1
|
Gawel K, Hulas-Stasiak M, Marszalek-Grabska M, Grenda A, Siekierska A, Kosheva N, van der Ent W, Esguerra CV, Krawczyk P, Turski WA. Induction of seizures and initiation of epileptogenesis by pilocarpine in zebrafish larvae. Front Mol Neurosci 2024; 17:1418606. [PMID: 39165716 PMCID: PMC11333333 DOI: 10.3389/fnmol.2024.1418606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/19/2024] [Indexed: 08/22/2024] Open
Abstract
Objective Preclinical models of seizures and epilepsy in rodents contributed substantially to the discovery of currently available antiseizure medications. These were also broadly used for investigation of processes of epileptogenesis. Nevertheless, rodent models pose some limitations, thus, new models using alternative species are in high demand. The aim of this study was to describe a new model of seizures/epilepsy induced by the cholinomimetic agent, pilocarpine (PILO), in larval zebrafish. Methods Local field potential (LFP) recordings were conducted to analyze electroencephalographic discharges and correlate it with larval behavior. Hematoxylin and eosin (H&E) staining, as well as TUNEL staining were performed to analyze morphology and apoptosis, respectively. Real-time quantitative polymerase chain reaction (qRT-PCR) was undertaken for gene expression analysis. Results Acute exposure to PILO, in a concentration-dependent manner, induces electroencephalographic discharges in larval zebrafish, which behaviorally manifest as decreased locomotion and moving time, but enhanced movement velocity. The PILO-induced seizure-like activity is behaviorally distinct from this induced by the application of chemoconvulsant pentylenetetrazole (PTZ). Zebrafish larvae previously exposed to PILO (2 h), after a washing out period, exhibit spontaneous, unprovoked discharges and apoptotic changes in their brains. Significance Here, we comprehensively investigated a new model of PILO-induced seizures/epilepsy in larval zebrafish. We propose that this model may be used to study epileptogenesis and for antiseizure drug screening purposes.
Collapse
Affiliation(s)
- Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Monika Hulas-Stasiak
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Anna Grenda
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Siekierska
- VirusBank Platform, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Nataliia Kosheva
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Wietske van der Ent
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Forskningsparken, Oslo, Norway
| | - Camila V. Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Forskningsparken, Oslo, Norway
| | - Pawel Krawczyk
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
2
|
Chitolina R, Gallas-Lopes M, Reis CG, Benvenutti R, Stahlhofer-Buss T, Calcagnotto ME, Herrmann AP, Piato A. Chemically-induced epileptic seizures in zebrafish: A systematic review. Epilepsy Res 2023; 197:107236. [PMID: 37801749 DOI: 10.1016/j.eplepsyres.2023.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
The use of zebrafish as a model organism is gaining evidence in the field of epilepsy as it may help to understand the mechanisms underlying epileptic seizures. As zebrafish assays became popular, the heterogeneity between protocols increased, making it hard to choose a standard protocol to conduct research while also impairing the comparison of results between studies. We conducted a systematic review to comprehensively profile the chemically-induced seizure models in zebrafish. Literature searches were performed in PubMed, Scopus, and Web of Science, followed by a two-step screening process based on inclusion/exclusion criteria. Qualitative data were extracted, and a sample of 100 studies was randomly selected for risk of bias assessment. Out of the 1058 studies identified after removing duplicates, 201 met the inclusion criteria. We found that the most common chemoconvulsants used in the reviewed studies were pentylenetetrazole (n = 180), kainic acid (n = 11), and pilocarpine (n = 10), which increase seizure severity in a dose-dependent manner. The main outcomes assessed were seizure scores and locomotion. Significant variability between the protocols was observed for administration route, duration of exposure, and dose/concentration. Of the studies subjected to risk of bias assessment, most were rated as low risk of bias for selective reporting (94%), baseline characteristics of the animals (67%), and blinded outcome assessment (54%). Randomization procedures and incomplete data were rated unclear in 81% and 68% of the studies, respectively. None of the studies reported the sample size calculation. Overall, these findings underscore the need for improved methodological and reporting practices to enhance the reproducibility and reliability of zebrafish models for studying epilepsy. Our study offers a comprehensive overview of the current state of chemically-induced seizure models in zebrafish, highlighting the common chemoconvulsants used and the variability in protocol parameters. This may be particularly valuable to researchers interested in understanding the underlying mechanisms of epileptic seizures and screening potential drug candidates in zebrafish models.
Collapse
Affiliation(s)
- Rafael Chitolina
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Matheus Gallas-Lopes
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and meta-Analysis (BRISA) Collaboration, Brazil; Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos G Reis
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Radharani Benvenutti
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Thailana Stahlhofer-Buss
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Neurobiologia e Neuroquímica da Excitabilidade Neuronal e Plasticidade Sináptica (NNNESP Lab), Departamento de bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana P Herrmann
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and meta-Analysis (BRISA) Collaboration, Brazil; Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angelo Piato
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Szep D, Dittrich B, Gorbe A, Szentpeteri JL, Aly N, Jin M, Budan F, Sik A. A comparative study to optimize experimental conditions of pentylenetetrazol and pilocarpine-induced epilepsy in zebrafish larvae. PLoS One 2023; 18:e0288904. [PMID: 37506089 PMCID: PMC10381053 DOI: 10.1371/journal.pone.0288904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
A common way to investigate epilepsy and the effect of antiepileptic pharmaceuticals is to analyze the movement patterns of zebrafish larvae treated with different convulsants like pentylenetetrazol (PTZ), pilocarpine, etc. Many articles have been written on this topic, but the research methods and exact settings are not sufficiently defined in most. Here we designed and executed a series of experiments to optimize and standardize the zebrafish epilepsy model. We found that during the light and the dark trials, the zebrafish larvae moved significantly more in the light, independent of the treatment, both in PTZ and pilocarpine-treated and the control groups. As expected, zebrafish larvae treated with convulsants moved significantly more than the ones in the control group, although this difference was higher between the individuals treated with PTZ than pilocarpine. When examining the optimal observation time, we divided the half-hour period into 5-minute time intervals, and between these, the first 5 minutes were found to be the most different from the others. There were fewer significant differences in the total movement of larvae between the other time intervals. We also performed a linear regression analysis with the cumulative values of the distance moved during the time intervals that fit the straight line. In conclusion, we recommend 30 minutes of drug pretreatment followed by a 10-minute test in light conditions with a 5-minute accommodation time. Our result paves the way toward improved experimental designs using zebrafish to develop novel pharmaceutical approaches to treat epilepsy.
Collapse
Affiliation(s)
- David Szep
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Bianka Dittrich
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Aniko Gorbe
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Jozsef L Szentpeteri
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
| | - Nour Aly
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, P.R. China
| | - Ferenc Budan
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
D'Amora M, Galgani A, Marchese M, Tantussi F, Faraguna U, De Angelis F, Giorgi FS. Zebrafish as an Innovative Tool for Epilepsy Modeling: State of the Art and Potential Future Directions. Int J Mol Sci 2023; 24:ijms24097702. [PMID: 37175408 PMCID: PMC10177843 DOI: 10.3390/ijms24097702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
This article discusses the potential of Zebrafish (ZF) (Danio Rerio), as a model for epilepsy research. Epilepsy is a neurological disorder affecting both children and adults, and many aspects of this disease are still poorly understood. In vivo and in vitro models derived from rodents are the most widely used for studying both epilepsy pathophysiology and novel drug treatments. However, researchers have recently obtained several valuable insights into these two fields of investigation by studying ZF. Despite the relatively simple brain structure of these animals, researchers can collect large amounts of data in a much shorter period and at lower costs compared to classical rodent models. This is particularly useful when a large number of candidate antiseizure drugs need to be screened, and ethical issues are minimized. In ZF, seizures have been induced through a variety of chemoconvulsants, primarily pentylenetetrazol (PTZ), kainic acid (KA), and pilocarpine. Furthermore, ZF can be easily genetically modified to test specific aspects of monogenic forms of human epilepsy, as well as to discover potential convulsive phenotypes in monogenic mutants. The article reports on the state-of-the-art and potential new fields of application of ZF research, including its potential role in revealing epileptogenic mechanisms, rather than merely assessing iatrogenic acute seizure modulation.
