1
|
Dalton HM, Young NJ, Berman AR, Evans HD, Peterson SJ, Patterson KA, Chow CY. A drug repurposing screen reveals dopamine signaling as a critical pathway underlying potential therapeutics for the rare disease DPAGT1-CDG. PLoS Genet 2024; 20:e1011458. [PMID: 39466823 PMCID: PMC11542785 DOI: 10.1371/journal.pgen.1011458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/07/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
DPAGT1-CDG is a Congenital Disorder of Glycosylation (CDG) that lacks effective therapies. It is caused by mutations in the gene DPAGT1 which encodes the first enzyme in N-linked glycosylation. We used a Drosophila rough eye model of DPAGT1-CDG with an improperly developed, small eye phenotype. We performed a drug repurposing screen on this model using 1,520 small molecules that are 98% FDA/EMA-approved to find drugs that improved its eye. We identified 42 candidate drugs that improved the DPAGT1-CDG model. Notably from this screen, we found that pharmacological and genetic inhibition of the dopamine D2 receptor partially rescued the DPAGT1-CDG model. Loss of both dopamine synthesis and recycling partially rescued the model, suggesting that dopaminergic flux and subsequent binding to D2 receptors is detrimental under DPAGT1 deficiency. This links dopamine signaling to N-glycosylation and represents a new potential therapeutic target for treating DPAGT1-CDG. We also genetically validate other top drug categories including acetylcholine-related drugs, COX inhibitors, and an inhibitor of NKCC1. These drugs and subsequent analyses reveal novel biology in DPAGT1 mechanisms, and they may represent new therapeutic options for DPAGT1-CDG.
Collapse
Affiliation(s)
- Hans M. Dalton
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Naomi J. Young
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Alexys R. Berman
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Heather D. Evans
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Sydney J. Peterson
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kaylee A. Patterson
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Clement Y. Chow
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
2
|
Kok M, Brodsky JL. The biogenesis of potassium transporters: implications of disease-associated mutations. Crit Rev Biochem Mol Biol 2024; 59:154-198. [PMID: 38946646 PMCID: PMC11444911 DOI: 10.1080/10409238.2024.2369986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
The concentration of intracellular and extracellular potassium is tightly regulated due to the action of various ion transporters, channels, and pumps, which reside primarily in the kidney. Yet, potassium transporters and cotransporters play vital roles in all organs and cell types. Perhaps not surprisingly, defects in the biogenesis, function, and/or regulation of these proteins are linked to range of catastrophic human diseases, but to date, few drugs have been approved to treat these maladies. In this review, we discuss the structure, function, and activity of a group of potassium-chloride cotransporters, the KCCs, as well as the related sodium-potassium-chloride cotransporters, the NKCCs. Diseases associated with each of the four KCCs and two NKCCs are also discussed. Particular emphasis is placed on how these complex membrane proteins fold and mature in the endoplasmic reticulum, how non-native forms of the cotransporters are destroyed in the cell, and which cellular factors oversee their maturation and transport to the cell surface. When known, we also outline how the levels and activities of each cotransporter are regulated. Open questions in the field and avenues for future investigations are further outlined.
Collapse
Affiliation(s)
- Morgan Kok
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Sciaccaluga M, Ruffolo G, Palma E, Costa C. Traditional and Innovative Anti-seizure Medications Targeting Key Physiopathological Mechanisms: Focus on Neurodevelopment and Neurodegeneration. Curr Neuropharmacol 2023; 21:1736-1754. [PMID: 37143270 PMCID: PMC10514539 DOI: 10.2174/1570159x21666230504160948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Despite the wide range of compounds currently available to treat epilepsy, there is still no drug that directly tackles the physiopathological mechanisms underlying its development. Indeed, antiseizure medications attempt to prevent seizures but are inefficacious in counteracting or rescuing the physiopathological phenomena that underlie their onset and recurrence, and hence do not cure epilepsy. Classically, the altered excitation/inhibition balance is postulated as the mechanism underlying epileptogenesis and seizure generation. This oversimplification, however, does not account for deficits in homeostatic plasticity resulting from either insufficient or excessive compensatory mechanisms in response to a change in network activity. In this respect, both neurodevelopmental epilepsies and those associated with neurodegeneration may share common underlying mechanisms that still need to be fully elucidated. The understanding of these molecular mechanisms shed light on the identification of new classes of drugs able not only to suppress seizures, but also to present potential antiepileptogenic effects or "disease-modifying" properties.
Collapse
Affiliation(s)
- Miriam Sciaccaluga
- Section of Neurology, S.M. della Misericordia Hospital, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, Perugia, 06129, Italy
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome, Sapienza, Rome, 00185, Italy
- IRCCS San Raffaele Roma, Rome, 00166, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome, Sapienza, Rome, 00185, Italy
- IRCCS San Raffaele Roma, Rome, 00166, Italy
| | - Cinzia Costa
- Section of Neurology, S.M. della Misericordia Hospital, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, Perugia, 06129, Italy
| |
Collapse
|
4
|
Janoš P, Magistrato A. Role of Monovalent Ions in the NKCC1 Inhibition Mechanism Revealed through Molecular Simulations. Int J Mol Sci 2022; 23:ijms232315439. [PMID: 36499764 PMCID: PMC9741434 DOI: 10.3390/ijms232315439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The secondary active Na-K-Cl cotransporter 1 (NKCC1) promotes electroneutral uptake of two chloride ions, one sodium ion and one potassium ion. NKCC1 regulates Cl- homeostasis, thus being implicated in transepithelial water transport and in neuronal excitability. Aberrant NKCC1 transport is linked to a variety of human diseases. The loop diuretic drugs bumetanide, furosemide, azosemide and ethacrynic acid target NKCC1, but are characterized by poor selectivity leading to severe side effects. Despite its therapeutic importance, the molecular details of the NKCC1 inhibition mechanism remain unclear. Using all-atom simulations, we predict a putative binding mode of these drugs to the zebrafish (z) and human (h) NKCC1 orthologs. Although differing in their specific interactions with NKCC1 and/or monovalent ions, all drugs can fit within the same cavity and engage in hydrophobic interactions with M304/M382 in z/hNKCC1, a proposed ion gating residue demonstrated to be key for bumetanide binding. Consistent with experimental evidence, all drugs take advantage of the K+/Na+ ions, which plastically respond to their binding. This study not only provides atomic-level insights useful for drug discovery campaigns of more selective/potent NKCC1 inhibitors aimed to tackle diseases related to deregulated Cl- homeostasis, but it also supplies a paradigmatic example of the key importance of dynamical effects when drug binding is mediated by monovalent ions.
Collapse
|
5
|
Zhao Y, Cao E. Structural Pharmacology of Cation-Chloride Cotransporters. MEMBRANES 2022; 12:1206. [PMID: 36557113 PMCID: PMC9784483 DOI: 10.3390/membranes12121206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Loop and thiazide diuretics have been cornerstones of clinical management of hypertension and fluid overload conditions for more than five decades. The hunt for their molecular targets led to the discovery of cation-chloride cotransporters (CCCs) that catalyze electroneutral movement of Cl- together with Na+ and/or K+. CCCs consist of two 1 Na+-1 K+-2 Cl- (NKCC1-2), one 1 Na+-1 Cl- (NCC), and four 1 K+-1 Cl- (KCC1-4) transporters in human. CCCs are fundamental in trans-epithelia ion secretion and absorption, homeostasis of intracellular Cl- concentration and cell volume, and regulation of neuronal excitability. Malfunction of NKCC2 and NCC leads to abnormal salt and water retention in the kidney and, consequently, imbalance in electrolytes and blood pressure. Mutations in KCC2 and KCC3 are associated with brain disorders due to impairments in regulation of excitability and possibly cell volume of neurons. A recent surge of structures of CCCs have defined their dimeric architecture, their ion binding sites, their conformational changes associated with ion translocation, and the mechanisms of action of loop diuretics and small molecule inhibitors. These breakthroughs now set the stage to expand CCC pharmacology beyond loop and thiazide diuretics, developing the next generation of diuretics with improved potency and specificity. Beyond drugging renal-specific CCCs, brain-penetrable therapeutics are sorely needed to target CCCs in the nervous system for the treatment of neurological disorders and psychiatric conditions.
