature of the information that can be passed on by cell corpses, and (c) the ways by which efferocyte populations synthesize signals from dying cells with those from the surrounding microenvironment.
Collapse
Affiliation(s)
- Lindsey D Hughes
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , , ,
| | - Yaqiu Wang
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , , ,
| | - Alexandre P Meli
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , , ,
| | - Carla V Rothlin
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , , , .,Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA;
| | - Sourav Ghosh
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; .,Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
44
|
Charifou E, Sumbal J, Koledova Z, Li H, Chiche A. A Robust Mammary Organoid System to Model Lactation and Involution-like Processes. Bio Protoc 2021; 11:e3996. [PMID: 34124297 PMCID: PMC8160540 DOI: 10.21769/bioprotoc.3996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 11/02/2022] Open
Abstract
The mammary gland is a highly dynamic tissue that changes throughout reproductive life, including growth during puberty and repetitive cycles of pregnancy and involution. Mammary gland tumors represent the most common cancer diagnosed in women worldwide. Studying the regulatory mechanisms of mammary gland development is essential for understanding how dysregulation can lead to breast cancer initiation and progression. Three-dimensional (3D) mammary organoids offer many exciting possibilities for the study of tissue development and breast cancer. In the present protocol derived from Sumbal et al., we describe a straightforward 3D organoid system for the study of lactation and involution ex vivo. We use primary and passaged mouse mammary organoids stimulated with fibroblast growth factor 2 (FGF2) and prolactin to model the three cycles of mouse mammary gland lactation and involution processes. This 3D organoid model represents a valuable tool to study late postnatal mammary gland development and breast cancer, in particular postpartum-associated breast cancer. Graphic abstract: Mammary gland organoid isolation and culture procedures.
Collapse
Affiliation(s)
- Elsa Charifou
- Cellular Plasticity & Disease Modeling - Department of Developmental & Stem Cell Biology, CNRS UMR3738 - Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France
| | - Jakub Sumbal
- Cellular Plasticity & Disease Modeling - Department of Developmental & Stem Cell Biology, CNRS UMR3738 - Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno 625 00, Czech Republic
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno 625 00, Czech Republic
| | - Han Li
- Cellular Plasticity & Disease Modeling - Department of Developmental & Stem Cell Biology, CNRS UMR3738 - Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France
| | - Aurélie Chiche
- Cellular Plasticity & Disease Modeling - Department of Developmental & Stem Cell Biology, CNRS UMR3738 - Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France
| |
Collapse
|
45
|
Mammary Gland Structures Are Not Affected by an Increased Growth Rate of Yearling Ewes Post-Weaning but Are Associated with Growth Rates of Singletons. Animals (Basel) 2021; 11:ani11030884. [PMID: 33808896 PMCID: PMC8003826 DOI: 10.3390/ani11030884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/21/2023] Open
Abstract
The experiment aimed to examine the impacts of an increased growth rate of ewes between three and seven months of age on udder development using ultrasound and to establish whether ultrasonography could be used to identify ewe mammary structures that may be indirect indicators of singleton growth to weaning. Udder dimensions, depths of gland cistern (GC), parenchyma (PAR) and fat pad (FP) were measured in late pregnancy (P107), early lactation (L29), and at weaning (L100) in 59 single-bearing yearling ewes selected from two treatments. The 'heavy' group (n = 31) was preferentially fed prior to breeding achieving an average breeding live-weight of 47.9 ± 0.38 kg at seven months of age. The 'control' group (n = 28) had an average breeding live-weight of 44.9 ± 0.49 kg. Udder dimensions, GC, PAR and FP did not differ between treatments. Lamb growth to L100 was positively associated (p < 0.05) with PAR at P107 and GC at L29. There was no evidence of negative effects of the live-weight gain treatments on udder development of yearling ewes as measured by ultrasonography. The results suggest that this ultrasound method has the potential to identify pregnant yearling ewes which would wean heavier singletons.
Collapse
|
46
|
Al-Mohsen ZA, Frookh Jamal H. Induction of Lactation After Adoption in a Muslim Mother With History of Breast Cancer: A Case Study. J Hum Lact 2021; 37:194-199. [PMID: 33275500 DOI: 10.1177/0890334420976333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION With the prevalence of infertility increasing worldwide, many are seeking adoption to fulfill the need to start or expand their family. However, one of the challenges mothers face is the lack of the early maternal bond with the adopted infant, which typically starts during pregnancy, and then continues after birth, while providing care and nourishment to the infant. Breastfeeding is proven to strengthen the maternal-infant bond and provides numerous benefits to the dyad. Reports of induced lactation in non-biological mothers are uncommon, they are even more uncommon to find in women with a history of breast cancer. MAIN ISSUE The induction of lactation in a Muslim adoptive mother who had a history of breast cancer. MANAGEMENT Pharmacologic methods, which included galactagogues Domperidone and fenugreek, in addition to non-pharmacologic methods that included breast stimulation by using a breast pump. The participant was able to provide her own milk for her adopted infant. CONCLUSION When provided with proper support, an adopting mother with a history of breast radiation was able to breastfeed. The participant's need to provide her own expressed milk was met; although, she was counseled on the possibility that her milk production will most likely not be sufficient to entirely meet the infant's needs. Determination and support definitely have a role in cases where the influence of past treatment on human milk production is not known.
