1
|
Hickok G, Venezia J, Teghipco A. Beyond Broca: neural architecture and evolution of a dual motor speech coordination system. Brain 2023; 146:1775-1790. [PMID: 36746488 PMCID: PMC10411947 DOI: 10.1093/brain/awac454] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/04/2022] [Accepted: 11/19/2022] [Indexed: 02/08/2023] Open
Abstract
Classical neural architecture models of speech production propose a single system centred on Broca's area coordinating all the vocal articulators from lips to larynx. Modern evidence has challenged both the idea that Broca's area is involved in motor speech coordination and that there is only one coordination network. Drawing on a wide range of evidence, here we propose a dual speech coordination model in which laryngeal control of pitch-related aspects of prosody and song are coordinated by a hierarchically organized dorsolateral system while supralaryngeal articulation at the phonetic/syllabic level is coordinated by a more ventral system posterior to Broca's area. We argue further that these two speech production subsystems have distinguishable evolutionary histories and discuss the implications for models of language evolution.
Collapse
Affiliation(s)
- Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, CA 92697, USA
- Department of Language Science, University of California, Irvine, CA 92697, USA
| | - Jonathan Venezia
- Auditory Research Laboratory, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
- Department of Otolaryngology—Head and Neck Surgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Alex Teghipco
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
2
|
Sonoda M, Rothermel R, Carlson A, Jeong JW, Lee MH, Hayashi T, Luat AF, Sood S, Asano E. Naming-related spectral responses predict neuropsychological outcome after epilepsy surgery. Brain 2022; 145:517-530. [PMID: 35313351 PMCID: PMC9014727 DOI: 10.1093/brain/awab318] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022] Open
Abstract
This prospective study determined the use of intracranially recorded spectral responses during naming tasks in predicting neuropsychological performance following epilepsy surgery. We recruited 65 patients with drug-resistant focal epilepsy who underwent preoperative neuropsychological assessment and intracranial EEG recording. The Clinical Evaluation of Language Fundamentals evaluated the baseline and postoperative language function. During extra-operative intracranial EEG recording, we assigned patients to undergo auditory and picture naming tasks. Time-frequency analysis determined the spatiotemporal characteristics of naming-related amplitude modulations, including high gamma augmentation at 70-110 Hz. We surgically removed the presumed epileptogenic zone based on the intracranial EEG and MRI abnormalities while maximally preserving the eloquent areas defined by electrical stimulation mapping. The multivariate regression model incorporating auditory naming-related high gamma augmentation predicted the postoperative changes in Core Language Score with r2 of 0.37 and in Expressive Language Index with r2 of 0.32. Independently of the effects of epilepsy and neuroimaging profiles, higher high gamma augmentation at the resected language-dominant hemispheric area predicted a more severe postoperative decline in Core Language Score and Expressive Language Index. Conversely, the model incorporating picture naming-related high gamma augmentation predicted the change in Receptive Language Index with an r2 of 0.50. Higher high gamma augmentation independently predicted a more severe postoperative decline in Receptive Language Index. Ancillary regression analysis indicated that naming-related low gamma augmentation and alpha/beta attenuation likewise independently predicted a more severe Core Language Score decline. The machine learning-based prediction model suggested that naming-related high gamma augmentation, among all spectral responses used as predictors, most strongly contributed to the improved prediction of patients showing a >5-point Core Language Score decline (reflecting the lower 25th percentile among patients). We generated the model-based atlas visualizing sites, which, if resected, would lead to such a language decline. With a 5-fold cross-validation procedure, the auditory naming-based model predicted patients who had such a postoperative language decline with an accuracy of 0.80. The model indicated that virtual resection of an electrical stimulation mapping-defined language site would have increased the relative risk of the Core Language Score decline by 5.28 (95% confidence interval: 3.47-8.02). Especially, that of an electrical stimulation mapping-defined receptive language site would have maximized it to 15.90 (95% confidence interval: 9.59-26.33). In summary, naming-related spectral responses predict neuropsychological outcomes after epilepsy surgery. We have provided our prediction model as an open-source material, which will indicate the postoperative language function of future patients and facilitate external validation at tertiary epilepsy centres.