Collapse
|
6
|
Gan Y, Wei Z, Liu C, Li G, Feng Y, Deng Y. Solute carrier transporter disease and developmental and epileptic encephalopathy. Front Neurol 2022; 13:1013903. [PMID: 36419532 PMCID: PMC9676364 DOI: 10.3389/fneur.2022.1013903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 09/14/2023] Open
Abstract
The International League Against Epilepsy officially revised its classification in 2017, which amended "epileptic encephalopathy" to "developmental and epileptic encephalopathy". With the development of genetic testing technology, an increasing number of genes that cause developmental and epileptic encephalopathies are being identified. Among these, solute transporter dysfunction is part of the etiology of developmental and epileptic encephalopathies. Solute carrier transporters play an essential physiological function in the human body, and their dysfunction is associated with various human diseases. Therefore, in-depth studies of developmental and epileptic encephalopathies caused by solute carrier transporter dysfunction can help develop new therapeutic modalities to facilitate the treatment of refractory epilepsy and improve patient prognosis. In this article, the concept of transporter protein disorders is first proposed, and nine developmental and epileptic encephalopathies caused by solute carrier transporter dysfunction are described in detail in terms of pathogenesis, clinical manifestations, ancillary tests, and precise treatment to provide ideas for the precise treatment of epilepsy.
Collapse
Affiliation(s)
- Yajing Gan
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zihan Wei
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chao Liu
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guoyan Li
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Feng
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanchun Deng
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Xijing Institute of Epilepsy and Encephalopathy, Xi'an, China
| |
Collapse
|
7
|
Toft-Bertelsen TL, Barbuskaite D, Heerfordt EK, Lolansen SD, Andreassen SN, Rostgaard N, Olsen MH, Norager NH, Capion T, Rath MF, Juhler M, MacAulay N. Lysophosphatidic acid as a CSF lipid in posthemorrhagic hydrocephalus that drives CSF accumulation via TRPV4-induced hyperactivation of NKCC1. Fluids Barriers CNS 2022; 19:69. [PMID: 36068581 PMCID: PMC9450297 DOI: 10.1186/s12987-022-00361-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND A range of neurological pathologies may lead to secondary hydrocephalus. Treatment has largely been limited to surgical cerebrospinal fluid (CSF) diversion, as specific and efficient pharmacological options are lacking, partly due to the elusive molecular nature of the CSF secretion apparatus and its regulatory properties in physiology and pathophysiology. METHODS CSF obtained from patients with subarachnoid hemorrhage (SAH) and rats with experimentally inflicted intraventricular hemorrhage (IVH) was analyzed for lysophosphatidic acid (LPA) by alpha-LISA. We employed the in vivo rat model to determine the effect of LPA on ventricular size and brain water content, and to reveal the effect of activation and inhibition of the transient receptor potential vanilloid 4 (TRPV4) ion channel on intracranial pressure and CSF secretion rate. LPA-mediated modulation of TRPV4 was determined with electrophysiology and an ex vivo radio-isotope assay was employed to determine the effect of these modulators on choroid plexus transport. RESULTS Elevated levels of LPA were observed in CSF obtained from patients with subarachnoid hemorrhage (SAH) and from rats with experimentally-inflicted intraventricular hemorrhage (IVH). Intraventricular administration of LPA caused elevated brain water content and ventriculomegaly in experimental rats, via its action as an agonist of the choroidal transient receptor potential vanilloid 4 (TRPV4) channel. TRPV4 was revealed as a novel regulator of ICP in experimental rats via its ability to modulate the CSF secretion rate through its direct activation of the Na+/K+/2Cl- cotransporter (NKCC1) implicated in CSF secretion. CONCLUSIONS Together, our data reveal that a serum lipid present in brain pathologies with hemorrhagic events promotes CSF hypersecretion and ensuing brain water accumulation via its direct action on TRPV4 and its downstream regulation of NKCC1. TRPV4 may therefore be a promising future pharmacological target for pathologies involving brain water accumulation.
Collapse
Affiliation(s)
- Trine L Toft-Bertelsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Dagne Barbuskaite
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Eva Kjer Heerfordt
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Sara Diana Lolansen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Søren Norge Andreassen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Nina Rostgaard
- Department of Neurosurgery, Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Markus Harboe Olsen
- Department of Neuroanaesthesiology, Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Nicolas H Norager
- Department of Neurosurgery, Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tenna Capion
- Department of Neurosurgery, Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Martin Fredensborg Rath
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.
| |
Collapse
|
8
|
Oernbo EK, Steffensen AB, Razzaghi Khamesi P, Toft-Bertelsen TL, Barbuskaite D, Vilhardt F, Gerkau NJ, Tritsaris K, Simonsen AH, Lolansen SD, Andreassen SN, Hasselbalch SG, Zeuthen T, Rose CR, Kurtcuoglu V, MacAulay N. Membrane transporters control cerebrospinal fluid formation independently of conventional osmosis to modulate intracranial pressure. Fluids Barriers CNS 2022; 19:65. [PMID: 36038945 PMCID: PMC9422132 DOI: 10.1186/s12987-022-00358-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background Disturbances in the brain fluid balance can lead to life-threatening elevation in the intracranial pressure (ICP), which represents a vast clinical challenge. Nevertheless, the details underlying the molecular mechanisms governing cerebrospinal fluid (CSF) secretion are largely unresolved, thus preventing targeted and efficient pharmaceutical therapy of cerebral pathologies involving elevated ICP. Methods Experimental rats were employed for in vivo determinations of CSF secretion rates, ICP, blood pressure and ex vivo excised choroid plexus for morphological analysis and quantification of expression and activity of various transport proteins. CSF and blood extractions from rats, pigs, and humans were employed for osmolality determinations and a mathematical model employed to determine a contribution from potential local gradients at the surface of choroid plexus. Results We demonstrate that CSF secretion can occur independently of conventional osmosis and that local osmotic gradients do not suffice to support CSF secretion. Instead, the CSF secretion across the luminal membrane of choroid plexus relies approximately equally on the Na+/K+/2Cl− cotransporter NKCC1, the Na+/HCO3− cotransporter NBCe2, and the Na+/K+-ATPase, but not on the Na+/H+ exchanger NHE1. We demonstrate that pharmacological modulation of CSF secretion directly affects the ICP. Conclusions CSF secretion appears to not rely on conventional osmosis, but rather occur by a concerted effort of different choroidal transporters, possibly via a molecular mode of water transport inherent in the proteins themselves. Therapeutic modulation of the rate of CSF secretion may be employed as a strategy to modulate ICP. These insights identify new promising therapeutic targets against brain pathologies associated with elevated ICP. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00358-4.