Collapse
Affiliation(s)
- Marta D'Amora
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Biology, University of Pisa, 56125 Pisa, Italy
| | - Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Maria Marchese
- Molecular Medicine and Neurobiology-ZebraLab, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | | | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | | | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
5
|
Vavers E, Zvejniece L, Dambrova M. Sigma-1 receptor and seizures. Pharmacol Res 2023; 191:106771. [PMID: 37068533 PMCID: PMC10176040 DOI: 10.1016/j.phrs.2023.106771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
Over the last decade, sigma-1 receptor (Sig1R) has been recognized as a valid target for the treatment of seizure disorders and seizure-related comorbidities. Clinical trials with Sig1R ligands are underway testing therapies for the treatment of drug-resistant seizures, developmental and epileptic encephalopathies, and photosensitive epilepsy. However, the direct molecular mechanism by which Sig1R modulates seizures and the balance between excitatory and inhibitory pathways has not been fully elucidated. This review article aims to summarize existing knowledge of Sig1R and its involvement in seizures by focusing on the evidence obtained from Sig1R knockout animals and the anti-seizure effects of Sig1R ligands. In addition, this review article includes a discussion of the advantages and disadvantages of the use of existing compounds and describes the challenges and future perspectives on the use of Sig1R as a target for the treatment of seizure disorders.
Collapse
Affiliation(s)
- Edijs Vavers
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia; University of Tartu, Faculty of Science and Technology, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Liga Zvejniece
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia; Riga Stradiņš University, Faculty of Pharmacy, Konsula 21, LV-1007, Riga, Latvia
| |
Collapse
|
6
|
Sun S, Wang H. Clocking Epilepsies: A Chronomodulated Strategy-Based Therapy for Rhythmic Seizures. Int J Mol Sci 2023; 24:4223. [PMID: 36835631 PMCID: PMC9962262 DOI: 10.3390/ijms24044223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by hypersynchronous recurrent neuronal activities and seizures, as well as loss of muscular control and sometimes awareness. Clinically, seizures have been reported to display daily variations. Conversely, circadian misalignment and circadian clock gene variants contribute to epileptic pathogenesis. Elucidation of the genetic bases of epilepsy is of great importance because the genetic variability of the patients affects the efficacies of antiepileptic drugs (AEDs). For this narrative review, we compiled 661 epilepsy-related genes from the PHGKB and OMIM databases and classified them into 3 groups: driver genes, passenger genes, and undetermined genes. We discuss the potential roles of some epilepsy driver genes based on GO and KEGG analyses, the circadian rhythmicity of human and animal epilepsies, and the mutual effects between epilepsy and sleep. We review the advantages and challenges of rodents and zebrafish as animal models for epileptic studies. Finally, we posit chronomodulated strategy-based chronotherapy for rhythmic epilepsies, integrating several lines of investigation for unraveling circadian mechanisms underpinning epileptogenesis, chronopharmacokinetic and chronopharmacodynamic examinations of AEDs, as well as mathematical/computational modeling to help develop time-of-day-specific AED dosing schedules for rhythmic epilepsy patients.
Collapse
Affiliation(s)
- Sha Sun
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
Chen WN, Shaikh MF. Second-hit pentylenetetrazole-induced seizure model in zebrafish. HANDBOOK OF ANIMAL MODELS IN NEUROLOGICAL DISORDERS 2023:217-226. [DOI: 10.1016/b978-0-323-89833-1.00032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Lu D, Ma R, Xie Q, Xu Z, Yuan J, Ren M, Li J, Li Y, Wang J. Application and advantages of zebrafish model in the study of neurovascular unit. Eur J Pharmacol 2021; 910:174483. [PMID: 34481878 DOI: 10.1016/j.ejphar.2021.174483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 11/15/2022]
Abstract
The concept of "Neurovascular Unit" (NVU) was put forward, so that the research goal of Central Nervous System (CNS) diseases gradually transitioned from a single neuron to the structural and functional integrity of the NVU. Zebrafish has the advantages of high homology with human genes, strong reproductive capacity and visualization of neural circuits, so it has become an emerging model organism for NVU research and has been applied to a variety of CNS diseases. Based on CNKI (https://www.cnki.net/) and PubMed (https://pubmed.ncbi.nlm.nih.gov/about/) databases, the author of this article sorted out the relevant literature, analyzed the construction of a zebrafish model of various CNS diseases,and the use of diagrams showed the application of zebrafish in the NVU, revealed its relationship, which would provide new methods and references for the treatment and research of CNS diseases.
Collapse
Affiliation(s)
- Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jinxiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
9
|
Zebrafish Models to Study New Pathways in Tauopathies. Int J Mol Sci 2021; 22:ijms22094626. [PMID: 33924882 PMCID: PMC8125481 DOI: 10.3390/ijms22094626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/13/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
Tauopathies represent a vast family of neurodegenerative diseases, the most well-known of which is Alzheimer’s disease. The symptoms observed in patients include cognitive deficits and locomotor problems and can lead ultimately to dementia. The common point found in all these pathologies is the accumulation in neural and/or glial cells of abnormal forms of Tau protein, leading to its aggregation and neurofibrillary tangles. Zebrafish transgenic models have been generated with different overexpression strategies of human Tau protein. These transgenic lines have made it possible to highlight Tau interacting factors or factors which may limit the neurotoxicity induced by mutations and hyperphosphorylation of the Tau protein in neurons. Several studies have tested neuroprotective pharmacological approaches. On few-days-old larvae, modulation of various signaling or degradation pathways reversed the deleterious effects of Tau mutations, mainly hTauP301L and hTauA152T. Live imaging and live tracking techniques as well as behavioral follow-up enable the analysis of the wide range of Tau-related phenotypes from synaptic loss to cognitive functional consequences.
Collapse
|
10
|
Pieróg M, Socała K, Doboszewska U, Wyska E, Guz L, Szopa A, Serefko A, Poleszak E, Wlaź P. Effects of classic antiseizure drugs on seizure activity and anxiety-like behavior in adult zebrafish. Toxicol Appl Pharmacol 2021; 415:115429. [PMID: 33524447 DOI: 10.1016/j.taap.2021.115429] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/06/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022]
Abstract
The zebrafish is extensively used as a model organism for studying several disorders of the central nervous system (CNS), including epilepsy. Some antiseizure drugs (ASDs) have been shown to produce discrepant results in larvae and adults zebrafish, therefore, their anticonvulsant efficacy in subsequent stages of the pentylenetetrazole (PTZ)-induced seizures should be more precisely characterized. The purpose of this study was to investigate behavioral effects of five classic ASDs: valproate (VPA), phenytoin (PHT), carbamazepine (CBZ), diazepam (DZP), and phenobarbital (PB) administered intraperitoneally (i.p.) in the PTZ-induced seizure test in adult zebrafish. We determined the time of maximal effect and the dose-response relationship of the studied ASDs. Furthermore, we assessed changes in the locomotor activity and the anxiety-like behavior in the color preference test. Moreover, drug concentrations in zebrafish homogenates were examined. VPA, DZP, and PB significantly increased the seizure latency at three subsequent stages of seizures (SI-SIII). PHT produced the anticonvulsant-like effect at SI and SII, while CBZ was effective at SII and SIII. Only DZP decreased zebrafish locomotor activity. A strong anxiolytic-like effect was observed after administration of PHT and PB. A weak anxiolytic-like effect occurred after treatment with VPA and DZP. The HPLC analysis showed the average concentrations of the studied ASDs in the fish body during the maximum anticonvulsant activity of each drug. Our results confirm the advantages of using zebrafish with the mature CNS over larval models and its utility to investigate some neuropharmacological properties of the tested drugs.