Collapse
Affiliation(s)
- Masaki Sonoda
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, Yokohama City University, Yokohama, Kanagawa 2360004, Japan
| | - Robert Rothermel
- Department of Psychiatry, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Alanna Carlson
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Psychiatry, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Min-Hee Lee
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Takahiro Hayashi
- Department of Neurosurgery, Yokohama City University, Yokohama, Kanagawa 2360004, Japan
| | - Aimee F Luat
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Pediatrics, Central Michigan University, Mount Pleasant, MI 48858, USA
| | - Sandeep Sood
- Department of Neurosurgery, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Correspondence to: Eishi Asano, MD, PhD, MS (CRDSA) Division of Pediatric Neurology, Children’s Hospital of Michigan Wayne State University. 3901 Beaubien St., Detroit, MI 48201, USA E-mail:
| |
Collapse
|
3
|
The maturational gradient of infant vocalizations: Developmental stages and functional modules. Infant Behav Dev 2021; 66:101682. [PMID: 34920296 DOI: 10.1016/j.infbeh.2021.101682] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022]
Abstract
Stage models have been influential in characterizing infant vocalizations in the first year of life. These models are basically descriptive and do not explain why certain types of vocal behaviors occur within a particular stage or why successive patterns of vocalization occur. This review paper summarizes and elaborates a theory of Developmental Functional Modules (DFMs) and discusses how maturational gradients in the DFMs explain age typical vocalizations as well as the transitions between successive stages or other static forms. Maturational gradients are based on biological processes that effect the reconfiguration and remodeling of the respiratory, laryngeal, and craniofacial systems during infancy. From a dynamic systems perspective, DFMs are part of a complex system with multiple degrees of freedom that can achieve stable performance with relatively few control variables by relying on principles such as synergies, self-organization, nonlinear performance, and movement variability.
Collapse
|
4
|
Kent RD. Developmental Functional Modules in Infant Vocalizations. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:1581-1604. [PMID: 33861626 DOI: 10.1044/2021_jslhr-20-00703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Purpose Developmental functional modules (DFMs) are biological modules that are defined by their structural (morphological), functional, or developmental elements, and, in some cases, all three of these. This review article considers the hypothesis that vocal development in the first year of life can be understood in large part with respect to DFMs that characterize the speech production system. Method Literature is reviewed on relevant embryology, orofacial reflexes, craniofacial muscle properties, stages of vocal development, and related topics to identity candidates for DFMs. Results The following DFMs are identified and described: laryngeal, pharyngo-laryngeal, mandibular, velopharyngeal, labial complex, and lingual complex. These DFMs and their submodules, considered along with phenomena such as rhythmic movements, account for several well-documented features of vocal development in the first year of life. The proposed DFMs, rooted in embryologic, histologic, and kinematic properties, serve as low-dimensional control variables for the developing vocal tract. Each DFM is semi-autonomous but interacts with other DFMs to produce patterns of vocal behavior. Discussion Considered in relation to contemporary profiles and models of vocal development in the first year of life, DFMs have interpretive and explanatory value. DFMs complement other approaches in the study of infant vocalizations and are grounded in biology.