Collapse
Affiliation(s)
- Eva K Oernbo
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Annette B Steffensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Pooya Razzaghi Khamesi
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Trine L Toft-Bertelsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Dagne Barbuskaite
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Niklas J Gerkau
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Katerina Tritsaris
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Anja H Simonsen
- Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sara D Lolansen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Søren N Andreassen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Steen G Hasselbalch
- Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Zeuthen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Vartan Kurtcuoglu
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.
| |
Collapse
|
9
|
Bialer M, Johannessen SI, Koepp MJ, Levy RH, Perucca E, Perucca P, Tomson T, White HS. Progress report on new antiepileptic drugs: A summary of the Sixteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XVI): II. Drugs in more advanced clinical development. Epilepsia 2022; 63:2883-2910. [PMID: 35950617 DOI: 10.1111/epi.17376] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
Abstract
The Sixteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XVI) was held in Madrid, Spain on May 22-25, 2022 and was attended by 157 delegates from 26 countries representing basic and clinical science, regulatory agencies, and pharmaceutical industries. One day of the conference was dedicated to sessions presenting and discussing investigational compounds under development for the treatment of seizures and epilepsy. The current progress report summarizes recent findings and current knowledge for seven of these compounds in more advanced clinical development for which either novel preclinical or patient data are available. These compounds include bumetanide and its derivatives, darigabat, ganaxolone, lorcaserin, soticlestat, STK-001, and XEN1101. Of these, ganaxolone was approved by the US Food and Drug Administration in March 2022 for the treatment of seizures associated with cyclin-dependent kinase-like 5 deficiency disorder in patients 2 years of age and older.
Collapse
Affiliation(s)
- Meir Bialer
- Institute for Drug Research, Faculty of Medicine, School of Pharmacy, and David R. Bloom Center for Pharmacy, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Svein I Johannessen
- National Center for Epilepsy, Sandvika, Norway.,Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - René H Levy
- Department of Pharmaceutics and Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Emilio Perucca
- Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Piero Perucca
- Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia.,Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Torbjörn Tomson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
10
|
Filho FC, Silva JDP, Petri C, Almendra JSL, de Sousa ÍA, Cavalcanti SMG, Silva BA, Formiga Melo MF, Cavalcanti PMDS. Pharmacological evidence that GABA-induced relaxation of rat proximal duodenum longitudinal muscle depends on NKCC cotransporter activity and Ca 2+ influx. Can J Physiol Pharmacol 2022; 100:728-740. [PMID: 35880679 DOI: 10.1139/cjpp-2021-0639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in adult central nervous system (CNS) synapses, but it excites immature CNS neurons as well as neurons in the myenteric plexus. The present work aimed to determine whether GABA-induced nonadrenergic, noncholinergic (NANC) neuronal-mediated relaxation of the rat duodenum is dependent on the activity of Na+ K+ Cl- cotransporters (NKCC) and requires calcium influx. In the presence of guanethidine (3 µmol/L), atropine (3 µmol/L), and indomethacin (1 µmol/L), relaxations induced by GABA (100 µmol/L), KCl (5-10 mmol/L) and electrical field stimulation (1-8 Hz, 2 ms, 60 V), but not those induced by bradykinin (10-100 nmol/L) were abolished by lidocaine (300 µmol/L). However, only GABA-induced relaxations were reduced in a concentration-dependent manner by the NKCC1/2 inhibitors bumetanide (0.1-1 µmol/L) and furosemide (1-10 µmol/L). GABA-induced NANC neuronal relaxation was abolished by bicuculline (30 µmol/L) and inhibited by N-nitroarginine methyl ester (l-NAME, 300 µmol/L). The ω-conotoxin GVIA (1 µmol/L), which acts exclusively on neuronal CaV2 channels, but not on smooth muscle voltage-gated Ca2+ CaV1 channels, and nonselective blockers of these channels (verapamil 100 nmol/L and ruthenium red 10 µmol/L), reduced GABA-induced relaxations. These results showed that the activation of GABAA receptors induces NANC nitrergic neuronal relaxations in the rat duodenum, which depend on NKCC activity and CaV2 channel activation, suggesting that this phenomenon results from neuronal depolarization promoted by Cl- efflux through GABAA receptors, with subsequent Ca2+ influx and nitric oxide release.
Collapse
Affiliation(s)
- Francisco Chagas Filho
- Biophysics and Physiology Department, 64049-550, Health Sciences Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Janyerson Dannys Pereira Silva
- Biophysics and Physiology Department, 64049-550, Health Sciences Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Caio Petri
- Biophysics and Physiology Department, 64049-550, Health Sciences Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - João Santos Lima Almendra
- Biophysics and Physiology Department, 64049-550, Health Sciences Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Ícaro Araújo de Sousa
- Biophysics and Physiology Department, 64049-550, Health Sciences Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | - Bagnólia A Silva
- Pharmacological Sciences Department, 58051-900, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Margareth Fátima Formiga Melo
- Pharmacological Sciences Department, 58051-900, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | |
Collapse
|
11
|
Structural basis for inhibition of the Cation-chloride cotransporter NKCC1 by the diuretic drug bumetanide. Nat Commun 2022; 13:2747. [PMID: 35585053 PMCID: PMC9117670 DOI: 10.1038/s41467-022-30407-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
Cation-chloride cotransporters (CCCs) NKCC1 and NKCC2 catalyze electroneutral symport of 1 Na+, 1 K+, and 2 Cl− across cell membranes. NKCC1 mediates trans-epithelial Cl− secretion and regulates excitability of some neurons and NKCC2 is critical to renal salt reabsorption. Both transporters are inhibited by the so-called loop diuretics including bumetanide, and these drugs are a mainstay for treating edema and hypertension. Here, our single-particle electron cryo-microscopy structures supported by functional studies reveal an outward-facing conformation of NKCC1, showing bumetanide wedged into a pocket in the extracellular ion translocation pathway. Based on these and the previously published inward-facing structures, we define the translocation pathway and the conformational changes necessary for ion translocation. We also identify an NKCC1 dimer with separated transmembrane domains and extensive transmembrane and C-terminal domain interactions. We further define an N-terminal phosphoregulatory domain that interacts with the C-terminal domain, suggesting a mechanism whereby (de)phosphorylation regulates NKCC1 by tuning the strength of this domain association. Loop diuretics including bumetanide inhibit Na+-K+-Cl−-cotransporters (NKCCs) and are used for the treatment of edema and hypertension. Here, Zhao et. al. report structures of NKCC1 with bumetanide bound, revealing its mechanism of action that would facilitate design of novel diuretics.