Collapse
Affiliation(s)
- Mateusz Pieróg
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Urszula Doboszewska
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Leszek Guz
- Department of Fish Diseases and Biology, Institute of Biological Bases of Animal Diseases, University of Life Sciences, Akademicka 12, PL 20-033 Lublin, Poland
| | - Aleksandra Szopa
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland
| | - Anna Serefko
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland
| | - Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| |
Collapse
|
11
|
Borowicz-Reutt KK, Czuczwar SJ, Rusek M. Interactions of antiepileptic drugs with drugs approved for the treatment of indications other than epilepsy. Expert Rev Clin Pharmacol 2020; 13:1329-1345. [PMID: 33305639 DOI: 10.1080/17512433.2020.1850258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Comorbidities of epilepsy may significantly interfere with its treatment as diseases in the general population are also encountered in epilepsy patients and some of them even more frequently (for instance, depression, anxiety, or heart disease). Obviously, some drugs approved for other than epilepsy indications can modify the anticonvulsant activity of antiepileptics. Areas covered: This review highlights the drug-drug interactions between antiepileptics and aminophylline, some antidepressant, antiarrhythmic (class I-IV), selected antihypertensive drugs and non-barbiturate injectable anesthetics (ketamine, propofol, etomidate, and alphaxalone). The data were reviewed mainly from experimental models of seizures. Whenever possible, clinical data were provided. PUBMED data base was the main search source.Expert opinion: Aminophylline generally reduced the protective activity of antiepileptics, which, to a certain degree, was consistent with scarce clinical data on methylxanthine derivatives and worse seizure control. The only antiarrhythmic with this profile of action was mexiletine when co-administered with VPA. Among antidepressants and non-barbiturate injectable anesthetics, trazodone, mianserin and etomidate or alphaxalone, respectively, negatively affected the anticonvulsant action of some antiepileptic drugs. Clinical data indicate that only amoxapine, bupropion, clomipramine and maprotiline should be used with caution. Possibly, drugs reducing the anticonvulsant potential of antiepileptics should be avoided in epilepsy patients.
Collapse
Affiliation(s)
- Kinga K Borowicz-Reutt
- Independent Unit of Experimental Neuropathophysiology, Department of Pathophysiology, Medical University of Lublin , Lublin, Poland
| | | | - Marta Rusek
- Department of Pathophysiology, Medical University of Lublin , Lublin, Poland.,Department of Dermatology, Venereology and Pediatric Dermatology, Laboratory for Immunology of Skin Diseases, Medical University of Lublin , Lublin, Poland
| |
Collapse
|
12
|
Gawel K, Langlois M, Martins T, van der Ent W, Tiraboschi E, Jacmin M, Crawford AD, Esguerra CV. Seizing the moment: Zebrafish epilepsy models. Neurosci Biobehav Rev 2020; 116:1-20. [PMID: 32544542 DOI: 10.1016/j.neubiorev.2020.06.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/20/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
Zebrafish are now widely accepted as a valuable animal model for a number of different central nervous system (CNS) diseases. They are suitable both for elucidating the origin of these disorders and the sequence of events culminating in their onset, and for use as a high-throughput in vivo drug screening platform. The availability of powerful and effective techniques for genome manipulation allows the rapid modelling of different genetic epilepsies and of conditions with seizures as a core symptom. With this review, we seek to summarize the current knowledge about existing epilepsy/seizures models in zebrafish (both pharmacological and genetic) and compare them with equivalent rodent and human studies. New findings obtained from the zebrafish models are highlighted. We believe that this comprehensive review will highlight the value of zebrafish as a model for investigating different aspects of epilepsy and will help researchers to use these models to their full extent.
Collapse
Affiliation(s)
- Kinga Gawel
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway; Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego St. 8b, 20-090, Lublin, Poland
| | | | - Teresa Martins
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg
| | - Wietske van der Ent
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway
| | - Ettore Tiraboschi
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway; Neurophysics Group, Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, Building 14, 38068, Rovereto, TN, Italy
| | - Maxime Jacmin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg
| | - Alexander D Crawford
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg; Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway.
| |
Collapse
|
13
|
Paudel YN, Kumari Y, Abidin SAZ, Othman I, Shaikh MF. Pilocarpine Induced Behavioral and Biochemical Alterations in Chronic Seizure-Like Condition in Adult Zebrafish. Int J Mol Sci 2020; 21:ijms21072492. [PMID: 32260203 PMCID: PMC7178024 DOI: 10.3390/ijms21072492] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 01/01/2023] Open
Abstract
Epilepsy is a devastating neurological condition exhibited by repeated spontaneous and unpredictable seizures afflicting around 70 million people globally. The basic pathophysiology of epileptic seizures is still elusive, reflecting an extensive need for further research. Developing a novel animal model is crucial in understanding disease mechanisms as well as in assessing the therapeutic target. Most of the pre-clinical epilepsy research has been focused on rodents. Nevertheless, zebrafish disease models are relevant to human disease pathophysiology hence are gaining increased attention nowadays. The current study for the very first time developed a pilocarpine-induced chronic seizure-like condition in adult zebrafish and investigated the modulation in several neuroinflammatory genes and neurotransmitters after pilocarpine exposures. Seizure score analysis suggests that compared to a single dose, repeated dose pilocarpine produces chronic seizure-like effects maintaining an average seizure score of above 2 each day for a minimum of 10 days. Compared to the single dose pilocarpine treated group, there was increased mRNA expression of HMGB1, TLR4, TNF-α, IL-1, BDNF, CREB-1, and NPY; whereas decreased expression of NF-κB was upon the repeated dose of pilocarpine administration. In addition, the epileptic group demonstrates modulation in neurotransmitters levels such as GABA, Glutamate, and Acetylcholine. Moreover, proteomic profiling of the zebrafish brain from the normal and epileptic groups from LCMS/MS quantification detected 77 and 13 proteins in the normal and epileptic group respectively. Summing up, the current investigation depicted that chemically induced seizures in zebrafish demonstrated behavioral and molecular alterations similar to classical rodent seizure models suggesting the usability of adult zebrafish as a robust model to investigate epileptic seizures.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia; (Y.N.P.); (Y.K.); (I.O.)
| | - Yatinesh Kumari
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia; (Y.N.P.); (Y.K.); (I.O.)
| | - Syafiq Asnawi Zainal Abidin
- LC-MS/MS Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia;
| | - Iekhsan Othman
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia; (Y.N.P.); (Y.K.); (I.O.)
- LC-MS/MS Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia;
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia; (Y.N.P.); (Y.K.); (I.O.)