Collapse
Affiliation(s)
- Ray D Kent
- Department of Communication Sciences & Disorders, University of Wisconsin-Madison
| |
Collapse
|
5
|
Neural oscillations in the fronto-striatal network predict vocal output in bats. PLoS Biol 2020; 18:e3000658. [PMID: 32191695 PMCID: PMC7081985 DOI: 10.1371/journal.pbio.3000658] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
The ability to vocalize is ubiquitous in vertebrates, but neural networks underlying vocal control remain poorly understood. Here, we performed simultaneous neuronal recordings in the frontal cortex and dorsal striatum (caudate nucleus, CN) during the production of echolocation pulses and communication calls in bats. This approach allowed us to assess the general aspects underlying vocal production in mammals and the unique evolutionary adaptations of bat echolocation. Our data indicate that before vocalization, a distinctive change in high-gamma and beta oscillations (50–80 Hz and 12–30 Hz, respectively) takes place in the bat frontal cortex and dorsal striatum. Such precise fine-tuning of neural oscillations could allow animals to selectively activate motor programs required for the production of either echolocation or communication vocalizations. Moreover, the functional coupling between frontal and striatal areas, occurring in the theta oscillatory band (4–8 Hz), differs markedly at the millisecond level, depending on whether the animals are in a navigational mode (that is, emitting echolocation pulses) or in a social communication mode (emitting communication calls). Overall, this study indicates that fronto-striatal oscillations could provide a neural correlate for vocal control in bats. In bats, rhythmic activity in frontal and striatal areas of the brain provide a neural correlate for vocal control, which can be used to predict whether the ensuing vocalizations are for echolocation or social communication.
Collapse
|
6
|
Babajani-Feremi A, Fulton SP, Holder CM, Choudhri AF, Boop FA, Wheless JW. Localization of Expressive Language Cortex in a 2-Year-Old Child Using High-Gamma Electrocorticography. J Child Neurol 2019; 34:837-841. [PMID: 31339411 DOI: 10.1177/0883073819863999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cortical stimulation mapping is the gold standard for presurgical language mapping; however, it cannot be reliably performed in very young patients. Language mapping using noninvasive modalities is also challenging in very young patients. Although utility of language mapping using power of high-gamma in electrocorticographic recordings was demonstrated in adults and older children, there is a gap of knowledge in the ability of this procedure for localizing language-specific cortex in very young patients. We describe a case of a 2-year-old patient who, to our knowledge, is the youngest person to undergo successful high-gamma electrocorticographic presurgical language mapping for localization of the expressive language cortex (Broca area). The surgical plan was to resect a cortical tuber within the left inferior frontal gyrus and there was a strong concern about postoperative language deficit after resection. Presurgical language mapping using noninvasive modalities were attempted without success. Cortical stimulation mapping was not feasible in this patient. Therefore, high-gamma electrocorticography was the only viable option for language mapping, and it successfully localized the expressive language cortex. The patient underwent surgery for resection of the IFG tuber based on results of high-gamma electrocorticography and had no postoperative language deficit. High-gamma electrocorticography can be used for localizing language-specific cortex, especially Broca's area, in very young patients.
Collapse
Affiliation(s)
- Abbas Babajani-Feremi
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA.,Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stephen P Fulton
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA.,Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Christen M Holder
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA.,Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Asim F Choudhri
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA.,Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Frederick A Boop
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA.,Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - James W Wheless
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA.,Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| |
Collapse
|
7
|
Kern M, Bert S, Glanz O, Schulze-Bonhage A, Ball T. Human motor cortex relies on sparse and action-specific activation during laughing, smiling and speech production. Commun Biol 2019; 2:118. [PMID: 30937400 PMCID: PMC6435746 DOI: 10.1038/s42003-019-0360-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/05/2019] [Indexed: 11/09/2022] Open
Abstract
Smiling, laughing, and overt speech production are fundamental to human everyday communication. However, little is known about how the human brain achieves the highly accurate and differentiated control of such orofacial movement during natural conditions. Here, we utilized the high spatiotemporal resolution of subdural recordings to elucidate how human motor cortex is functionally engaged during control of real-life orofacial motor behaviour. For each investigated movement class-lip licking, speech production, laughing and smiling-our findings reveal a characteristic brain activity pattern within the mouth motor cortex with both spatial segregation and overlap between classes. Our findings thus show that motor cortex relies on sparse and action-specific activation during real-life orofacial behaviour, apparently organized in distinct but overlapping subareas that control different types of natural orofacial movements.