Collapse
|
12
|
Löscher W, Kaila K. CNS pharmacology of NKCC1 inhibitors. Neuropharmacology 2021; 205:108910. [PMID: 34883135 DOI: 10.1016/j.neuropharm.2021.108910] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022]
Abstract
The Na-K-2Cl cotransporter NKCC1 and the neuron-specific K-Cl cotransporter KCC2 are considered attractive CNS drug targets because altered neuronal chloride regulation and consequent effects on GABAergic signaling have been implicated in numerous CNS disorders. While KCC2 modulators are not yet clinically available, the loop diuretic bumetanide has been used off-label in attempts to treat brain disorders and as a tool for NKCC1 inhibition in preclinical models. Bumetanide is known to have anticonvulsant and neuroprotective effects under some pathophysiological conditions. However, as shown in several species from neonates to adults (mice, rats, dogs, and by extrapolation in humans), at the low clinical doses of bumetanide approved for diuresis, this drug has negligible access into the CNS, reaching levels that are much lower than what is needed to inhibit NKCC1 in cells within the brain parenchyma. Several drug discovery strategies have been initiated over the last ∼15 years to develop brain-permeant compounds that, ideally, should be selective for NKCC1 to eliminate the diuresis mediated by inhibition of renal NKCC2. The strategies employed to improve the pharmacokinetic and pharmacodynamic properties of NKCC1 blockers include evaluation of other clinically approved loop diuretics; development of lipophilic prodrugs of bumetanide; development of side-chain derivatives of bumetanide; and unbiased high-throughput screening approaches of drug discovery based on large chemical compound libraries. The main outcomes are that (1), non-acidic loop diuretics such as azosemide and torasemide may have advantages as NKCC1 inhibitors vs. bumetanide; (2), bumetanide prodrugs lead to significantly higher brain levels than the parent drug and have lower diuretic activity; (3), the novel bumetanide side-chain derivatives do not exhibit any functionally relevant improvement of CNS accessibility or NKCC1 selectivity vs. bumetanide; (4) novel compounds discovered by high-throughput screening may resolve some of the inherent problems of bumetanide, but as yet this has not been achieved. Thus, further research is needed to optimize the design of brain-permeant NKCC1 inhibitors. In parallel, a major challenge is to identify the mechanisms whereby various NKCC1-expressing cellular targets of these drugs within (e.g., neurons, oligodendrocytes or astrocytes) and outside the brain parenchyma (e.g., the blood-brain barrier, the choroid plexus, and the endocrine system), as well as molecular off-target effects, might contribute to their reported therapeutic and adverse effects.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany.
| | - Kai Kaila
- Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, Finland
| |
Collapse
|
13
|
Maisons V, Joseph-Delaffon K. Le bumétanide, un diurétique de l’ombre. ACTUALITES PHARMACEUTIQUES 2021. [DOI: 10.1016/j.actpha.2021.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Kipnis PA, Kadam SD. Novel Concepts for the Role of Chloride Cotransporters in Refractory Seizures. Aging Dis 2021; 12:1056-1069. [PMID: 34221549 PMCID: PMC8219493 DOI: 10.14336/ad.2021.0129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is associated with a multitude of acquired or genetic neurological disorders characterized by a predisposition to spontaneous recurrent seizures. An estimated 15 million patients worldwide have ongoing seizures despite optimal management and are classified as having refractory epilepsy. Early-life seizures like those caused by perinatal hypoxic ischemic encephalopathy (HIE) remain a clinical challenge because although transient, they are difficult to treat and associated with poor neurological outcomes. Pediatric epilepsy syndromes are consistently associated with intellectual disability and neurocognitive comorbidities. HIE and arterial ischemic stroke are the most common causes of seizures in term neonates and account for 7.5-20% of neonatal seizures. Standard first-line treatments such as phenobarbital (PB) and phenytoin fail to curb seizures in ~50% of neonates. In the long-term, HIE can result in hippocampal sclerosis and temporal lobe epilepsy (TLE), which is the most common adult epilepsy, ~30% of which is associated with refractory seizures. For patients with refractory TLE seizures, a viable option is the surgical resection of the epileptic foci. Novel insights gained from investigating the developmental role of Cl- cotransporter function have helped to elucidate some of the mechanisms underlying the emergence of refractory seizures in both HIE and TLE. KCC2 as the chief Cl- extruder in neurons is critical for enabling strong hyperpolarizing synaptic inhibition in the brain and has been implicated in the pathophysiology underlying both conditions. More recently, KCC2 function has become a novel therapeutic target to combat refractory seizures.
Collapse
Affiliation(s)
- Pavel A Kipnis
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
| | - Shilpa D Kadam
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
15
|
Borgogno M, Savardi A, Manigrasso J, Turci A, Portioli C, Ottonello G, Bertozzi SM, Armirotti A, Contestabile A, Cancedda L, De Vivo M. Design, Synthesis, In Vitro and In Vivo Characterization of Selective NKCC1 Inhibitors for the Treatment of Core Symptoms in Down Syndrome. J Med Chem 2021; 64:10203-10229. [PMID: 34137257 PMCID: PMC8311653 DOI: 10.1021/acs.jmedchem.1c00603] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intracellular chloride concentration [Cl-]i is defective in several neurological disorders. In neurons, [Cl-]i is mainly regulated by the action of the Na+-K+-Cl- importer NKCC1 and the K+-Cl- exporter KCC2. Recently, we have reported the discovery of ARN23746 as the lead candidate of a novel class of selective inhibitors of NKCC1. Importantly, ARN23746 is able to rescue core symptoms of Down syndrome (DS) and autism in mouse models. Here, we describe the discovery and extensive characterization of this chemical class of selective NKCC1 inhibitors, with focus on ARN23746 and other promising derivatives. In particular, we present compound 40 (ARN24092) as a backup/follow-up lead with in vivo efficacy in a mouse model of DS. These results further strengthen the potential of this new class of compounds for the treatment of core symptoms of brain disorders characterized by the defective NKCC1/KCC2 expression ratio.
Collapse
Affiliation(s)
- Marco Borgogno
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Annalisa Savardi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy.,Dulbecco Telethon Institute, 38123 Rome, Italy
| | - Jacopo Manigrasso
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Alessandra Turci
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy.,Università degli Studi di Genova, via Balbi, 5, 16126 Genoa, Italy
| | - Corinne Portioli
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy.,Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Giuliana Ottonello
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Sine Mandrup Bertozzi
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Andrea Contestabile
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy.,Dulbecco Telethon Institute, 38123 Rome, Italy
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| |
Collapse
|
16
|
Parrini M, Naskar S, Alberti M, Colombi I, Morelli G, Rocchi A, Nanni M, Piccardi F, Charles S, Ronzitti G, Mingozzi F, Contestabile A, Cancedda L. Restoring neuronal chloride homeostasis with anti-NKCC1 gene therapy rescues cognitive deficits in a mouse model of Down syndrome. Mol Ther 2021; 29:3072-3092. [PMID: 34058387 PMCID: PMC8531145 DOI: 10.1016/j.ymthe.2021.05.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 01/24/2023] Open
Abstract
A common feature of diverse brain disorders is the alteration of GABA-mediated inhibition because of aberrant, intracellular chloride homeostasis induced by changes in the expression and/or function of chloride transporters. Notably, pharmacological inhibition of the chloride importer NKCC1 is able to rescue brain-related core deficits in animal models of these pathologies and in some human clinical studies. Here, we show that reducing NKCC1 expression by RNA interference in the Ts65Dn mouse model of Down syndrome (DS) restores intracellular chloride concentration, efficacy of gamma-aminobutyric acid (GABA)-mediated inhibition, and neuronal network dynamics in vitro and ex vivo. Importantly, adeno-associated virus (AAV)-mediated, neuron-specific NKCC1 knockdown in vivo rescues cognitive deficits in diverse behavioral tasks in Ts65Dn animals. Our results highlight a mechanistic link between NKCC1 expression and behavioral abnormalities in DS mice and establish a molecular target for new therapeutic approaches, including gene therapy, to treat brain disorders characterized by neuronal chloride imbalance.
