1
|
Alves SS, de Oliveira JAC, Lazarini-Lopes W, Servilha-Menezes G, Grigório-de-Sant'Ana M, Del Vecchio F, Mazzei RF, Sousa Almeida S, da Silva Junior RMP, Garcia-Cairasco N. Audiogenic Seizures in the Streptozotocin-Induced Rat Alzheimer's Disease Model. J Alzheimers Dis 2023:JAD230153. [PMID: 37393501 DOI: 10.3233/jad-230153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative and progressive disorder with no cure and constant failures in clinical trials. The main AD hallmarks are amyloid-β (Aβ) plaques, neurofibrillary tangles, and neurodegeneration. However, many other events have been implicated in AD pathogenesis. Epilepsy is a common comorbidity of AD and there is important evidence indicating a bidirectional link between these two disorders. Some studies suggest that disturbed insulin signaling might play an important role in this connection. OBJECTIVE To understand the effects of neuronal insulin resistance in the AD-epilepsy link. METHODS We submitted the streptozotocin (STZ) induced rat AD Model (icv-STZ AD) to an acute acoustic stimulus (AS), a known trigger of seizures. We also assessed animals' performance in the memory test, the Morris water maze and the neuronal activity (c-Fos protein) induced by a single audiogenic seizure in regions that express high levels of insulin receptors. RESULTS We identified significant memory impairment and seizures in 71.43% of all icv-STZ/AS rats, in contrast to 22.22% of the vehicle group. After seizures, icv-STZ/AS rats presented higher number of c-Fos immunopositive cells in hippocampal, cortical, and hypothalamic regions. CONCLUSION STZ may facilitate seizure generation and propagation by impairment of neuronal function, especially in regions that express high levels of insulin receptors. The data presented here indicate that the icv-STZ AD model might have implications not only for AD, but also for epilepsy. Finally, impaired insulin signaling might be one of the mechanisms by which AD presents a bidirectional connection to epilepsy.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| | | | - Willian Lazarini-Lopes
- Department of Pharmacology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| | | | - Flavio Del Vecchio
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| | - Rodrigo Focosi Mazzei
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto - University of São Paulo (FFCLRP-USP), São Paulo, Brazil
| | - Sebastião Sousa Almeida
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto - University of São Paulo (FFCLRP-USP), São Paulo, Brazil
| | | | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| |
Collapse
|
2
|
Li Z, Chen L, Xu C, Chen Z, Wang Y. Non-invasive sensory neuromodulation in epilepsy: Updates and future perspectives. Neurobiol Dis 2023; 179:106049. [PMID: 36813206 DOI: 10.1016/j.nbd.2023.106049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Epilepsy, one of the most common neurological disorders, often is not well controlled by current pharmacological and surgical treatments. Sensory neuromodulation, including multi-sensory stimulation, auditory stimulation, olfactory stimulation, is a kind of novel noninvasive mind-body intervention and receives continued attention as complementary safe treatment of epilepsy. In this review, we summarize the recent advances of sensory neuromodulation, including enriched environment therapy, music therapy, olfactory therapy, other mind-body interventions, for the treatment of epilepsy based on the evidence from both clinical and preclinical studies. We also discuss their possible anti-epileptic mechanisms on neural circuit level and propose perspectives on possible research directions for future studies.
Collapse
Affiliation(s)
- Zhongxia Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang Rehabilitation Medical Center Department, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liying Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang Rehabilitation Medical Center Department, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
3
|
Khodadadi M, Zare M, Rezaei M, Bakhtiarzadeh F, Barkley V, Shojaei A, Raoufy MR, Mirnajafi-Zadeh J. Effect of low frequency stimulation of olfactory bulb on seizure severity, learning, and memory in kindled rats. Epilepsy Res 2022; 188:107055. [DOI: 10.1016/j.eplepsyres.2022.107055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
|
4
|
Fedotova IB, Surina NM, Nikolaev GM, Revishchin AV, Poletaeva II. Rodent Brain Pathology, Audiogenic Epilepsy. Biomedicines 2021; 9:biomedicines9111641. [PMID: 34829870 PMCID: PMC8615954 DOI: 10.3390/biomedicines9111641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
The review presents data which provides evidence for the internal relationship between the stages of rodent audiogenic seizures and post-ictal catalepsy with the general pattern of animal reaction to the dangerous stimuli and/or situation. The wild run stage of audiogenic seizure fit could be regarded as an intense panic reaction, and this view found support in numerous experimental data. The phenomenon of audiogenic epilepsy probably attracted the attention of physiologists as rodents are extremely sensitive to dangerous sound stimuli. The seizure proneness in this group shares common physiological characteristics and depends on animal genotype. This concept could be the new platform for the study of epileptogenesis mechanisms.