Collapse
Affiliation(s)
- Markus Kern
- Medical AI Lab, Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, 79106 Germany
- Neurobiology and Biophysics, Faculty of Biology, University of Freiburg, Freiburg, 79104 Germany
- Epilepsy Center, Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, 79106 Germany
- BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, 79110 Germany
| | - Sina Bert
- Neurobiology and Biophysics, Faculty of Biology, University of Freiburg, Freiburg, 79104 Germany
- Epilepsy Center, Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, 79106 Germany
- BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, 79110 Germany
| | - Olga Glanz
- Medical AI Lab, Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, 79106 Germany
- Epilepsy Center, Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, 79106 Germany
- BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, 79110 Germany
- Hermann Paul School Linguistics, University of Freiburg, Freiburg, 79085 Germany
- GRK 1624, University of Freiburg, Freiburg, 79098 Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, 79106 Germany
| | - Tonio Ball
- Medical AI Lab, Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, 79106 Germany
- BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, 79110 Germany
| |
Collapse
|
8
|
Weaver KE, Poliakov A, Novotny EJ, Olson JD, Grabowski TJ, Ojemann JG. Electrocorticography and the early maturation of high-frequency suppression within the default mode network. J Neurosurg Pediatr 2018; 21:133-140. [PMID: 29192865 DOI: 10.3171/2017.7.peds17269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The acquisition and refinement of cognitive and behavioral skills during development is associated with the maturation of various brain oscillatory activities. Most developmental investigations have identified distinct patterns of low-frequency electrophysiological activity that are characteristic of various behavioral milestones. In this investigation, the authors focused on the cross-sectional developmental properties of high-frequency spectral power from the brain's default mode network (DMN) during goal-directed behavior. METHODS The authors contrasted regionally specific, time-evolving high gamma power (HGP) in the lateral DMN cortex between 3 young children (age range 3-6 years) and 3 adults by use of electrocorticography (ECoG) recordings over the left perisylvian cortex during a picture-naming task. RESULTS Across all participants, a nearly identical and consistent response suppression of HGP, which is a functional signature of the DMN, was observed during task performance recordings acquired from ECoG electrodes placed over the lateral DMN cortex. This finding provides evidence of relatively early maturation of the DMN. Furthermore, only HGP relative to evoked alpha and beta band power showed this level of consistency across all participants. CONCLUSIONS Regionally specific, task-evoked suppression of the high-frequency components of the cortical power spectrum is established early in brain development, and this response may reflect the early maturation of specific cognitive and/or computational mechanisms.
Collapse
Affiliation(s)
- Kurt E Weaver
- Departments of1Radiology.,8Integrated Brain Imaging Center, University of Washington, Seattle.,9Graduate Program in Neuroscience, University of Washington, Seattle.,11Center for Sensorimotor Neural Engineering, University of Washington, Seattle, Washington
| | | | - Edward J Novotny
- 6Neurology, and.,8Integrated Brain Imaging Center, University of Washington, Seattle.,10Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle; and
| | - Jared D Olson
- 4Rehabilitation Medicine, University of Washington, Seattle.,11Center for Sensorimotor Neural Engineering, University of Washington, Seattle, Washington
| | - Thomas J Grabowski
- Departments of1Radiology.,3Neurology, and.,8Integrated Brain Imaging Center, University of Washington, Seattle.,9Graduate Program in Neuroscience, University of Washington, Seattle.,11Center for Sensorimotor Neural Engineering, University of Washington, Seattle, Washington
| | - Jeffrey G Ojemann
- 2Neurological Surgery.,7Neurosurgery, Seattle Children's Hospital, Seattle.,11Center for Sensorimotor Neural Engineering, University of Washington, Seattle, Washington
| |
Collapse
|
9
|
Yusuf PA, Hubka P, Tillein J, Kral A. Induced cortical responses require developmental sensory experience. Brain 2017; 140:3153-3165. [PMID: 29155975 PMCID: PMC5841147 DOI: 10.1093/brain/awx286] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/12/2017] [Indexed: 01/25/2023] Open
Abstract
Sensory areas of the cerebral cortex integrate the sensory inputs with the ongoing activity. We studied how complete absence of auditory experience affects this process in a higher mammal model of complete sensory deprivation, the congenitally deaf cat. Cortical responses were elicited by intracochlear electric stimulation using cochlear implants in adult hearing controls and deaf cats. Additionally, in hearing controls, acoustic stimuli were used to assess the effect of stimulus mode (electric versus acoustic) on the cortical responses. We evaluated time-frequency representations of local field potential recorded simultaneously in the primary auditory cortex and a higher-order area, the posterior auditory field, known to be differentially involved in cross-modal (visual) reorganization in deaf cats. The results showed the appearance of evoked (phase-locked) responses at early latencies (<100 ms post-stimulus) and more abundant induced (non-phase-locked) responses at later latencies (>150 ms post-stimulus). In deaf cats, substantially reduced induced responses were observed in overall power as well as duration in both investigated fields. Additionally, a reduction of ongoing alpha band activity was found in the posterior auditory field (but not in primary auditory cortex) of deaf cats. The present study demonstrates that induced activity requires developmental experience and suggests that higher-order areas involved in the cross-modal reorganization show more auditory deficits than primary areas.