Collapse
Affiliation(s)
- Martina Parrini
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Shovan Naskar
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Micol Alberti
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Ilaria Colombi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Giovanni Morelli
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Anna Rocchi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genoa, Italy; IRCSS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Marina Nanni
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Federica Piccardi
- Animal Facility, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Severine Charles
- Genethon, 91000 Evry, France; Paris-Saclay University, University Evry, Inserm, Integrare research unit UMR_S951, 91000 Evry, France
| | - Giuseppe Ronzitti
- Genethon, 91000 Evry, France; Paris-Saclay University, University Evry, Inserm, Integrare research unit UMR_S951, 91000 Evry, France
| | - Federico Mingozzi
- Genethon, 91000 Evry, France; Paris-Saclay University, University Evry, Inserm, Integrare research unit UMR_S951, 91000 Evry, France
| | - Andrea Contestabile
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, 16163 Genoa, Italy.
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, 16163 Genoa, Italy; Dulbecco Telethon Institute, 00185 Rome, Italy.
| |
Collapse
|
17
|
Löscher W, Kaila K. Reply to the commentary by Ben-Ari and Delpire: Bumetanide and neonatal seizures: Fiction versus reality. Epilepsia 2021; 62:941-946. [PMID: 33764535 DOI: 10.1111/epi.16866] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
In this response to a commentary by Ben-Ari and Delpire on our recent study on the pharmacology of neonatal seizures in a novel, physiologically validated rat model of birth asphyxia, we wish to rectify their inaccurate descriptions of our model and data. Furthermore, because Ben-Ari and Delpire suggest that negative data on bumetanide from preclinical and clinical trials of neonatal seizures have few implications for (alleged) bumetanide actions on neurons in other brain disorders, we will discuss this topic as well. Based on the poor brain penetration of bumetanide, combined with the extremely wide cellular expression patterns of the target protein NKCC1, it is obvious that the numerous actions of systemically applied bumetanide described in the literature are not mediated by the drug's effects on central neurons.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Kai Kaila
- Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Synthesis and Enantioselective Pharmacokinetic/Pharmacodynamic Analysis of New CNS-Active Sulfamoylphenyl Carbamate Derivatives. Int J Mol Sci 2021; 22:ijms22073361. [PMID: 33806023 PMCID: PMC8037586 DOI: 10.3390/ijms22073361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
We recently reported a new class of carbamate derivatives as anticonvulsants. Among these, 3-methylpentyl(4-sulfamoylphenyl)carbamate (MSPC) stood out as the most potent compound with ED50 values of 13 mg/kg (i.p.) and 28 mg/kg (p.o.) in the rat maximal electroshock test (MES). 3-Methylpropyl(4-sulfamoylphenyl)carbamate (MBPC), reported and characterized here, is an MSPC analogous compound with two less aliphatic carbon atoms in its structure. As both MSPC and MBPC are chiral compounds, here, we studied the carbonic anhydrase inhibitory and anticonvulsant action of both MBPC enantiomers in comparison to those of MSPC as well as their pharmacokinetic properties. Racemic-MBPC and its enantiomers showed anticonvulsant activity in the rat maximal electroshock (MES) test with ED50 values in the range of 19–39 mg/kg. (R)-MBPC had a 65% higher clearance than its enantiomer and, consequently, a lower plasma exposure (AUC) than (S)-MSBC and racemic-MSBC. Nevertheless, (S)-MBPC had a slightly better brain permeability than (R)-MBPC with a brain-to-plasma (AUC) ratio of 1.32 (S-enantiomer), 1.49 (racemate), and 1.27 (R-enantiomer). This may contribute to its better anticonvulsant-ED50 value. The clearance of MBPC enantiomers was more enantioselective than the brain permeability and MES-ED50 values, suggesting that their anticonvulsant activity might be due to multiple mechanisms of action.
Collapse
|
19
|
Treatment experience in two adults with creatinfe transporter deficiency. Mol Genet Metab Rep 2021; 27:100731. [PMID: 33665121 PMCID: PMC7907527 DOI: 10.1016/j.ymgmr.2021.100731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/08/2023] Open
Abstract
Background Creatine transporter deficiency (CTD) is an X-linked form of intellectual disability (ID) caused by SCL6A8 mutations. Limited information exists on the adult course of CTD, and there are no treatment studies in adults. Methods We report two half-brothers with CTD, 36 and 31 years at intervention start. Their clinical phenotypes were consistent with CTD, and intervention was indicated because of progressive disease course, with increased difficulties speaking, walking and eating, resulting in fatigue, and malnutrition. We therefore performed treatment trials with arginine, glycine and a proprietary product containing creatine and betaine, and then a trial supplementing with betaine alone. Results In the older patient, glycine and arginine were accompanied by adverse effects, while betaine containing proprietary product gave improved balance, speech and feeding. When supplementation stopped, his condition deteriorated, and improved again after starting betaine supplement. Betaine supplementation was also beneficial in the younger patient, reducing his exhaustion, feeding difficulties and weight loss, making him able to resume his protected work. Discussion & conclusion We report for the first time that betaine supplement was well tolerated and efficient in adults with CTD, while arginine and/or glycine were accompanied by side effects. Thus, betaine is potentially a new useful treatment for CTD patients. We discuss possible underlying treatment mechanisms. Betaine has been reported to have antagonistic effect on NKCC1 channels, a mechanism shared with bumetanide, a medication with promising results in both in autism and epilepsy. Further studies of betaine's effects in well-designed studies are warranted.
Collapse
|
20
|
Roy AS, Sawrav MSS, Hossain MS, Johura FT, Ahmed SF, Hami I, Islam MK, Al Reza H, Bhuiyan MIH, Bahadur NM, Rahaman MM. In silico identification of potential inhibitors with higher potency than bumetanide targeting NKCC1: An important ion co-transporter to treat neurological disorders. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
21
|
Savardi A, Borgogno M, Narducci R, La Sala G, Ortega JA, Summa M, Armirotti A, Bertorelli R, Contestabile A, De Vivo M, Cancedda L. Discovery of a Small Molecule Drug Candidate for Selective NKCC1 Inhibition in Brain Disorders. Chem 2020; 6:2073-2096. [PMID: 32818158 PMCID: PMC7427514 DOI: 10.1016/j.chempr.2020.06.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/14/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
Abstract
Aberrant expression ratio of Cl− transporters, NKCC1 and KCC2, is implicated in several brain conditions. NKCC1 inhibition by the FDA-approved diuretic drug, bumetanide, rescues core symptoms in rodent models and/or clinical trials with patients. However, bumetanide has a strong diuretic effect due to inhibition of the kidney Cl− transporter NKCC2, creating critical drug compliance issues and health concerns. Here, we report the discovery of a new chemical class of selective NKCC1 inhibitors and the lead drug candidate ARN23746. ARN23746 restores the physiological intracellular Cl− in murine Down syndrome neuronal cultures, has excellent solubility and metabolic stability, and displays no issues with off-target activity in vitro. ARN23746 recovers core symptoms in mouse models of Down syndrome and autism, with no diuretic effect, nor overt toxicity upon chronic treatment in adulthood. ARN23746 is ready for advanced preclinical/manufacturing studies toward the first sustainable therapeutics for the neurological conditions characterized by impaired Cl− homeostasis. NKCC1 is a promising target for the treatment of brain disorders The newly discovered ARN23746 presents selective NKCC1 versus NKCC2 and KCC2 inhibition ARN23746 restores altered neuronal chloride homeostasis in vitro ARN23746 rescues core behaviors in DS and ASD mice with no diuretic effect or toxicity
In the last few decades, drug development for brain disorders has struggled to deliver effective small molecules as novel breakthrough classes of drugs. Discovery of effective chemical compounds for brain disorders has been greatly hampered by the fact that the few currently clinically used drugs were identified by serendipity, and these drugs’ mechanism of action is often poorly understood. Here, by leveraging drug repurposing as a means to quickly and safely evaluate the new pharmacological target NKCC1 and its implications in brain disorders in animal models and patients, we report an integrated strategy for the rational design and discovery of a novel, selective, and safe NKCC1 inhibitor, active in vivo. This compound has the potential to become a clinical drug candidate to treat several neurological conditions in patients. Eventually, this integrated drug-discovery strategy has the prospective to revive the appeal of drug-discovery programs in the challenging field of neuroscience.
