1
|
Wnt signaling polarizes cortical actin polymerization to increase daughter cell asymmetry. Cell Discov 2022; 8:22. [PMID: 35228529 PMCID: PMC8885824 DOI: 10.1038/s41421-022-00376-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/06/2022] [Indexed: 01/02/2023] Open
Abstract
Asymmetric positioning of the mitotic spindle contributes to the generation of two daughter cells with distinct sizes and fates. Here, we investigated an asymmetric division in the Caenorhabditis elegans Q neuroblast lineage. In this division, beginning with an asymmetrically positioned spindle, the daughter-cell size differences continuously increased during cytokinesis, and the smaller daughter cell in the posterior eventually underwent apoptosis. We found that Arp2/3-dependent F-actin assembled in the anterior but not posterior cortex during division, suggesting that asymmetric expansion forces generated by actin polymerization may enlarge the anterior daughter cell. Consistent with this, inhibition of cortical actin polymerization or artificially equalizing actin assembly led to symmetric cell division. Furthermore, disruption of the Wnt gradient or its downstream components impaired asymmetric cortical actin assembly and caused symmetric division. Our results show that Wnt signaling establishes daughter cell asymmetry by polarizing cortical actin polymerization in a dividing cell.
Collapse
|
2
|
Liu X, Huan P, Liu B. Nonmuscle Myosin II is Required for Larval Shell Formation in a Patellogastropod. Front Cell Dev Biol 2022; 10:813741. [PMID: 35186928 PMCID: PMC8851382 DOI: 10.3389/fcell.2022.813741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular mechanisms underlying larval shell development in mollusks remain largely elusive. We previously found evident filamentous actin (F-actin) aggregations in the developing shell field of the patellogastropod Lottia goshimai, indicating roles of actomyosin networks in the process. In the present study, we functionally characterized nonmuscle myosin II (NM II), the key molecule in actomyosin networks, in the larval shell development of L. goshimai. Immunostaining revealed general colocalization of phosphorylated NM II and F-actin in the shell field. When inhibiting the phosphorylation of NM II using the specific inhibitor blebbistatin in one- or 2-h periods during shell field morphogenesis (6–8 h post-fertilization, hpf), the larval shell plate was completely lost in the veliger larva (24 hpf). Scanning electron microscopy revealed that the nascent larval shell plate could not be developed in the manipulated larvae (10 hpf). Further investigations revealed that key events in shell field morphogenesis were inhibited by blebbistatin pulses, including invagination of the shell field and cell shape changes and cell rearrangements during shell field morphogenesis. These factors caused the changed morphology of the shell field, despite the roughly retained “rosette” organization. To explore whether the specification of related cells was affected by blebbistatin treatments, we investigated the expression of four potential shell formation genes (bmp2/4, gata2/3, hox1 and engrailed). The four genes did not show evident changes in expression level, indicating unaffected cell specification in the shell field, while the gene expression patterns showed variations according to the altered morphology of the shell field. Together, our results reveal that NM II contributes to the morphogenesis of the shell field and is crucial for the formation of the larval shell plate in L. goshimai. These results add to the knowledge of the mechanisms of molluskan shell development.
Collapse
Affiliation(s)
- Xinyu Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Baozhong Liu,
| |
Collapse
|
3
|
Godard BG, Dumollard R, Heisenberg CP, McDougall A. Combined effect of cell geometry and polarity domains determines the orientation of unequal division. eLife 2021; 10:75639. [PMID: 34889186 PMCID: PMC8691831 DOI: 10.7554/elife.75639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Cell division orientation is thought to result from a competition between cell geometry and polarity domains controlling the position of the mitotic spindle during mitosis. Depending on the level of cell shape anisotropy or the strength of the polarity domain, one dominates the other and determines the orientation of the spindle. Whether and how such competition is also at work to determine unequal cell division (UCD), producing daughter cells of different size, remains unclear. Here, we show that cell geometry and polarity domains cooperate, rather than compete, in positioning the cleavage plane during UCDs in early ascidian embryos. We found that the UCDs and their orientation at the ascidian third cleavage rely on the spindle tilting in an anisotropic cell shape, and cortical polarity domains exerting different effects on spindle astral microtubules. By systematically varying mitotic cell shape, we could modulate the effect of attractive and repulsive polarity domains and consequently generate predicted daughter cell size asymmetries and position. We therefore propose that the spindle position during UCD is set by the combined activities of cell geometry and polarity domains, where cell geometry modulates the effect of cortical polarity domain(s).