Collapse
Affiliation(s)
- Irina B. Fedotova
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.F.); (N.M.S.); (G.M.N.)
| | - Natalia M. Surina
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.F.); (N.M.S.); (G.M.N.)
| | - Georgy M. Nikolaev
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.F.); (N.M.S.); (G.M.N.)
| | | | - Inga I. Poletaeva
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.F.); (N.M.S.); (G.M.N.)
- Correspondence:
| |
Collapse
|
5
|
Garcia-Cairasco N, Podolsky-Gondim G, Tejada J. Searching for a paradigm shift in the research on the epilepsies and associated neuropsychiatric comorbidities. From ancient historical knowledge to the challenge of contemporary systems complexity and emergent functions. Epilepsy Behav 2021; 121:107930. [PMID: 33836959 DOI: 10.1016/j.yebeh.2021.107930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
In this review, we will discuss in four scenarios our challenges to offer possible solutions for the puzzle associated with the epilepsies and neuropsychiatric comorbidities. We need to recognize that (1) since quite old times, human wisdom was linked to the plural (distinct global places/cultures) perception of the Universe we are in, with deep respect for earth and nature. Plural ancestral knowledge was added with the scientific methods; however, their joint efforts are the ideal scenario; (2) human behavior is not different than animal behavior, in essence the product of Darwinian natural selection; knowledge of animal and human behavior are complementary; (3) the expression of human behavior follows the same rules that complex systems with emergent properties, therefore, we can measure events in human, clinical, neurobiological situations with complexity systems' tools; (4) we can use the semiology of epilepsies and comorbidities, their neural substrates, and potential treatments (including experimental/computational modeling, neurosurgical interventions), as a source and collection of integrated big data to predict with them (e.g.: machine/deep learning) diagnosis/prognosis, individualized solutions (precision medicine), basic underlying mechanisms and molecular targets. Once the group of symptoms/signals (with a myriad of changing definitions and interpretations over time) and their specific sequences are determined, in epileptology research and clinical settings, the use of modern and contemporary techniques such as neuroanatomical maps, surface electroencephalogram and stereoelectroencephalography (SEEG) and imaging (MRI, BOLD, DTI, SPECT/PET), neuropsychological testing, among others, are auxiliary in the determination of the best electroclinical hypothesis, and help design a specific treatment, usually as the first attempt, with available pharmacological resources. On top of ancient knowledge, currently known and potentially new antiepileptic drugs, alternative treatments and mechanisms are usually produced as a consequence of the hard, multidisciplinary, and integrated studies of clinicians, surgeons, and basic scientists, all over the world. The existence of pharmacoresistant patients, calls for search of other solutions, being along the decades the surgeries the most common interventions, such as resective procedures (i.e., selective or standard lobectomy, lesionectomy), callosotomy, hemispherectomy and hemispherotomy, added by vagus nerve stimulation (VNS), deep brain stimulation (DBS), neuromodulation, and more recently focal minimal or noninvasive ablation. What is critical when we consider the pharmacoresistance aspect with the potential solution through surgery, is still the pursuit of localization-dependent regions (e.g.: epileptogenic zone (EZ)), in order to decide, no matter how sophisticated are the brain mapping tools (EEG and MRI), the size and location of the tissue to be removed. Mimicking the semiology and studying potential neural mechanisms and molecular targets - by means of experimental and computational modeling - are fundamental steps of the whole process. Concluding, with the conjunction of ancient knowledge, coupled to critical and creative contemporary, scientific (not dogmatic) clinical/surgical, and experimental/computational contributions, a better world and of improved quality of life can be offered to the people with epilepsy and neuropsychiatric comorbidities, who are still waiting (as well as the scientists) for a paradigm shift in epileptology, both in the Basic Science, Computational, Clinical, and Neurosurgical Arenas. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Norberto Garcia-Cairasco
- Laboratório de Neurofisiologia e Neuroetologia Experimental, Departmento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto. Brazil; Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Guilherme Podolsky-Gondim
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Julian Tejada
- Departamento de Psicologia, Universidade Federal de Sergipe, Brazil.