Collapse
Affiliation(s)
- Annalisa Savardi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
- Università degli Studi di Genova, Via Balbi, 5, 16126 Genoa, Italy
| | - Marco Borgogno
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Roberto Narducci
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Giuseppina La Sala
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Jose Antonio Ortega
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Maria Summa
- In Vivo Pharmacology Facility, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Rosalia Bertorelli
- In Vivo Pharmacology Facility, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Andrea Contestabile
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
- Corresponding author
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
- Dulbecco Telethon Institute, Via Orus 2, 35129 Padova, Italy
- Corresponding author
| |
Collapse
|
22
|
Tang BL. The Expanding Therapeutic Potential of Neuronal KCC2. Cells 2020; 9:E240. [PMID: 31963584 PMCID: PMC7016893 DOI: 10.3390/cells9010240] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
Dysfunctions in GABAergic inhibitory neural transmission occur in neuronal injuries and neurological disorders. The potassium-chloride cotransporter 2 (KCC2, SLC12A5) is a key modulator of inhibitory GABAergic inputs in healthy adult neurons, as its chloride (Cl-) extruding activity underlies the hyperpolarizing reversal potential for GABAA receptor Cl- currents (EGABA). Manipulation of KCC2 levels or activity improve symptoms associated with epilepsy and neuropathy. Recent works have now indicated that pharmacological enhancement of KCC2 function could reactivate dormant relay circuits in an injured mouse's spinal cord, leading to functional recovery and the attenuation of neuronal abnormality and disease phenotype associated with a mouse model of Rett syndrome (RTT). KCC2 interacts with Huntingtin and is downregulated in Huntington's disease (HD), which contributed to GABAergic excitation and memory deficits in the R6/2 mouse HD model. Here, these recent advances are highlighted, which attest to KCC2's growing potential as a therapeutic target for neuropathological conditions resulting from dysfunctional inhibitory input.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore; ; Tel.: +65-6516-1040
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
23
|
Auer T, Schreppel P, Erker T, Schwarzer C. Impaired chloride homeostasis in epilepsy: Molecular basis, impact on treatment, and current treatment approaches. Pharmacol Ther 2020; 205:107422. [DOI: 10.1016/j.pharmthera.2019.107422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
|
24
|
The solute carrier transporters and the brain: Physiological and pharmacological implications. Asian J Pharm Sci 2019; 15:131-144. [PMID: 32373195 PMCID: PMC7193445 DOI: 10.1016/j.ajps.2019.09.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/17/2019] [Accepted: 09/27/2019] [Indexed: 02/05/2023] Open
Abstract
Solute carriers (SLCs) are the largest family of transmembrane transporters that determine the exchange of various substances, including nutrients, ions, metabolites, and drugs across biological membranes. To date, the presence of about 287 SLC genes have been identified in the brain, among which mutations or the resultant dysfunctions of 71 SLC genes have been reported to be correlated with human brain disorders. Although increasing interest in SLCs have focused on drug development, SLCs are currently still under-explored as drug targets, especially in the brain. We summarize the main substrates and functions of SLCs that are expressed in the brain, with an emphasis on selected SLCs that are important physiologically, pathologically, and pharmacologically in the blood-brain barrier, astrocytes, and neurons. Evidence suggests that a fraction of SLCs are regulated along with the occurrences of brain disorders, among which epilepsy, neurodegenerative diseases, and autism are representative. Given the review of SLCs involved in the onset and procession of brain disorders, we hope these SLCs will be screened as promising drug targets to improve drug delivery to the brain.
Collapse
|
25
|
Gregoriades JMC, Madaris A, Alvarez FJ, Alvarez-Leefmans FJ. Genetic and pharmacological inactivation of apical Na +-K +-2Cl - cotransporter 1 in choroid plexus epithelial cells reveals the physiological function of the cotransporter. Am J Physiol Cell Physiol 2019; 316:C525-C544. [PMID: 30576237 PMCID: PMC6482671 DOI: 10.1152/ajpcell.00026.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 01/08/2023]
Abstract
Choroid plexus epithelial cells (CPECs) secrete cerebrospinal fluid (CSF). They express Na+-K+-ATPase and Na+-K+-2Cl- cotransporter 1 (NKCC1) on their apical membrane, deviating from typical basolateral membrane location in secretory epithelia. Given this peculiarity, the direction of basal net ion fluxes mediated by NKCC1 in CPECs is controversial, and cotransporter function is unclear. Determining the direction of basal NKCC1-mediated fluxes is critical to understanding the function of apical NKCC1. If NKCC1 works in the net efflux mode, it may be directly involved in CSF secretion. Conversely, if NKCC1 works in the net influx mode, it would have an absorptive function, contributing to intracellular Cl- concentration ([Cl-]i) and cell water volume (CWV) maintenance needed for CSF secretion. We resolve this long-standing debate by electron microscopy (EM), live-cell-imaging microscopy (LCIM), and intracellular Na+ and Cl- measurements in single CPECs of NKCC1+/+ and NKCC1-/- mouse. NKCC1-mediated ion and associated water fluxes are tightly linked, thus their direction is inferred by measuring CWV changes. Genetic or pharmacological NKCC1 inactivation produces CPEC shrinkage. EM of NKCC1-/- CPECs in situ shows they are shrunken, forming large dilations of their basolateral extracellular spaces, yet remaining attached by tight junctions. Normarski LCIM shows in vitro CPECs from NKCC1-/- are ~17% smaller than NKCC1+/+. CWV measurements in calcein-loaded CPECs show that bumetanide (10 μM) produces ~16% decrease in CWV in NKCC1+/+ but not in NKCC1-/- CPECs. Our findings suggest that under basal conditions apical NKCC1 is continuously active and works in the net inward flux mode maintaining [Cl-]i and CWV needed for CSF secretion.
Collapse
Affiliation(s)
- Jeannine M C Gregoriades
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University , Dayton, Ohio
| | - Aaron Madaris
- Department of Biomedical, Industrial, and Human Factors Engineering, College of Engineering and Computer Science, Wright State University , Dayton, Ohio
| | - Francisco J Alvarez
- Department of Neuroscience, Cell Biology and Physiology, Wright State University , Dayton, Ohio
| | | |
Collapse
|
26
|
Lykke K, Assentoft M, Hørlyck S, Helms HC, Stoica A, Toft-Bertelsen TL, Tritsaris K, Vilhardt F, Brodin B, MacAulay N. Evaluating the involvement of cerebral microvascular endothelial Na +/K +-ATPase and Na +-K +-2Cl - co-transporter in electrolyte fluxes in an in vitro blood-brain barrier model of dehydration. J Cereb Blood Flow Metab 2019; 39:497-512. [PMID: 28994331 PMCID: PMC6421245 DOI: 10.1177/0271678x17736715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The blood-brain barrier (BBB) is involved in brain water and salt homeostasis. Blood osmolarity increases during dehydration and water is osmotically extracted from the brain. The loss of water is less than expected from pure osmotic forces, due to brain electrolyte accumulation. Although the underlying molecular mechanisms are unresolved, the current model suggests the luminally expressed Na+-K+-2Cl- co-transporter 1 (NKCC1) as a key component, while the role of the Na+/K+-ATPase remains uninvestigated. To test the involvement of these proteins in brain electrolyte flux under mimicked dehydration, we employed a tight in vitro co-culture BBB model with primary cultures of brain endothelial cells and astrocytes. The Na+/K+-ATPase and the NKCC1 were both functionally dominant in the abluminal membrane. Exposure of the in vitro BBB model to conditions mimicking systemic dehydration, i.e. hyperosmotic conditions, vasopressin, or increased [K+]o illustrated that NKCC1 activity was unaffected by exposure to vasopressin and to hyperosmotic conditions. Hyperosmotic conditions and increased K+ concentrations enhanced the Na+/K+-ATPase activity, here determined to consist of the α1 β1 and α1 β3 isozymes. Abluminally expressed endothelial Na+/K+-ATPase, and not NKCC1, may therefore counteract osmotic brain water loss during systemic dehydration by promoting brain Na+ accumulation.