Collapse
Affiliation(s)
- Prasandhya Astagiri Yusuf
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Hannover Medical School, Germany
| | - Peter Hubka
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Hannover Medical School, Germany
| | - Jochen Tillein
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Hannover Medical School, Germany.,ENT Clinics, J. W. Goethe University, Frankfurt am Main, Germany
| | - Andrej Kral
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Hannover Medical School, Germany.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| |
Collapse
|
10
|
Nakai Y, Jeong JW, Brown EC, Rothermel R, Kojima K, Kambara T, Shah A, Mittal S, Sood S, Asano E. Three- and four-dimensional mapping of speech and language in patients with epilepsy. Brain 2017; 140:1351-1370. [PMID: 28334963 PMCID: PMC5405238 DOI: 10.1093/brain/awx051] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/14/2017] [Indexed: 11/13/2022] Open
Abstract
We have provided 3-D and 4D mapping of speech and language function based upon the results of direct cortical stimulation and event-related modulation of electrocorticography signals. Patients estimated to have right-hemispheric language dominance were excluded. Thus, 100 patients who underwent two-stage epilepsy surgery with chronic electrocorticography recording were studied. An older group consisted of 84 patients at least 10 years of age (7367 artefact-free non-epileptic electrodes), whereas a younger group included 16 children younger than age 10 (1438 electrodes). The probability of symptoms transiently induced by electrical stimulation was delineated on a 3D average surface image. The electrocorticography amplitude changes of high-gamma (70-110 Hz) and beta (15-30 Hz) activities during an auditory-naming task were animated on the average surface image in a 4D manner. Thereby, high-gamma augmentation and beta attenuation were treated as summary measures of cortical activation. Stimulation data indicated the causal relationship between (i) superior-temporal gyrus of either hemisphere and auditory hallucination; (ii) left superior-/middle-temporal gyri and receptive aphasia; (iii) widespread temporal/frontal lobe regions of the left hemisphere and expressive aphasia; and (iv) bilateral precentral/left posterior superior-frontal regions and speech arrest. On electrocorticography analysis, high-gamma augmentation involved the bilateral superior-temporal and precentral gyri immediately following question onset; at the same time, high-gamma activity was attenuated in the left orbitofrontal gyrus. High-gamma activity was augmented in the left temporal/frontal lobe regions, as well as left inferior-parietal and cingulate regions, maximally around question offset, with high-gamma augmentation in the left pars orbitalis inferior-frontal, middle-frontal, and inferior-parietal regions preceded by high-gamma attenuation in the contralateral homotopic regions. Immediately before verbal response, high-gamma augmentation involved the posterior superior-frontal and pre/postcentral regions, bilaterally. Beta-attenuation was spatially and temporally correlated with high-gamma augmentation in general but with exceptions. The younger and older groups shared similar spatial-temporal profiles of high-gamma and beta modulation; except, the younger group failed to show left-dominant activation in the rostral middle-frontal and pars orbitalis inferior-frontal regions around stimulus offset. The human brain may rapidly and alternately activate and deactivate cortical areas advantageous or obtrusive to function directed toward speech and language at a given moment. Increased left-dominant activation in the anterior frontal structures in the older age group may reflect developmental consolidation of the language system. The results of our functional mapping may be useful in predicting, across not only space but also time and patient age, sites specific to language function for presurgical evaluation of focal epilepsy.