| |
Collapse
|
6
|
Chronic cannabidiol (CBD) administration induces anticonvulsant and antiepileptogenic effects in a genetic model of epilepsy. Epilepsy Behav 2021; 119:107962. [PMID: 33887676 DOI: 10.1016/j.yebeh.2021.107962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 11/23/2022]
Abstract
Cannabidiol (CBD) is a marijuana compound implicated in epilepsy treatment in animal models and pharmacoresistant patients. However, little is known about chronic CBD administration's effects in chronic models of seizures, especially regarding its potential antiepileptogenic effects. In the present study, we combined a genetic model of epilepsy (the Wistar Audiogenic Rat strain - WARs), a chronic protocol of seizures (the audiogenic kindling - AuK), quantitative and sequential behavioral analysis (neuroethology), and microscopy imaging to analyze the effects of chronic CBD administration in a genetic model of epilepsy. The acute audiogenic seizure is characterized by tonic-clonic seizures and intense brainstem activity. However, during the AuK WARs can develop limbic seizures associated with the recruitment of forebrain and limbic structures. Here, chronic CBD administration, twice a day, attenuated brainstem, tonic-clonic seizures, prevented limbic recruitment, and suppressed limbic (kindled) seizures, suggesting CBD antiepileptogenic effects. Additionally, CBD prevented chronic neuronal hyperactivity, suppressing FosB immunostaining in the brainstem (inferior colliculus and periaqueductal gray matter) and forebrain (basolateral amygdala nucleus and piriform cortex), structures associated with tonic-clonic and limbic seizures, respectively. Chronic seizures increased cannabinoid receptors type 1 (CB1R) immunostaining in the hippocampus and the BLA, while CBD administration prevented changes in CB1R expression induced by the AuK. The neuroethological analysis provided details about CBD's protective effects against brainstem and limbic seizures associated with FosB expression. Our results strongly suggest chronic CBD anticonvulsant and antiepileptogenic effects associated with reduced chronic neuronal activity and modulation of CB1R expression. We also support the chronic use of CBD for epilepsies treatments.
Collapse
|
7
|
Delfino-Pereira P, Bertti-Dutra P, Del Vecchio F, de Oliveira JAC, Medeiros DDC, Cestari DM, Santos VR, Moraes MFD, Rosa JLG, Mendes EMAM, Garcia-Cairasco N. Behavioral and EEGraphic Characterization of the Anticonvulsant Effects of the Predator Odor (TMT) in the Amygdala Rapid Kindling, a Model of Temporal Lobe Epilepsy. Front Neurol 2020; 11:586724. [PMID: 33250852 PMCID: PMC7674931 DOI: 10.3389/fneur.2020.586724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/02/2020] [Indexed: 12/04/2022] Open
Abstract
Background: Clinical and experimental evidence indicates that olfactory stimulation modulates limbic seizures, either blocking or inducing ictal activity. Objective: We aim to evaluate the behavioral and electroencephalographic (EEGraphic) effects of dihydro-2,4,5-trimethylthiazoline (TMT) olfactory exposure on limbic seizures induced by amygdala rapid kindling (ARK). Materials and Methods: Wistar male rats (280–300 g) underwent stereotaxic surgery for electrode implantation in piriform cortex (PC), hippocampal formation (HIP), and amygdaloid complex (AMYG). Part of the animals was exposed to a saturated chamber with water or TMT, while others had ARK and olfactory exposure prior to the 21st stimulus. Behavioral responses were measured by traditional seizure severity scales (Racine and Pinel and Rovner) and/or by sequential analysis/neuroethology. The electrographic activity of epileptogenic limbic networks was quantified by the occurrence of the first and second EEG afterdischarges, comparing the 1st and 21st stimulus. The spectral analysis [Fast Fourier Transform (FFT)] of the first afterdischarge was performed at the 21st stimulus. Results: TMT olfactory exposure reduced the seizure severity in kindled rats, altering the displayed behavioral sequence. Moreover, TMT decreased the occurrence of first and second afterdischarges, at the 21st stimulus, and altered the spectral features. Conclusions: Both behavioral and EEGraphic evaluations indicated that TMT, a potent molecule with strong biological relevance, in fact, “predator odor,” suppressed the epileptiform activity in limbic networks.