Collapse
Affiliation(s)
- Kasper Lykke
- 1 Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Assentoft
- 1 Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Hørlyck
- 2 Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Cc Helms
- 2 Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anca Stoica
- 1 Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine L Toft-Bertelsen
- 1 Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katerina Tritsaris
- 3 Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Vilhardt
- 3 Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birger Brodin
- 2 Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nanna MacAulay
- 1 Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Brandt C, Seja P, Töllner K, Römermann K, Hampel P, Kalesse M, Kipper A, Feit PW, Lykke K, Toft-Bertelsen TL, Paavilainen P, Spoljaric I, Puskarjov M, MacAulay N, Kaila K, Löscher W. Bumepamine, a brain-permeant benzylamine derivative of bumetanide, does not inhibit NKCC1 but is more potent to enhance phenobarbital's anti-seizure efficacy. Neuropharmacology 2018; 143:186-204. [DOI: 10.1016/j.neuropharm.2018.09.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/30/2018] [Accepted: 09/16/2018] [Indexed: 01/01/2023]
|
28
|
Oernbo EK, Lykke K, Steffensen AB, Töllner K, Kruuse C, Rath MF, Löscher W, MacAulay N. Cerebral influx of Na + and Cl - as the osmotherapy-mediated rebound response in rats. Fluids Barriers CNS 2018; 15:27. [PMID: 30249273 PMCID: PMC6154956 DOI: 10.1186/s12987-018-0111-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/19/2018] [Indexed: 02/01/2023] Open
Abstract
Background Cerebral edema can cause life-threatening increase in intracranial pressure. Besides surgical craniectomy performed in severe cases, osmotherapy may be employed to lower the intracranial pressure by osmotic extraction of cerebral fluid upon intravenous infusion of mannitol or NaCl. A so-called rebound effect can, however, hinder continuous reduction in cerebral fluid by yet unresolved mechanisms. Methods We determined the brain water and electrolyte content in healthy rats treated with osmotherapy. Osmotherapy (elevated plasma osmolarity) was mediated by intraperitoneal injection of NaCl or mannitol with inclusion of pharmacological inhibitors of selected ion-transporters present at the capillary lumen or choroidal membranes. Brain barrier integrity was determined by fluorescence detection following intravenous delivery of Na+-fluorescein. Results NaCl was slightly more efficient than mannitol as an osmotic agent. The brain water loss was only ~ 60% of that predicted from ideal osmotic behavior, which could be accounted for by cerebral Na+ and Cl− accumulation. This electrolyte accumulation represented the majority of the rebound response, which was unaffected by the employed pharmacological agents. The brain barriers remained intact during the elevated plasma osmolarity. Conclusions A brain volume regulatory response occurs during osmotherapy, leading to the rebound response. This response involves brain accumulation of Na+ and Cl− and takes place by unresolved molecular mechanisms that do not include the common ion-transporting mechanisms located in the capillary endothelium at the blood–brain barrier and in the choroid plexus epithelium at the blood–CSF barrier. Future identification of these ion-transporting routes could provide a pharmacological target to prevent the rebound effect associated with the widely used osmotherapy.
Collapse
Affiliation(s)
- Eva Kjer Oernbo
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Lykke
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,AJVaccines, Copenhagen, Denmark
| | | | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Christina Kruuse
- Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, University of Copenhagen, Herlev, Copenhagen, Denmark
| | | | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark. .,Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.
| |
Collapse
|
29
|
Azosemide is more potent than bumetanide and various other loop diuretics to inhibit the sodium-potassium-chloride-cotransporter human variants hNKCC1A and hNKCC1B. Sci Rep 2018; 8:9877. [PMID: 29959396 PMCID: PMC6026185 DOI: 10.1038/s41598-018-27995-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/14/2018] [Indexed: 12/31/2022] Open
Abstract
The Na+–K+–2Cl− cotransporter NKCC1 plays a role in neuronal Cl− homeostasis secretion and represents a target for brain pathologies with altered NKCC1 function. Two main variants of NKCC1 have been identified: a full-length NKCC1 transcript (NKCC1A) and a shorter splice variant (NKCC1B) that is particularly enriched in the brain. The loop diuretic bumetanide is often used to inhibit NKCC1 in brain disorders, but only poorly crosses the blood-brain barrier. We determined the sensitivity of the two human NKCC1 splice variants to bumetanide and various other chemically diverse loop diuretics, using the Xenopus oocyte heterologous expression system. Azosemide was the most potent NKCC1 inhibitor (IC50s 0.246 µM for hNKCC1A and 0.197 µM for NKCC1B), being about 4-times more potent than bumetanide. Structurally, a carboxylic group as in bumetanide was not a prerequisite for potent NKCC1 inhibition, whereas loop diuretics without a sulfonamide group were less potent. None of the drugs tested were selective for hNKCC1B vs. hNKCC1A, indicating that loop diuretics are not a useful starting point to design NKCC1B-specific compounds. Azosemide was found to exert an unexpectedly potent inhibitory effect and as a non-acidic compound, it is more likely to cross the blood-brain barrier than bumetanide.
Collapse
|
30
|
Steffensen AB, Oernbo EK, Stoica A, Gerkau NJ, Barbuskaite D, Tritsaris K, Rose CR, MacAulay N. Cotransporter-mediated water transport underlying cerebrospinal fluid formation. Nat Commun 2018; 9:2167. [PMID: 29867199 PMCID: PMC5986890 DOI: 10.1038/s41467-018-04677-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
Cerebrospinal fluid (CSF) production occurs at a rate of 500 ml per day in the adult human. Conventional osmotic forces do not suffice to support such production rate and the molecular mechanisms underlying this fluid production remain elusive. Using ex vivo choroid plexus live imaging and isotope flux in combination with in vivo CSF production determination in mice, we identify a key component in the CSF production machinery. The Na+/K+/2Cl− cotransporter (NKCC1) expressed in the luminal membrane of choroid plexus contributes approximately half of the CSF production, via its unusual outward transport direction and its unique ability to directly couple water transport to ion translocation. We thereby establish the concept of cotransport of water as a missing link in the search for molecular pathways sustaining CSF production and redefine the current model of this pivotal physiological process. Our results provide a rational pharmacological target for pathologies involving disturbed brain fluid dynamics. Osmotic forces do not suffice to explain the rate of cerebrospinal fluid (CSF) production. Here, the authors show that the Na+/K+/2Cl− cotransporter in the choroid plexus contributes substantially to CSF production via its inherent ability to cotransport water.