Collapse
Affiliation(s)
- Yasuo Nakai
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Department of Neurological Surgery, Wakayama Medical University, Wakayama-shi, Wakayama, 6418510, Japan
| | - Jeong-Won Jeong
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Department of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Erik C Brown
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Robert Rothermel
- Department of Psychiatry, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Katsuaki Kojima
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Department of Pediatrics, University of California San Francisco, CA, 94143, USA
| | - Toshimune Kambara
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Postdoctoral Fellowship for Research Abroad, Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, 1020083, Japan
| | - Aashit Shah
- Department of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Sandeep Mittal
- Department of Neurosurgery, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Sandeep Sood
- Department of Neurosurgery, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA.,Department of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA
| |
Collapse
|
11
|
Iljina O, Derix J, Schirrmeister RT, Schulze-Bonhage A, Auer P, Aertsen A, Ball T. Neurolinguistic and machine-learning perspectives on direct speech BCIs for restoration of naturalistic communication. BRAIN-COMPUTER INTERFACES 2017. [DOI: 10.1080/2326263x.2017.1330611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Olga Iljina
- GRK 1624 ‘Frequency effects in language’, University of Freiburg, Freiburg, Germany
- Department of German Linguistics, University of Freiburg, Freiburg, Germany
- Hermann Paul School of Linguistics, University of Freiburg, Germany
- BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Neurobiology and Biophysics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Johanna Derix
- BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Translational Neurotechnology Lab, Department of Neurosurgery, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robin Tibor Schirrmeister
- BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Translational Neurotechnology Lab, Department of Neurosurgery, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Department of Neurosurgery, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Peter Auer
- GRK 1624 ‘Frequency effects in language’, University of Freiburg, Freiburg, Germany
- Department of German Linguistics, University of Freiburg, Freiburg, Germany
- Hermann Paul School of Linguistics, University of Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| | - Ad Aertsen
- Neurobiology and Biophysics, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Germany
| | - Tonio Ball
- BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Translational Neurotechnology Lab, Department of Neurosurgery, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Contribution of research on 'Epilepsy & behavior' to the refinement of functional brain atlas in four dimensions. Epilepsy Behav 2014; 40:86-8. [PMID: 25262069 PMCID: PMC4254342 DOI: 10.1016/j.yebeh.2014.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 08/18/2014] [Indexed: 11/22/2022]
Abstract
Intracranial stimulation mapping by Penfield et al. largely contributed to our current knowledge of the functional organization of motor, sensory, and language systems. The functional maps were generated and printed in two dimensions, based on the summary results of direct cortical stimulation of which locations varied across patients. Intracranial measurement of electrocorticographic changes elicited by a task can localize the regions involved in or participating to the given task. Augmentation of high-gamma activity at >80 Hz is considered to reflect in situ cortical activation at each moment. In the late 2000s, the spatial-temporal profiles of event-related high-gamma activity began to be published as a video material in journals. We have referred to our animation movie as ‘in-vivo animation of event-related high-gamma activity’, that demonstrates ‘when’ and ‘where’ cortical regions are activated in a self-explanatory fashion. Summation of event-related high-gamma measures derived from a large cohort of patients, as previously performed by Penfield et al, is expected to generate unique four-dimensional functional brain atlas covering the whole cerebral cortex.