Collapse
Affiliation(s)
| | - Hasan Frookh Jamal
- 89341 Department of Medicine, Salmaneya Medical Complex, Ministry of Health, Kingdom of Bahrain
| |
Collapse
|
47
|
Betts CB, Quackenbush A, Anderson W, Marshall NE, Schedin PJ. Mucosal Immunity and Liver Metabolism in the Complex Condition of Lactation Insufficiency. J Hum Lact 2020; 36:582-590. [PMID: 32795211 DOI: 10.1177/0890334420947656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lactation insufficiency is variously defined and includes the inability to produce milk, not producing enough milk to exclusively meet infant growth requirements, and pathological interruption of lactation (e.g., mastitis). Of women with intent-to-breastfeed, lactation insufficiency has been estimated to affect 38%-44% of newly postpartum women, likely contributing to the nearly 60% of infants that are not breastfed according to the World Health Organization's guidelines. To date, research and clinical practice aimed at improving feeding outcomes have focused on hospital lactation support and education, with laudable results. However, researchers' reports of recent rodent studies concerning fundamental lactation biology have suggested that the underlying pathologies of lactation insufficiency may be more nuanced than is currently appreciated. In this article, we identify mucosal biology of the breast and lactation-specific liver biology as two under-researched aspects of lactation physiology. Specifically, we argue that further scientific inquiry into reproductive state-dependent regulation of immunity in the human breast will reveal insights into novel immune based requirements for healthy lactation. Additionally, our synthesis of the literature supports the hypothesis that the liver is an essential player in lactation-highlighting the potential that pathologies of the liver may also be associated with lactation insufficiency. More research into these biologic underpinnings of lactation is anticipated to provide new avenues to understand and treat lactation insufficiency.
Collapse
Affiliation(s)
- Courtney B Betts
- 89020 Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Alexandra Quackenbush
- 89020 Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Weston Anderson
- 89020 Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Nicole E Marshall
- Obstetrics and Gynecology, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Pepper J Schedin
- 89020 Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA.,University of Colorado Cancer Center, Aurora, CO, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
48
|
Cai B, Wan P, Chen H, Chen X, Sun H, Pan J. Identification of octopus peptide and its promotion of β-casein synthesis in a mouse mammary epithelial cell line. J Food Biochem 2020; 44:e13467. [PMID: 32935377 DOI: 10.1111/jfbc.13467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022]
Abstract
Octopus protein hydrolysate has been reported to increase milk yield and milk protein production. In this paper, the utilization and underlying mechanisms of bioactive peptide fractions from octopus protein hydrolysate on β-casein expression in mouse mammary epithelial cells (HC11) were investigated. Fraction OPH3-1 significantly stimulated cell proliferation and β-casein synthesis in HC11 cells, which was purified by ultra-filtration and gel-filtration chromatography. The MWs of the peptides from OPH3-1 ranged from 525-2,578 Da and consisted of 7-26 amino acid residues. Most of the peptides demonstrated the typical characteristics of milk protein synthesis promotion, especially MGLAGPR, MGDVLNF, EAPLMHV, and TEAPLMHV. Additionally, the mRNA abundances of mTOR, S6K1, 4EBP1, JAK2, and STAT5 were significantly enhanced by OPH3-1, which was consistent with the increased β-casein expression. These results suggest that the OPH3-1 peptides can promote the proliferation of mammary epithelial cells and increase β-casein synthesis. PRACTICAL APPLICATIONS: Breastfeeding mothers are generally recommended to take octopus soup as a daily diet to promote lactation. The peptides fraction OPH3-1 from the enzymatic hydrolysate of Octopus vulgaris which was revealed to significantly stimulate mammary epithelial cell proliferation and β-casein synthesis was obtained. This study suggests that octopus peptides can be used as nutritional supplements to increase the quantity and quality of milk production.