Collapse
Affiliation(s)
- Benoit G Godard
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche sur Mer, France.,Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Remi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche sur Mer, France
| | | | - Alex McDougall
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche sur Mer, France
| |
Collapse
|
4
|
Pal D, Ellis A, Sepúlveda-Ramírez SP, Salgado T, Terrazas I, Reyes G, De La Rosa R, Henson JH, Shuster CB. Rac and Arp2/3-Nucleated Actin Networks Antagonize Rho During Mitotic and Meiotic Cleavages. Front Cell Dev Biol 2020; 8:591141. [PMID: 33282870 PMCID: PMC7705106 DOI: 10.3389/fcell.2020.591141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 12/01/2022] Open
Abstract
In motile cells, the activities of the different Rho family GTPases are spatially segregated within the cell, and during cytokinesis there is evidence that this may also be the case. But while Rho’s role as the central organizer for contractile ring assembly is well established, the role of Rac and the branched actin networks it promotes is less well understood. To characterize the contributions of these proteins during cytokinesis, we manipulated Rac and Arp2/3 activity during mitosis and meiosis in sea urchin embryos and sea star oocytes. While neither Rac nor Arp2/3 were essential for early embryonic divisions, loss of either Rac or Arp2/3 activity resulted in polar body defects. Expression of activated Rac resulted in cytokinesis failure as early as the first division, and in oocytes, activated Rac suppressed both the Rho wave that traverses the oocyte prior to polar body extrusion as well as polar body formation itself. However, the inhibitory effect of Rac on cytokinesis, polar body formation and the Rho wave could be suppressed by effector-binding mutations or direct inhibition of Arp2/3. Together, these results suggest that Rac- and Arp2/3 mediated actin networks may directly antagonize Rho signaling, thus providing a potential mechanism to explain why Arp2/3-nucleated branched actin networks must be suppressed at the cell equator for successful cytokinesis.
Collapse
Affiliation(s)
- Debadrita Pal
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Andrea Ellis
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | | | - Torey Salgado
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Isabella Terrazas
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Gabriela Reyes
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Richard De La Rosa
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - John H Henson
- Department of Biology, Dickinson College, Carlisle, PA, United States
| | - Charles B Shuster
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
5
|
Mechanical regulation of cell size, fate, and behavior during asymmetric cell division. Curr Opin Cell Biol 2020; 67:9-16. [PMID: 32768924 DOI: 10.1016/j.ceb.2020.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/15/2020] [Accepted: 07/06/2020] [Indexed: 01/03/2023]
Abstract
Asymmetric cell division (ACD) is an evolutionary conserved mechanism used by prokaryotes and eukaryotes alike to generate cell diversity. ACD can be manifested in biased segregation of macromolecules or differential partitioning of cell organelles. Cells are also constantly subject to extrinsic or intrinsic mechanical forces, influencing cell behavior and fate. During ACD, cell intrinsic forces generated through the spatiotemporal regulation of the actomyosin cytoskeleton can influence sibling cell size. External mechanical stresses are further translated by transcriptional coactivators or mechanically gated ion channels. Here, we will discuss recent literature, exploring how mechanical cues influence various aspects of ACD and stem cell behavior, and how these mechanical cues contribute to cell fate decisions.
Collapse
|
6
|
Abstract
Asymmetric cell division (ACD) is an evolutionarily conserved mechanism used by prokaryotes and eukaryotes alike to control cell fate and generate cell diversity. A detailed mechanistic understanding of ACD is therefore necessary to understand cell fate decisions in health and disease. ACD can be manifested in the biased segregation of macromolecules, the differential partitioning of cell organelles, or differences in sibling cell size or shape. These events are usually preceded by and influenced by symmetry breaking events and cell polarization. In this Review, we focus predominantly on cell intrinsic mechanisms and their contribution to cell polarization, ACD and binary cell fate decisions. We discuss examples of polarized systems and detail how polarization is established and, whenever possible, how it contributes to ACD. Established and emerging model organisms will be considered alike, illuminating both well-documented and underexplored forms of polarization and ACD.
Collapse
Affiliation(s)
- Bharath Sunchu
- Department of Biology, University of Washington, Life Science Building, Seattle, WA 98195, USA
| | - Clemens Cabernard
- Department of Biology, University of Washington, Life Science Building, Seattle, WA 98195, USA
| |
Collapse
|