Collapse
|
13
|
Comparison of high gamma electrocorticography and fMRI with electrocortical stimulation for localization of somatosensory and language cortex. Clin Neurophysiol 2014; 126:121-30. [PMID: 24845600 DOI: 10.1016/j.clinph.2014.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/17/2014] [Accepted: 04/16/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVE We investigated the contribution of electrocortical stimulation (ECS), induced high gamma electrocorticography (hgECoG) and functional magnetic resonance imaging (fMRI) for the localization of somatosensory and language cortex. METHODS 23 Epileptic patients with subdural electrodes underwent a protocol of somatosensory stimulation and/or an auditory semantic decision task. 14 Patients did the same protocol with fMRI prior to implantation. RESULTS ECS resulted in the identification of thumb somatosensory cortex in 12/16 patients. Taking ECS as a gold standard, hgECoG and fMRI identified 53.6/33% of true positive and 4/12% of false positive contacts, respectively. The hgECoG false positive sites were all found in the hand area of the post-central gyrus. ECS localized language-related sites in 7/12 patients with hgECoG and fMRI showing 50/64% of true positive and 8/23% of false positive contacts, respectively. All but one of the hgECoG/fMRI false positive contacts were located in plausible language areas. Four patients showed post-surgical impairments: the resection included the sites positively indicated by ECS, hgECoG and fMRI in 3 patients and a positive hgECoG site in one patient. CONCLUSIONS HgECoG and fMRI provide additional localization information in patients who cannot sufficiently collaborate during ECS. SIGNIFICANCE HgECoG and fMRI make the cortical mapping procedure more flexible not only by identifying priority cortical sites for ECS or when ECS is not feasible, but also when ECS does not provide any result.
Collapse
|
14
|
Ruescher J, Iljina O, Altenmüller DM, Aertsen A, Schulze-Bonhage A, Ball T. Somatotopic mapping of natural upper- and lower-extremity movements and speech production with high gamma electrocorticography. Neuroimage 2013; 81:164-177. [PMID: 23643922 DOI: 10.1016/j.neuroimage.2013.04.102] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 04/02/2013] [Accepted: 04/23/2013] [Indexed: 11/27/2022] Open
|
15
|
Clinical significance and developmental changes of auditory-language-related gamma activity. Clin Neurophysiol 2012; 124:857-69. [PMID: 23141882 DOI: 10.1016/j.clinph.2012.09.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 08/20/2012] [Accepted: 09/22/2012] [Indexed: 11/21/2022]
Abstract
OBJECTIVE We determined the clinical impact and developmental changes of auditory-language-related augmentation of gamma activity at 50-120 Hz recorded on electrocorticography (ECoG). METHODS We analyzed data from 77 epileptic patients ranging 4-56 years in age. We determined the effects of seizure-onset zone, electrode location, and patient-age upon gamma-augmentation elicited by an auditory-naming task. RESULTS Gamma-augmentation was less frequently elicited within seizure-onset sites compared to other sites. Regardless of age, gamma-augmentation most often involved the 80-100 Hz frequency band. Gamma-augmentation initially involved bilateral superior-temporal regions, followed by left-side dominant involvement in the middle-temporal, medial-temporal, inferior-frontal, dorsolateral-premotor, and medial-frontal regions and concluded with bilateral inferior-Rolandic involvement. Compared to younger patients, those older than 10 years had a larger proportion of left dorsolateral-premotor and right inferior-frontal sites showing gamma-augmentation. The incidence of a post-operative language deficit requiring speech therapy was predicted by the number of resected sites with gamma-augmentation in the superior-temporal, inferior-frontal, dorsolateral-premotor, and inferior-Rolandic regions of the left hemisphere assumed to contain essential language function (r(2) = 0.59; p = 0.001; odds ratio = 6.04 [95% confidence-interval: 2.26-16.15]). CONCLUSIONS Auditory-language-related gamma-augmentation can provide additional information useful to localize the primary language areas. SIGNIFICANCE These results derived from a large sample of patients support the utility of auditory-language-related gamma-augmentation in presurgical evaluation.
Collapse
|