Collapse
Affiliation(s)
- Bingna Cai
- Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Peng Wan
- Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Hua Chen
- Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Xin Chen
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Huili Sun
- Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jianyu Pan
- Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
49
|
Freu G, Tomazi T, Monteiro CP, Barcelos MM, Alves BG, dos Santos MV. Internal Teat Sealant Administered at Drying off Reduces Intramammary Infections during the Dry and Early Lactation Periods of Dairy Cows. Animals (Basel) 2020; 10:ani10091522. [PMID: 32872097 PMCID: PMC7552139 DOI: 10.3390/ani10091522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Internal teat sealant (ITS) at drying off is a strategy used for the prevention of intramammary infections (IMI) during the dry period (DP), as it simulates the keratin plug’s purpose, which is to prevent the access of pathogens into the mammary gland. The results from randomized clinical trials provide valuable information about the efficacy of commercially available products to be used in dairy cattle, assisting farmers to choose the best protocols for mastitis control. This study evaluated a new ITS infused at drying off as an alternative to prevent IMI during DP in a tropical country. Our results showed no effect of treatments on risk of bacteriological cure, subclinical mastitis (SCM) cure, and new cases of SCM postpartum. On the other hand, the use of ITS combined with an intramammary antibiotic (SDCT) reduced the risk of clinical mastitis up to 60 days postpartum, the overall risk of new intramammary infections (NIMI), and the NIMI caused by major pathogens compared to the use of antimicrobial alone (ADCT). Thus, the use of ITS combined with an antimicrobial at drying off was effective to prevent NIMI and clinical mastitis up to 60 days postpartum. Abstract The effect of an internal teat sealant (ITS) on subsequent infection of the mammary gland was evaluated on the following mammary gland health indicators: (a) bacteriological cure of preexisting intramammary infections at drying off, (b) risk of postpartum new intramammary infections (NIMI), (c) cure and risk of new cases of subclinical mastitis (SCM), and (d) risk of postpartum clinical mastitis (CM). A total of 553 cows during late gestation were randomly assigned into two treatment protocols at drying off: (a) Dry cow therapy with 0.25 g of intramammary anhydrous cefalonium (ADCT; Cepravin®, MSD Animal Health); or (b) ADCT combined with ITS (SDCT; 4 g bismuth subnitrate; Masti-Seal®, MSD Animal Health, São Paulo, Brazil). Mammary quarter (MQ) milk samples were collected for microbiological culture and somatic cell count (SCC) at drying off and early lactation, and data from 1756 MQ were used in the multivariate logistic regression. There was no effect on the risk of bacteriological cure, SCM cure, and new cases of postpartum SCM. Still, SDCT reduced the risk of CM up to 60 days postpartum (DPP), overall NIMI risk, and the NIMI caused by major pathogens compared to ADCT. Thus, the DCT combined with ITS at drying off is effective for preventing NIMI during the dry period and CM up to 60 DPP.
Collapse
Affiliation(s)
- Gustavo Freu
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga, São Paulo 13635-900, Brazil; (G.F.); (T.T.); (C.P.M.); (M.M.B.); (B.G.A.)
- College of Veterinary Medicine, Federal Institute of Santa Catarina, Concórdia, Santa Catarina 89703-720, Brazil
| | - Tiago Tomazi
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga, São Paulo 13635-900, Brazil; (G.F.); (T.T.); (C.P.M.); (M.M.B.); (B.G.A.)
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Camylla Pedrosa Monteiro
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga, São Paulo 13635-900, Brazil; (G.F.); (T.T.); (C.P.M.); (M.M.B.); (B.G.A.)
| | - Melina Melo Barcelos
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga, São Paulo 13635-900, Brazil; (G.F.); (T.T.); (C.P.M.); (M.M.B.); (B.G.A.)
| | - Bruna Gomes Alves
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga, São Paulo 13635-900, Brazil; (G.F.); (T.T.); (C.P.M.); (M.M.B.); (B.G.A.)
| | - Marcos Veiga dos Santos
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga, São Paulo 13635-900, Brazil; (G.F.); (T.T.); (C.P.M.); (M.M.B.); (B.G.A.)
- Correspondence: ; Tel.: +55-19-35654260
| |
Collapse
|
50
|
Avagliano A, Fiume G, Ruocco MR, Martucci N, Vecchio E, Insabato L, Russo D, Accurso A, Masone S, Montagnani S, Arcucci A. Influence of Fibroblasts on Mammary Gland Development, Breast Cancer Microenvironment Remodeling, and Cancer Cell Dissemination. Cancers (Basel) 2020; 12:E1697. [PMID: 32604738 PMCID: PMC7352995 DOI: 10.3390/cancers12061697] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
The stromal microenvironment regulates mammary gland development and tumorigenesis. In normal mammary glands, the stromal microenvironment encompasses the ducts and contains fibroblasts, the main regulators of branching morphogenesis. Understanding the way fibroblast signaling pathways regulate mammary gland development may offer insights into the mechanisms of breast cancer (BC) biology. In fact, the unregulated mammary fibroblast signaling pathways, associated with alterations in extracellular matrix (ECM) remodeling and branching morphogenesis, drive breast cancer microenvironment (BCM) remodeling and cancer growth. The BCM comprises a very heterogeneous tissue containing non-cancer stromal cells, namely, breast cancer-associated fibroblasts (BCAFs), which represent most of the tumor mass. Moreover, the different components of the BCM highly interact with cancer cells, thereby generating a tightly intertwined network. In particular, BC cells activate recruited normal fibroblasts in BCAFs, which, in turn, promote BCM remodeling and metastasis. Thus, comparing the roles of normal fibroblasts and BCAFs in the physiological and metastatic processes, could provide a deeper understanding of the signaling pathways regulating BC dissemination. Here, we review the latest literature describing the structure of the mammary gland and the BCM and summarize the influence of epithelial-mesenchymal transition (EpMT) and autophagy in BC dissemination. Finally, we discuss the roles of fibroblasts and BCAFs in mammary gland development and BCM remodeling, respectively.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Nunzia Martucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Luigi Insabato
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Daniela Russo
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Antonello Accurso
- Department of General, Oncological, Bariatric and Endocrine-Metabolic Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| |
Collapse
|