- Correspondence: ; Tel.: +603 5514 4483
| |
Collapse
|
14
|
Petrucci AN, Joyal KG, Purnell BS, Buchanan GF. Serotonin and sudden unexpected death in epilepsy. Exp Neurol 2020; 325:113145. [PMID: 31866464 PMCID: PMC7029792 DOI: 10.1016/j.expneurol.2019.113145] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/12/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Epilepsy is a highly prevalent disease characterized by recurrent, spontaneous seizures. Approximately one-third of epilepsy patients will not achieve seizure freedom with medical management and become refractory to conventional treatments. These patients are at greatest risk for sudden unexpected death in epilepsy (SUDEP). The exact etiology of SUDEP is unknown, but a combination of respiratory, cardiac, neuronal electrographic dysfunction, and arousal impairment is thought to underlie SUDEP. Serotonin (5-HT) is involved in regulation of breathing, sleep/wake states, arousal, and seizure modulation and has been implicated in the pathophysiology of SUDEP. This review explores the current state of understanding of the relationship between 5-HT, epilepsy, and respiratory and autonomic control processes relevant to SUDEP in epilepsy patients and in animal models.
Collapse
Affiliation(s)
- Alexandra N Petrucci
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Katelyn G Joyal
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Benton S Purnell
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Gordon F Buchanan
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Department of Neurology, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America.
| |
Collapse
|
15
|
Chen PY, Tu HC, Schirch V, Safo MK, Fu TF. Pyridoxamine Supplementation Effectively Reverses the Abnormal Phenotypes of Zebrafish Larvae With PNPO Deficiency. Front Pharmacol 2019; 10:1086. [PMID: 31616300 PMCID: PMC6764245 DOI: 10.3389/fphar.2019.01086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/26/2019] [Indexed: 01/09/2023] Open
Abstract
Neonatal epileptic encephalopathy (NEE), as a result of pyridoxine 5′-phosphate oxidase (PNPO) deficiency, is a rare neural disorder characterized by intractable seizures and usually leads to early infant death. The clinical phenotypes do not respond to antiepileptic drugs but are alleviated in most cases by giving large doses of pyridoxal 5′-phosphate (PLP). PLP is the active form of vitamin B6 participating in more than 100 enzymatic pathways. One of the causes of NEE is pathogenic mutations in the gene for human PNPO (hPNPO). PNPO is a key enzyme in converting pyridoxine (PN), the common dietary form of vitamin B6, and some other B6 vitamers to PLP. More than 25 different mutations in hPNPO, which result in reduced catalytic activity, have been described for PNPO-deficiency NEE. To date, no animal model is available to test new therapeutic strategies. In this report, we describe using zebrafish with reduced activity of Pnpo as an animal model. Knocking down zPnpo resulted in developmental anomalies including brain malformation and impaired locomotor activity, similar to the clinical features of PNPO-deficiency NEE. Other anomalies include a defective circulation system. These anomalies were significantly alleviated by co-injecting either zpnpo or hPNPO mRNAs. As expected from clinical observations in humans, supplementing with PLP improved the morphological and behavioral anomalies. PN only showed marginal positive effects, and only in a few anomalies. Remarkably, pyridoxamine (PM), another dietary form of vitamin B6, showed rescue effects even at a lower concentration than PLP, presenting a possible new therapeutic treatment for PNPO-deficiency NEE. Finally, GABA, a neurotransmitter whose biosynthesis depends on a PLP-dependent enzyme, showed some positive rescue effect. These results suggest zebrafish to be a promising PNPO-deficiency model for studying PLP homeostasis and drug therapy in vivo.
Collapse
Affiliation(s)
- Po-Yuan Chen
- College of Medicine, Institute of Basic Medical Science, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Chi Tu
- College of Medicine, Institute of Basic Medical Science, National Cheng Kung University, Tainan, Taiwan
| | - Verne Schirch
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Martin K Safo
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Tzu-Fun Fu
- College of Medicine, Institute of Basic Medical Science, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
16
|
Glia-neuron interactions underlie state transitions to generalized seizures. Nat Commun 2019; 10:3830. [PMID: 31444362 PMCID: PMC6707163 DOI: 10.1038/s41467-019-11739-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/31/2019] [Indexed: 11/08/2022] Open
Abstract
Brain activity and connectivity alter drastically during epileptic seizures. The brain networks shift from a balanced resting state to a hyperactive and hypersynchronous state. It is, however, less clear which mechanisms underlie the state transitions. By studying neural and glial activity in zebrafish models of epileptic seizures, we observe striking differences between these networks. During the preictal period, neurons display a small increase in synchronous activity only locally, while the gap-junction-coupled glial network was highly active and strongly synchronized across large distances. The transition from a preictal state to a generalized seizure leads to an abrupt increase in neural activity and connectivity, which is accompanied by a strong alteration in glia-neuron interactions and a massive increase in extracellular glutamate. Optogenetic activation of glia excites nearby neurons through the action of glutamate and gap junctions, emphasizing a potential role for glia-glia and glia-neuron connections in the generation of epileptic seizures. During epileptic seizures, neural activity across the brain switches into a hyperactive and hypersynchronized state. Here, the authors report on the role of glia-glia and glia-neuron interactions in mediating the changes that result in the ictal state in a zebrafish model of epilepsy.
Collapse
|
17
|
Aourz N, Serruys ASK, Chabwine JN, Balegamire PB, Afrikanova T, Edrada-Ebel R, Grey AI, Kamuhabwa AR, Walrave L, Esguerra CV, van Leuven F, de Witte PAM, Smolders I, Crawford AD. Identification of GSK-3 as a Potential Therapeutic Entry Point for Epilepsy. ACS Chem Neurosci 2019; 10:1992-2003. [PMID: 30351911 DOI: 10.1021/acschemneuro.8b00281] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In view of the clinical need for new antiseizure drugs (ASDs) with novel modes of action, we used a zebrafish seizure model to screen the anticonvulsant activity of medicinal plants used by traditional healers in the Congo for the treatment of epilepsy, and identified a crude plant extract that inhibited pentylenetetrazol (PTZ)-induced seizures in zebrafish larvae. Zebrafish bioassay-guided fractionation of this anticonvulsant Fabaceae species, Indigofera arrecta, identified indirubin, a compound with known inhibitory activity of glycogen synthase kinase (GSK)-3, as the bioactive component. Indirubin, as well as the more potent and selective GSK-3 inhibitor 6-bromoindirubin-3'-oxime (BIO-acetoxime) were tested in zebrafish and rodent seizure assays. Both compounds revealed anticonvulsant activity in PTZ-treated zebrafish larvae, with electroencephalographic recordings revealing reduction of epileptiform discharges. Both indirubin and BIO-acetoxime also showed anticonvulsant activity in the pilocarpine rat model for limbic seizures and in the 6-Hz refractory seizure mouse model. Most interestingly, BIO-acetoxime also exhibited anticonvulsant actions in 6-Hz fully kindled mice. Our findings thus provide the first evidence for anticonvulsant activity of GSK-3 inhibition, thereby implicating GSK-3 as a potential therapeutic entry point for epilepsy. Our results also support the use of zebrafish bioassay-guided fractionation of antiepileptic medicinal plant extracts as an effective strategy for the discovery of new ASDs with novel mechanisms of action.