Collapse
Affiliation(s)
- Annette B Steffensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Noerre Allé 14, 2200, Copenhagen, Denmark
| | - Eva K Oernbo
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Noerre Allé 14, 2200, Copenhagen, Denmark
| | - Anca Stoica
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Noerre Allé 14, 2200, Copenhagen, Denmark
| | - Niklas J Gerkau
- Institute of Neurobiology, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Dagne Barbuskaite
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Noerre Allé 14, 2200, Copenhagen, Denmark
| | - Katerina Tritsaris
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Noerre Allé 14, 2200, Copenhagen, Denmark
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Noerre Allé 14, 2200, Copenhagen, Denmark.
| |
Collapse
|
31
|
Lin WH, He M, Fan YN, Baines RA. An RNAi-mediated screen identifies novel targets for next-generation antiepileptic drugs based on increased expression of the homeostatic regulator pumilio. J Neurogenet 2018; 32:106-117. [PMID: 29718742 PMCID: PMC5989157 DOI: 10.1080/01677063.2018.1465570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Despite availability of a diverse range of anti-epileptic drugs (AEDs), only about two-thirds of epilepsy patients respond well to drug treatment. Thus, novel targets are required to catalyse the design of next-generation AEDs. Manipulation of neuron firing-rate homoeostasis, through enhancing Pumilio (Pum) activity, has been shown to be potently anticonvulsant in Drosophila. In this study, we performed a genome-wide RNAi screen in S2R + cells, using a luciferase-based dPum activity reporter and identified 1166 genes involved in dPum regulation. Of these genes, we focused on 699 genes that, on knock-down, potentiate dPum activity/expression. Of this subgroup, 101 genes are activity-dependent based on comparison with genes previously identified as activity-dependent by RNA-sequencing. Functional cluster analysis shows these genes are enriched in pathways involved in DNA damage, regulation of cell cycle and proteasomal protein catabolism. To test for anticonvulsant activity, we utilised an RNA-interference approach in vivo. RNAi-mediated knockdown showed that 57/101 genes (61%) are sufficient to significantly reduce seizure duration in the characterized seizure mutant, parabss. We further show that chemical inhibitors of protein products of some of the genes targeted are similarly anticonvulsant. Finally, to establish whether the anticonvulsant activity of identified compounds results from increased dpum transcription, we performed a luciferase-based assay to monitor dpum promoter activity. Third instar larvae exposed to sodium fluoride, gemcitabine, metformin, bestatin, WP1066 or valproic acid all showed increased dpum promoter activity. Thus, this study validates Pum as a favourable target for AED design and, moreover, identifies a number of lead compounds capable of increasing the expression of this homeostatic regulator.
Collapse
Affiliation(s)
- Wei-Hsiang Lin
- a Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester, Manchester Academic Health Science Centre , Manchester , UK
| | - Miaomiao He
- a Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester, Manchester Academic Health Science Centre , Manchester , UK
| | - Yuen Ngan Fan
- a Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester, Manchester Academic Health Science Centre , Manchester , UK
| | - Richard A Baines
- a Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester, Manchester Academic Health Science Centre , Manchester , UK
| |
Collapse
|
32
|
Abstract
INTRODUCTION Epilepsy is one of the most common neurological diseases affecting approximately 50 million people worldwide. Despite many advances in epilepsy research, nearly a third of patients with epilepsy have refractory or pharmacoresistant epilepsy. Despite the approval of a dozen antiepileptic drugs (AEDs) over the past decade, there are no agents that halt the development of epilepsy. Thus, newer and better AEDs that can prevent refractory seizures and modify the disease are needed for curing epilepsy. Areas covered: In this article, we highlight the recent advances and emerging trends in new and innovative drugs for epilepsy and seizure disorders. We review in detail top new drugs that are currently in clinical trials or agents that are under development and have novel mechanisms of action. Expert commentary: Among the new agents under clinical investigation, the majority were originally developed for treating other neurological diseases (everolimus, fenfluramine, nalutozan, bumetanide, and valnoctamide); several have mechanisms of action similar to those of conventional AEDs (AP, ganaxolone, and YKP3089); and some new agents represent novel mechanisms of actions (huperzine-A, cannabidiol, tonabersat, and VX-765).
Collapse
Affiliation(s)
- Iyan Younus
- a Department of Neuroscience and Experimental Therapeutics, College of Medicine , Texas A&M Health Science Center , Bryan , TX , USA
| | - Doodipala Samba Reddy
- a Department of Neuroscience and Experimental Therapeutics, College of Medicine , Texas A&M Health Science Center , Bryan , TX , USA
| |
Collapse
|
33
|
Kambli L, Bhatt LK, Oza M, Prabhavalkar K. Novel therapeutic targets for epilepsy intervention. Seizure 2017; 51:27-34. [DOI: 10.1016/j.seizure.2017.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 07/23/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022] Open
|
34
|
Turner AL, Perry MS. Outside the box: Medications worth considering when traditional antiepileptic drugs have failed. Seizure 2017; 50:173-185. [PMID: 28704741 DOI: 10.1016/j.seizure.2017.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/19/2017] [Accepted: 06/25/2017] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Review and discuss medications efficacious for seizure control, despite primary indications for other diseases, as treatment options in patients who have failed therapy with traditional antiepileptic drugs (AEDs). METHODS Literature searches were conducted utilizing PubMed and MEDLINE databases employing combinations of search terms including, but not limited to, "epilepsy", "refractory", "seizure", and the following medications: acetazolamide, amantadine, bumetanide, imipramine, lidocaine, verapamil, and various stimulants. RESULTS Data from relevant case studies, retrospective reviews, and available clinical trials were gathered, analyzed, and reported. Experience with acetazolamide, amantadine, bumetanide, imipramine, lidocaine, verapamil, and various stimulants show promise for cases of refractory epilepsy in both adults and children. Many medications lack large scale, randomized clinical trials, but the available data is informative when choosing treatment for patients that have failed traditional epilepsy therapies. CONCLUSIONS All neurologists have encountered a patient that failed nearly every AED, diet, and surgical option. For these patients, we often seek fortuitous discoveries within small series and case reports, hoping to find a treatment that might help the patient. In the present review, we describe medications for which antiepileptic effect has been ascribed after they were introduced for other indications.
Collapse
Affiliation(s)
- Adrian L Turner
- Department of Pharmacy, Cook Children's Medical Center, 1500 Cooper Street, 4th Floor, Fort Worth, TX, 76104, USA
| | - M Scott Perry
- Comprehensive Epilepsy Program, Jane and John Justin Neurosciences Center, Cook Children's Medical Center, Fort Worth, TX, USA.
| |
Collapse
|
35
|
Abstract
WNK (With-No-Lysine (K)) kinases are serine-threonine kinases characterized by an atypical placement of a catalytic lysine within the kinase domain. Mutations in human WNK1 or WNK4 cause an autosomal dominant syndrome of hypertension and hyperkalemia, reflecting the fact that WNK kinases are critical regulators of renal ion transport processes. Here, the role of WNKs in the regulation of ion transport processes in vertebrate and invertebrate renal function, cellular and organismal osmoregulation, and cell migration and cerebral edema will be reviewed, along with emerging literature demonstrating roles for WNKs in cardiovascular and neural development, Wnt signaling, and cancer. Conserved roles for these kinases across phyla are emphasized.
Collapse
Affiliation(s)
| | - Andreas Jenny
- Albert Einstein College of Medicine, New York, NY, United States.
| |
Collapse
|