Collapse
Affiliation(s)
- Polianna Delfino-Pereira
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.,Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Poliana Bertti-Dutra
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.,Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Flávio Del Vecchio
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - José A Cortes de Oliveira
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniel de Castro Medeiros
- Department of Physiology and Biophysics, Institute of Biological Science Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Electrical Engineering Graduate Program, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Daniel M Cestari
- Department of Computer Science, Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, Brazil
| | - Victor R Santos
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Morphology, Institute of Biological Science Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marcio F D Moraes
- Department of Physiology and Biophysics, Institute of Biological Science Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - João L G Rosa
- Department of Computer Science, Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, Brazil
| | - Eduardo M A M Mendes
- Electrical Engineering Graduate Program, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Norberto Garcia-Cairasco
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.,Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
8
|
Delfino-Pereira P, Berti Dutra P, Cortes de Oliveira JA, Casanova Turatti IC, Fernandes A, Peporine Lopes N, Garcia-Cairasco N. Are Predator Smell (TMT)-Induced Behavioral Alterations in Rats Able to Inhibit Seizures? Chem Senses 2020; 45:347-357. [DOI: 10.1093/chemse/bjaa023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abstract
We aimed to evaluate the chemical and behavioral effects of 2,5-dihydro-2,4,5-trimethylthiazoline (TMT) after olfactory exposure and to verify their influence in the expression of acute audiogenic seizures in the Wistar Audiogenic Rat (WAR) strain. PROTOCOL 1: TMT gas chromatography was applied to define odor saturation in a chamber to different concentrations, time required for saturation and desaturation, and if saturation was homogeneous. Also, male Adult Wistar rats were exposed to saline (SAL) or to different TMT concentrations and their behaviors were evaluated (neuroethology). PROTOCOL 2: Male adult WARs were exposed for 15 s to SAL or TMT, followed by sound stimulation for 1 min or until tonic–clonic convulsion. Behavioral analysis included latencies (wild running and tonic–clonic convulsion), seizure severity indexes, and neuroethology. Gas chromatography established a saturation homogeneous to different concentrations of TMT, indicating that saturation and desaturation occurred in 30 min. TMT triggered fear-like or aversion-like reactions associated with reduction in motor activity and in grooming behavior, in the 2 highest concentrations. Pure TMT presented anticonvulsant properties, such as less-severe seizure phenotype, as well as a decrease in tonic–clonic convulsion expression. TMT elicited fear-like or aversion-like behaviors in Wistar and WAR and can be utilized in a quantifiable and controllable way. Our results suggested possible antagonism between “fear-related” or “aversion-related” and “seizure-related” networks.
Collapse
Affiliation(s)
- Polianna Delfino-Pereira
- Neurosciences and Behavioral Sciences Departament, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Poliana Berti Dutra
- Neurosciences and Behavioral Sciences Departament, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Physiology Departament, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Izabel Cristina Casanova Turatti
- Physics and Chemistry Departament, Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Artur Fernandes
- Physiology Departament, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Norberto Peporine Lopes
- Physics and Chemistry Departament, Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Neurosciences and Behavioral Sciences Departament, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Physiology Departament, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
9
|
Joshi S, Bayat A, Jones A, Xiao X, Koubeissi MZ. The effects of ammonia stimulation on kainate-induced status epilepticus and anterior piriform cortex electrophysiology. Epilepsy Behav 2020; 104:106885. [PMID: 31935647 DOI: 10.1016/j.yebeh.2019.106885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Strong olfactory stimulation (OS) with such substances as toluene or ammonia has been reported to suppress seizures. We aimed to investigate the role of ammonia stimulation on acute kainic acid (KA)-induced seizures. We also investigated any possible effects of ammonia stimulation on the electrophysiology of the anterior piriform cortex (APC). METHODS Adult male Sprague-Dawley rats were implanted with bilateral hippocampal electrodes and an electrode in the left APC. Animals were exposed to either distilled water (control) or ammonia stimulation for 20 s every 5 min during KA induction of status epilepticus (SE). The electroencephalogram (EEG) was analyzed for seizure frequency, duration, severity, and total KA doses given prior to reaching SE. Seizure-free EEG epochs that coincided with OS were chosen and analyzed via wavelet analysis for any spectral changes. RESULTS We found no significant differences in seizure frequency, duration, severity, or administered KA doses before SE between the groups. In the experimental group, a wavelet analysis of variance (WANOVA) revealed a significant stimulation-induced increase of power in the delta and alpha bands prior to the first KA injection and higher power in the delta and theta bands after KA injection. CONCLUSIONS Whereas the spectral analysis of the APC revealed specific OS-induced changes, our findings suggest that OS with ammonia does not result in altering the threshold of attaining KA-induced SE. This does not rule out a potential role for OS in reducing recurrent seizures in the KA or other epilepsy models.
Collapse
Affiliation(s)
- Sweta Joshi
- Department of Neurology, George Washington University, 2150 Pennsylvania Ave, NW, Washington, DC 20037, USA
| | - Arezou Bayat
- Department of Neurology, George Washington University, 2150 Pennsylvania Ave, NW, Washington, DC 20037, USA
| | - Andrew Jones
- Translational Health Sciences, George Washington University, 2100 Pennsylvania Ave, NW, Washington, DC 20037, USA
| | - Xiao Xiao
- School of Engineering and Applied Science, George Washington University, 800 22nd St NW, Washington, DC 20052, USA
| | - Mohamad Z Koubeissi
- Department of Neurology, George Washington University, 2150 Pennsylvania Ave, NW, Washington, DC 20037, USA.
| |
Collapse
|