Collapse
Affiliation(s)
- Najat Aourz
- Center for Neurosciences (C4N), Research Group Experimental Pharmacology (EFAR/FASC), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ann-Sophie K. Serruys
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven 3000, Belgium
| | - Joëlle N. Chabwine
- Salama Neuroscience Center, Bukavu, South Kivu BP 54, Democratic Republic of the Congo
| | | | - Tatiana Afrikanova
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven 3000, Belgium
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, U.K
| | - Alexander I. Grey
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, U.K
| | - Appolinary R. Kamuhabwa
- Department of Pharmacognosy, Muhimbili University of Health & Allied Sciences, Dar es Salaam 11000, Tanzania
| | - Laura Walrave
- Center for Neurosciences (C4N), Research Group Experimental Pharmacology (EFAR/FASC), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Camila V. Esguerra
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven 3000, Belgium
| | - Fred van Leuven
- Experimental Genetics Group (LEGTEGG), Department of Human Genetics, University of Leuven, Leuven 3000, Belgium
| | - Peter A. M. de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven 3000, Belgium
| | - Ilse Smolders
- Center for Neurosciences (C4N), Research Group Experimental Pharmacology (EFAR/FASC), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Alexander D. Crawford
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
18
|
Serra I, Scheldeman C, Bazelot M, Whalley BJ, Dallas ML, de Witte PAM, Williams CM. Cannabidiol modulates phosphorylated rpS6 signalling in a zebrafish model of Tuberous Sclerosis Complex. Behav Brain Res 2019; 363:135-144. [PMID: 30684511 DOI: 10.1016/j.bbr.2019.01.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/09/2019] [Accepted: 01/22/2019] [Indexed: 11/30/2022]
Abstract
Tuberous sclerosis complex (TSC) is a rare disease caused by mutations in the TSC1 or TSC2 genes and is characterized by widespread tumour growth, intractable epilepsy, cognitive deficits and autistic behaviour. CBD has been reported to decrease seizures and inhibit tumour cell progression, therefore we sought to determine the influence of CBD on TSC pathology in zebrafish carrying a nonsense mutation in the tsc2 gene. CBD treatment from 6 to 7 days post-fertilization (dpf) induced significant anxiolytic actions without causing sedation. Furthermore, CBD treatment from 3 dpf had no impact on tsc2-/- larvae motility nor their survival. CBD treatment did, however, reduce the number of phosphorylated rpS6 positive cells, and their cross-sectional cell size. This suggests a CBD mediated suppression of mechanistic target of rapamycin (mTOR) activity in the tsc2-/- larval brain. Taken together, these data suggest that CBD selectively modulates levels of phosphorylated rpS6 in the brain and additionally provides an anxiolytic effect. This is pertinent given the alterations in mTOR signalling in experimental models of TSC. Additional work is necessary to identify upstream signal modulation and to further justify the use of CBD as a possible therapeutic strategy to manage TSC.
Collapse
Affiliation(s)
- Ines Serra
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK; School of Pharmacy, University of Reading, Reading, UK.
| | - Chloë Scheldeman
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium.
| | - Michael Bazelot
- GW Research Ltd. Sovereign House, Vision Park, Histon, Cambridge, UK.
| | | | - Mark L Dallas
- School of Pharmacy, University of Reading, Reading, UK.
| | - Peter A M de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium.
| | - Claire M Williams
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK.
| |
Collapse
|
19
|
Kanner AM, Ribot R, Mazarati A. Bidirectional relations among common psychiatric and neurologic comorbidities and epilepsy: Do they have an impact on the course of the seizure disorder? Epilepsia Open 2018; 3:210-219. [PMID: 30564780 PMCID: PMC6293067 DOI: 10.1002/epi4.12278] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2018] [Indexed: 01/13/2023] Open
Abstract
The treatment of epilepsy is not limited to the achievement of a seizure‐free state. It must also incorporate the management of common psychiatric and neurologic comorbidities, affecting on average between 30 and 50% of patients with epilepsy, which have a significant impact on their lives at various levels, including quality of life and the prognosis of the seizure disorder. Mood and anxiety disorders are the most frequent psychiatric comorbidities, whereas stroke and migraine are among the more common neurologic comorbidities, migraine among the younger patients and stroke among the older patients. Not only do these psychiatric and neurologic comorbidities each have a bidirectional relation with epilepsy, but primary mood disorders have a bidirectional relation with these 2 neurologic disorders. Furthermore, depression and migraine have been each associated with a more severe epilepsy course, whereas depression has been associated with a more severe course of stroke and migraines. The purpose of this article is to review the clinical implications of the complex relations among epilepsy and these 3 comorbid disorders, and to identify any clinical and/or experimental evidence that may suggest that having more than one of these comorbid disorders may increase the risk of and course of epilepsy.
Collapse
Affiliation(s)
- Andres M Kanner
- Comprehensive Epilepsy Center and Epilepsy Division Department of Neurology Miller School of Medicine University of Miami Miami Florida U.S.A
| | - Ramses Ribot
- Comprehensive Epilepsy Center and Epilepsy Division Department of Neurology Miller School of Medicine University of Miami Miami Florida U.S.A
| | - Andrey Mazarati
- Department of Pediatrics and Children's Discovery and Innovation Institute D. Geffen School of Medicine at UCLA Los Angeles California U.S.A
| |
Collapse
|
20
|
Richendrfer H, Creton R. Cluster analysis profiling of behaviors in zebrafish larvae treated with antidepressants and pesticides. Neurotoxicol Teratol 2018; 69:54-62. [PMID: 29101052 PMCID: PMC5930167 DOI: 10.1016/j.ntt.2017.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/17/2017] [Accepted: 10/30/2017] [Indexed: 01/24/2023]
Abstract
Antidepressants are used by a substantial number of women in their childbearing years. Treatment may continue during pregnancy, since untreated depression poses a risk to the mother and child. However, many antidepressants readily pass through the placental barrier to reach the fetus or may be ingested by the newborn via breastmilk. Little is known about the effects of antidepressants on brain development and subsequent behavior in young children. In the current study, we used zebrafish as a model system to examine the neurodevelopmental effects of three commonly prescribed antidepressants, sertraline, duloxetine and bupropion. Zebrafish were exposed to these antidepressants during development and were examined for changes in larval avoidance behavior, activity, social behaviors, and anxiety-related behaviors. The results show that antidepressants commonly affect larval swim speeds and resting, and differentially affect other behaviors depending upon the exposure period. Using cluster analysis profiling, we compared the obtained results to previous reports on behavioral defects induced by organophosphate pesticides. We found that the behavioral profiles induced by antidepressants and pesticides overlap, indicating a common mechanism of action. We conclude that developmental antidepressant exposures lead to specific behavioral changes in zebrafish larvae. At present, it is not known if antidepressants have similar effects in human development.
Collapse
Affiliation(s)
- Holly Richendrfer
- Brown University, Department of Molecular and Cellular Biology and Biochemistry, Providence, RI 02912, United States.
| | - Robbert Creton
- Brown University, Department of Molecular and Cellular Biology and Biochemistry, Providence, RI 02912, United States
| |
Collapse
|
21
|
Zebrafish-based identification of the antiseizure nucleoside inosine from the marine diatom Skeletonema marinoi. PLoS One 2018; 13:e0196195. [PMID: 29689077 PMCID: PMC5916873 DOI: 10.1371/journal.pone.0196195] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
With the goal of identifying neuroactive secondary metabolites from microalgae, a microscale in vivo zebrafish bioassay for antiseizure activity was used to evaluate bioactivities of the diatom Skeletonema marinoi, which was recently revealed as being a promising source of drug-like small molecules. A freeze-dried culture of S. marinoi was extracted by solvents with increasing polarities (hexane, dichloromethane, methanol and water) and these extracts were screened for anticonvulsant activity using a larval zebrafish epilepsy model with seizures induced by the GABAA antagonist pentylenetetrazole. The methanolic extract of S. marinoi exhibited significant anticonvulsant activity and was chosen for bioassay-guided fractionation, which associated the bioactivity with minor constituents. The key anticonvulsant constituent was identified as the nucleoside inosine, a well-known adenosine receptor agonist with previously reported antiseizure activities in mice and rat epilepsy models, but not reported to date as a bioactive constituent of microalgae. In addition, a UHPLC-HRMS metabolite profiling was used for dereplication of the other constituents of S. marinoi. Structures of the isolated compounds were elucidated by nuclear magnetic resonance and high-resolution spectrometry. These results highlight the potential of zebrafish-based screening and bioassay-guided fractionation to identify neuroactive marine natural products.
Collapse
|
22
|
Brock AJ, Goody SMG, Mead AN, Sudwarts A, Parker MO, Brennan CH. Assessing the Value of the Zebrafish Conditioned Place Preference Model for Predicting Human Abuse Potential. J Pharmacol Exp Ther 2017; 363:66-79. [PMID: 28790193 PMCID: PMC5602714 DOI: 10.1124/jpet.117.242628] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/02/2017] [Indexed: 11/22/2022] Open
Abstract
Regulatory agencies recommend that centrally active drugs are tested for abuse potential before approval. Standard preclinical assessments are conducted in rats or non-human primates (NHPs). This study evaluated the ability of the zebrafish conditioned place preference (CPP) model to predict human abuse outcomes. Twenty-seven compounds from a variety of pharmacological classes were tested in zebrafish CPP, categorized as positive or negative, and analyzed using standard diagnostic tests of binary classification to determine the likelihood that zebrafish correctly predict robust positive signals in human subjective effects studies (+HSE) and/or Drug Enforcement Administration drug scheduling. Results were then compared with those generated for rat self-administration and CPP, as well as NHP self-administration, using this same set of compounds. The findings reveal that zebrafish concordance and sensitivity values were not significantly different from chance for both +HSE and scheduling. Although significant improvements in specificity and negative predictive values were observed for zebrafish relative to +HSE, specificity without sensitivity provides limited predictive value. Moreover, assessments in zebrafish provided no added value for predicting scheduling. By contrast, rat and NHP models generally possessed significantly improved concordance, sensitivity, and positive predictive values for both clinical measures. Although there may be predictive value with compounds from specific pharmacological classes (e.g., µ-opioid receptor agonists, psychostimulants) for zebrafish CPP, altogether these data highlight that using the current methodology, the zebrafish CPP model does not add value to the preclinical assessment of abuse potential.
Collapse
Affiliation(s)
- A J Brock
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (A.J.B., A.S., C.H.B.); Global Safety Pharmacology, Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut (S.M.G.G., A.N.M.); and School of Health Sciences and Social Work, University of Portsmouth, Portsmouth, United Kingdom (M.O.P.)
| | - S M G Goody
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (A.J.B., A.S., C.H.B.); Global Safety Pharmacology, Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut (S.M.G.G., A.N.M.); and School of Health Sciences and Social Work, University of Portsmouth, Portsmouth, United Kingdom (M.O.P.)
| | - A N Mead
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (A.J.B., A.S., C.H.B.); Global Safety Pharmacology, Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut (S.M.G.G., A.N.M.); and School of Health Sciences and Social Work, University of Portsmouth, Portsmouth, United Kingdom (M.O.P.)
| | - A Sudwarts
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (A.J.B., A.S., C.H.B.); Global Safety Pharmacology, Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut (S.M.G.G., A.N.M.); and School of Health Sciences and Social Work, University of Portsmouth, Portsmouth, United Kingdom (M.O.P.)
| | - M O Parker
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (A.J.B., A.S., C.H.B.); Global Safety Pharmacology, Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut (S.M.G.G., A.N.M.); and School of Health Sciences and Social Work, University of Portsmouth, Portsmouth, United Kingdom (M.O.P.)
| | - C H Brennan
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (A.J.B., A.S., C.H.B.); Global Safety Pharmacology, Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut (S.M.G.G., A.N.M.); and School of Health Sciences and Social Work, University of Portsmouth, Portsmouth, United Kingdom (M.O.P.)
| |
Collapse
|
23
|
Vada S, Goli D, Sharma UR, Bose A, Mandal S. Thorough investigation of epileptic behavioral characterization of caffeine in adult zebrafishes in correlation with drug brain concentration. Acta Ethol 2017. [DOI: 10.1007/s10211-017-0250-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Antidepressant drugs in convulsive seizures: Pre-clinical evaluation of duloxetine in mice. Neurochem Int 2016; 99:62-71. [DOI: 10.1016/j.neuint.2016.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/27/2016] [Accepted: 06/07/2016] [Indexed: 12/23/2022]
|
25
|
Johannessen Landmark C, Henning O, Johannessen SI. Proconvulsant effects of antidepressants - What is the current evidence? Epilepsy Behav 2016; 61:287-291. [PMID: 26926001 DOI: 10.1016/j.yebeh.2016.01.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 01/23/2016] [Accepted: 01/25/2016] [Indexed: 11/16/2022]
Abstract
Antidepressant drugs may have proconvulsant effects. Psychiatric comorbidity in epilepsy is common. Prescribers might be reluctant to initiate treatment with antidepressants in fear of seizure aggravation. The purpose of this review was to focus upon the current evidence for proconvulsant effects of antidepressants and possible clinical implications. Most antidepressants are regarded as safe and may be used in patients with epilepsy, such as the newer serotonin and/or noradrenaline reuptake inhibitors. Four older drugs should, however, be avoided or used with caution; amoxapine, bupropion, clomipramine and maprotiline. Proconvulsant effects are concentration-related. Optimization of drug treatment includes considerations of pharmacokinetic variability to avoid high serum concentrations of the most proconvulsant antidepressants. The risk of seizures is regarded as small and should, therefore, not hamper the pharmacological treatment of depression in people with epilepsy.
Collapse
Affiliation(s)
- Cecilie Johannessen Landmark
- Dept. of Life Sciences and Health, Programme for Pharmacy, Faculty of Health Science, Oslo and Akershus University College of Applied Sciences, Oslo, Norway; The National Center for Epilepsy, Sandvika, Oslo University Hospital, Oslo, Norway; Department of Pharmacology, Oslo University Hospital, Oslo, Norway.
| | - Oliver Henning
- The National Center for Epilepsy, Sandvika, Oslo University Hospital, Oslo, Norway
| | - Svein I Johannessen
- The National Center for Epilepsy, Sandvika, Oslo University Hospital, Oslo, Norway; Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
26
|
Banach M, Popławska M, Błaszczyk B, Borowicz KK, Czuczwar SJ. Pharmacokinetic/pharmacodynamic considerations for epilepsy - depression comorbidities. Expert Opin Drug Metab Toxicol 2016; 12:1067-80. [PMID: 27267259 DOI: 10.1080/17425255.2016.1198319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Epilepsy may be frequently associated with psychiatric disorders and its co-existence with depression usually results in the reduced quality of life of patients with epilepsy. Also, the efficacy of antiepileptic treatment in depressed patients with epilepsy may be significantly reduced. AREAS COVERED Results of experimental studies indicate that antidepressants co-administered with antiepileptic drugs may either increase their anticonvulsant activity, remain neutral or decrease the protective action of antiepileptic drugs in models of seizures. Apart from purely pharmacodynamic interactions, pharmacokinetic mechanisms have been proven to contribute to the final outcome. We report on clinical data regarding the pharmacokinetic interactions of enzyme-inducing antiepileptic drugs with various antidepressants, whose plasma concentration may be significantly reduced. On the other hand, antidepressants (especially selective serotonin reuptake inhibitors) may influence the metabolism of antiepileptics, in many cases resulting in the elevation of plasma concentration of antiepileptic drugs. EXPERT OPINION The preclinical data may provide valuable clues on how to combine these two groups of drugs - antidepressant drugs neutral or potentiating the anticonvulsant action of antiepileptics are recommended in this regard. Avoidance of antidepressants clearly decreasing the convulsive threshold or decreasing the anticonvulsant efficacy of antiepileptic drugs (f.e. bupropion or mianserin) in patients with epilepsy is recommended.
Collapse
Affiliation(s)
- Monika Banach
- a Experimental Neuropathophysiology Unit, Department of Pathophysiology , Medical University , Lublin , Poland
| | - Monika Popławska
- a Experimental Neuropathophysiology Unit, Department of Pathophysiology , Medical University , Lublin , Poland
| | - Barbara Błaszczyk
- b Faculty of Health Sciences , High School of Economics, Law and Medical Sciences , Kielce , Poland
| | - Kinga K Borowicz
- a Experimental Neuropathophysiology Unit, Department of Pathophysiology , Medical University , Lublin , Poland
| | - Stanisław J Czuczwar
- c Department of Pathophysiology , Medical University , Lublin , Poland.,d Department of Physiopathology , Institute of Rural Health , Lublin , Poland
| |
Collapse
|
27
|
Thyrion L, Portelli J, Raedt R, Glorieux G, Larsen LE, Sprengers M, Van Lysebettens W, Carrette E, Delbeke J, Vonck K, Boon P. Disruption, but not overexpression of urate oxidase alters susceptibility to pentylenetetrazole- and pilocarpine-induced seizures in mice. Epilepsia 2016; 57:e146-50. [PMID: 27158916 DOI: 10.1111/epi.13410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2016] [Indexed: 12/24/2022]
Abstract
There is a continuous drive to find new, improved therapies that have a different mechanism of action in order to help diminish the sizable percentage of persons with pharmacoresistant epilepsy. Uric acid is increasingly recognized as contributing to the pathophysiology of multiple disorders, and there are indications that uric acid might play a role in epileptic mechanisms. Nevertheless, studies that directly investigate its involvement are lacking. In this study we assessed the susceptibility to pentylenetetrazole- and pilocarpine-induced seizures in mice with genetically altered uric acid levels by targeting urate oxidase, which is the enzyme responsible for uric acid breakdown. We found that although disruption of urate oxidase resulted in a decreased susceptibility to all behavioral end points in both seizure models, overexpression did not result in any alterations when compared to their wild-type littermates. Our results suggest that a chronic increase in uric acid levels may result in decreased brain excitability.
Collapse
Affiliation(s)
- Lisa Thyrion
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Department of Neurology, Institute for Neuroscience, Ghent University Hospital, Ghent, Belgium
| | - Jeanelle Portelli
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Department of Neurology, Institute for Neuroscience, Ghent University Hospital, Ghent, Belgium.,Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis & Drug Information, Free University of Brussels, Brussels, Belgium
| | - Robrecht Raedt
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Department of Neurology, Institute for Neuroscience, Ghent University Hospital, Ghent, Belgium
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Lars E Larsen
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Department of Neurology, Institute for Neuroscience, Ghent University Hospital, Ghent, Belgium
| | - Mathieu Sprengers
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Department of Neurology, Institute for Neuroscience, Ghent University Hospital, Ghent, Belgium
| | - Wouter Van Lysebettens
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Department of Neurology, Institute for Neuroscience, Ghent University Hospital, Ghent, Belgium
| | - Evelien Carrette
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Department of Neurology, Institute for Neuroscience, Ghent University Hospital, Ghent, Belgium
| | - Jean Delbeke
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Department of Neurology, Institute for Neuroscience, Ghent University Hospital, Ghent, Belgium
| | - Kristl Vonck
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Department of Neurology, Institute for Neuroscience, Ghent University Hospital, Ghent, Belgium
| | - Paul Boon
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Department of Neurology, Institute for Neuroscience, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
28
|
Lopes MW, Sapio MR, Leal RB, Fricker LD. Knockdown of Carboxypeptidase A6 in Zebrafish Larvae Reduces Response to Seizure-Inducing Drugs and Causes Changes in the Level of mRNAs Encoding Signaling Molecules. PLoS One 2016; 11:e0152905. [PMID: 27050163 PMCID: PMC4822968 DOI: 10.1371/journal.pone.0152905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/21/2016] [Indexed: 12/19/2022] Open
Abstract
Carboxypeptidase A6 (CPA6) is an extracellular matrix metallocarboxypeptidase that modulates peptide and protein function by removal of hydrophobic C-terminal amino acids. Mutations in the human CPA6 gene that reduce enzymatic activity in the extracellular matrix are associated with febrile seizures, temporal lobe epilepsy, and juvenile myoclonic epilepsy. The characterization of these human mutations suggests a dominant mode of inheritance by haploinsufficiency through loss of function mutations, however the total number of humans with pathologic mutations in CPA6 identified to date remains small. To better understand the relationship between CPA6 and seizures we investigated the effects of morpholino knockdown of cpa6 mRNA in zebrafish (Danio rerio) larvae. Knockdown of cpa6 mRNA resulted in resistance to the effect of seizure-inducing drugs pentylenetetrazole and pilocarpine on swimming behaviors. Knockdown of cpa6 mRNA also reduced the levels of mRNAs encoding neuropeptide precursors (bdnf, npy, chga, pcsk1nl, tac1, nts, edn1), a neuropeptide processing enzyme (cpe), transcription factor (c-fos), and molecules implicated in glutamatergic signaling (grin1a and slc1a2b). Treatment of zebrafish embryos with 60 mM pilocarpine for 1 hour led to reductions in levels of many of the same mRNAs when measured 1 day after pilocarpine exposure, except for c-fos which was elevated 1 day after pilocarpine treatment. Pilocarpine treatment, like cpa6 knockdown, led to a reduced sensitivity to pentylenetetrazole when tested 1 day after pilocarpine treatment. Taken together, these results add to mounting evidence that peptidergic systems participate in the biological effects of seizure-inducing drugs, and are the first in vivo demonstration of the molecular and behavioral consequences of cpa6 insufficiency.
Collapse
Affiliation(s)
- Mark William Lopes
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Matthew R. Sapio
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Rodrigo B. Leal
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Lloyd D. Fricker
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Mirat O, Sternberg JR, Severi KE, Wyart C. ZebraZoom: an automated program for high-throughput behavioral analysis and categorization. Front Neural Circuits 2013; 7:107. [PMID: 23781175 PMCID: PMC3679480 DOI: 10.3389/fncir.2013.00107] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/21/2013] [Indexed: 11/13/2022] Open
Abstract
The zebrafish larva stands out as an emergent model organism for translational studies involving gene or drug screening thanks to its size, genetics, and permeability. At the larval stage, locomotion occurs in short episodes punctuated by periods of rest. Although phenotyping behavior is a key component of large-scale screens, it has not yet been automated in this model system. We developed ZebraZoom, a program to automatically track larvae and identify maneuvers for many animals performing discrete movements. Our program detects each episodic movement and extracts large-scale statistics on motor patterns to produce a quantification of the locomotor repertoire. We used ZebraZoom to identify motor defects induced by a glycinergic receptor antagonist. The analysis of the blind mutant atoh7 revealed small locomotor defects associated with the mutation. Using multiclass supervised machine learning, ZebraZoom categorized all episodes of movement for each larva into one of three possible maneuvers: slow forward swim, routine turn, and escape. ZebraZoom reached 91% accuracy for categorization of stereotypical maneuvers that four independent experimenters unanimously identified. For all maneuvers in the data set, ZebraZoom agreed with four experimenters in 73.2-82.5% of cases. We modeled the series of maneuvers performed by larvae as Markov chains and observed that larvae often repeated the same maneuvers within a group. When analyzing subsequent maneuvers performed by different larvae, we found that larva-larva interactions occurred as series of escapes. Overall, ZebraZoom reached the level of precision found in manual analysis but accomplished tasks in a high-throughput format necessary for large screens.
Collapse
Affiliation(s)
- Olivier Mirat
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Épinière, UPMC, Inserm UMR S975, CNRS UMR 7225, Fondation ICM, Campus Hospitalier Pitié Salpétrière Paris, France ; Université Paris Descartes Paris, France
| | | | | | | |
Collapse
|
30
|
Cardamone L, Salzberg MR, O'Brien TJ, Jones NC. Antidepressant therapy in epilepsy: can treating the comorbidities affect the underlying disorder? Br J Pharmacol 2013; 168:1531-54. [PMID: 23146067 PMCID: PMC3605864 DOI: 10.1111/bph.12052] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/24/2012] [Accepted: 10/29/2012] [Indexed: 12/20/2022] Open
Abstract
There is a high incidence of psychiatric comorbidity in people with epilepsy (PWE), particularly depression. The manifold adverse consequences of comorbid depression have been more clearly mapped in recent years. Accordingly, considerable efforts have been made to improve detection and diagnosis, with the result that many PWE are treated with antidepressant drugs, medications with the potential to influence both epilepsy and depression. Exposure to older generations of antidepressants (notably tricyclic antidepressants and bupropion) can increase seizure frequency. However, a growing body of evidence suggests that newer ('second generation') antidepressants, such as selective serotonin reuptake inhibitors or serotonin-noradrenaline reuptake inhibitors, have markedly less effect on excitability and may lead to improvements in epilepsy severity. Although a great deal is known about how antidepressants affect excitability on short time scales in experimental models, little is known about the effects of chronic antidepressant exposure on the underlying processes subsumed under the term 'epileptogenesis': the progressive neurobiological processes by which the non-epileptic brain changes so that it generates spontaneous, recurrent seizures. This paper reviews the literature concerning the influences of antidepressants in PWE and in animal models. The second section describes neurobiological mechanisms implicated in both antidepressant actions and in epileptogenesis, highlighting potential substrates that may mediate any effects of antidepressants on the development and progression of epilepsy. Although much indirect evidence suggests the overall clinical effects of antidepressants on epilepsy itself are beneficial, there are reasons for caution and the need for further research, discussed in the concluding section.
Collapse
Affiliation(s)
- L Cardamone
- Department of Medicine (RMH), University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
31
|
Mussulini BHM, Leite CE, Zenki KC, Moro L, Baggio S, Rico EP, Rosemberg DB, Dias RD, Souza TM, Calcagnotto ME, Campos MM, Battastini AM, de Oliveira DL. Seizures induced by pentylenetetrazole in the adult zebrafish: a detailed behavioral characterization. PLoS One 2013; 8:e54515. [PMID: 23349914 PMCID: PMC3549980 DOI: 10.1371/journal.pone.0054515] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 12/12/2012] [Indexed: 11/23/2022] Open
Abstract
Pentylenetetrazole (PTZ) is a common convulsant agent used in animal models to investigate the mechanisms of seizures. Although adult zebrafish have been recently used to study epileptic seizures, a thorough characterization of the PTZ-induced seizures in this animal model is missing. The goal of this study was to perform a detailed temporal behavior profile characterization of PTZ-induced seizure in adult zebrafish. The behavioral profile during 20 min of PTZ immersion (5, 7.5, 10, and 15 mM) was characterized by stages defined as scores: (0) short swim, (1) increased swimming activity and high frequency of opercular movement, (2) erratic movements, (3) circular movements, (4) clonic seizure-like behavior, (5) fall to the bottom of the tank and tonic seizure-like behavior, (6) death. Animals exposed to distinct PTZ concentrations presented different seizure profiles, intensities and latencies to reach all scores. Only animals immersed into 15 mM PTZ showed an increased time to return to the normal behavior (score 0), after exposure. Total mortality rate at 10 and 15 mM were 33% and 50%, respectively. Considering all behavioral parameters, 5, 7.5, 10, and 15 mM PTZ, induced seizures with low, intermediate, and high severity, respectively. Pretreatment with diazepam (DZP) significantly attenuated seizure severity. Finally, the brain PTZ levels in adult zebrafish immersed into the chemoconvulsant solution at 5 and 10 mM were comparable to those described for the rodent model, with a peak after a 20-min of exposure. The PTZ brain levels observed after 2.5-min PTZ exposure and after 60-min removal from exposure were similar. Altogether, our results showed a detailed temporal behavioral characterization of a PTZ epileptic seizure model in adult zebrafish. These behavioral analyses and the simple method for PTZ quantification could be considered as important tools for future investigations and translational research.
Collapse
Affiliation(s)
- Ben Hur M. Mussulini
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail: (BHMM) (BM); (DLdO) (Dd)
| | - Carlos E. Leite
- Instituto de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Kamila C. Zenki
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luana Moro
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Suelen Baggio
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Eduardo P. Rico
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Denis B. Rosemberg
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Renato D. Dias
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tadeu M. Souza
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria E. Calcagnotto
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria M. Campos
- Instituto de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana M. Battastini
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Diogo L. de Oliveira
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail: (BHMM) (BM); (DLdO) (Dd)
| |
Collapse
|
32
|
Vermoesen K, Massie A, Smolders I, Clinckers R. The antidepressants citalopram and reboxetine reduce seizure frequency in rats with chronic epilepsy. Epilepsia 2012; 53:870-8. [PMID: 22429158 DOI: 10.1111/j.1528-1167.2012.03436.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE For a long time, antidepressants have been thought to possess proconvulsant properties. This assumption, however, remains controversial, since anticonvulsant effects have been attributed to certain antidepressants. To date, it remains unclear which antidepressants can be used for the treatment of depression in patients with epilepsy. In this respect, studies investigating the convulsant liability of antidepressants in a chronic epilepsy model can give valuable information. The present study was designed to determine the seizure liability of citalopram and reboxetine in the kainic acid-induced post-status epilepticus model for temporal lobe epilepsy. METHODS Two months after the induction of status epilepticus, chronic epileptic rats (n = 16) were video-electroencephalography (EEG) monitored during seven consecutive weeks. Weeks 1, 3, 5, and 7 served as sham weeks during which the rats received intraperitoneal saline injections for four consecutive days, followed by a 3-day sham washout period during which no injections were given. During weeks 2, 4, and 6, rats received intraperitoneal injections with either citalopram (5, 10, and 15 mg/kg, once daily, n = 8) or reboxetine (10, 20, and 30 mg/kg, twice daily, n = 8) for 4 days, again followed by a washout period of 3 days. Drugs were administered in a randomly assigned fixed-dose regimen per week. Each rat served as its own control. The drug doses were selected based on the doses reported to have antidepressant effects in rats. KEY FINDINGS Citalopram significantly decreased the spontaneous seizure frequency at the highest dose tested, that is, the mean number of seizures decreased from 12.8 seizures to 8.8 seizures per week (31%) after treatment with 15 mg/kg citalopram. This dose also significantly decreased the cumulative seizure duration. Administration of 5 and 10 mg/kg citalopram did not alter the seizure frequency. The two highest doses of reboxetine significantly decreased the spontaneous seizure frequency, that is, 20 mg/kg reboxetine decreased the seizure frequency from 14.1 to 7.9 (44%) and 30 mg/kg reboxetine decreased the seizure frequency from 11.8 to 7.2 (39%). In addition, both doses significantly decreased the cumulative seizure duration. Administration of 10 mg/kg reboxetine did not alter seizure frequency. Citalopram and reboxetine had no effect on seizure severity and seizure duration in any of the doses tested. SIGNIFICANCE In general we can conclude that antidepressant doses of citalopram and reboxetine have, depending on the dose, an anticonvulsant effect or no effect on spontaneous seizures in the kainic acid-induced post-status epilepticus rat model.
Collapse
Affiliation(s)
- Katia Vermoesen
- Center for Neurosciences, Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | | | | | | |
Collapse
|