1
|
Chen P, Wang S, Zhang H, Li J. Recent advances in nanotherapy-based treatment of epilepsy. Colloids Surf B Biointerfaces 2025; 249:114499. [PMID: 39778465 DOI: 10.1016/j.colsurfb.2025.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/21/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Epilepsy is a complex neurological disorder characterized by recurrent seizures affecting millions of people worldwide. Despite advances in drug therapy, a significant proportion of patients remain resistant to conventional antiepileptic drugs (AEDs) due to challenges such as impermeability of the blood-brain barrier (BBB), multidrug resistance, and multifaceted epileptogenesis. Nanotechnology offers promising strategies to overcome these barriers by enhancing drug delivery across the BBB, improving target specificity and minimizing systemic side effects. This review explores recent advances in different innovative strategies of nanodelivery systems for epilepsy therapy, and we will discuss the design principles, mechanisms of action and therapeutic efficacy of these nanodelivery systems. In addition, we discuss the challenges and limitations that hinder the clinical translation of nanomedicine-based therapies for epilepsy. We emphasize the need for personalized and multidisciplinary approaches as well as the importance of continued research and interdisciplinary collaboration in order to translate these innovative strategies into effective therapies. Ultimately, the use of nanotechnology has the potential to enhance seizure control, reduce the burden of epilepsy, and improve the quality of life of patients affected by this complex neurological disorder. Nanotechnology-based drug delivery systems may usher in a new era of precision medicine for epilepsy treatment.
Collapse
Affiliation(s)
- Peng Chen
- General Hospital of Northern Theater Command, Liaoning 110016, China
| | - Shudong Wang
- Jinzhou Medical University, Liaoning 121001, China
| | - Heming Zhang
- Dalian Medical University, Liaoning 116044, China
| | - Jian Li
- General Hospital of Northern Theater Command, Liaoning 110016, China.
| |
Collapse
|
2
|
Xu C, Zhao D, Duan X, Liu Z, Li T, Zhang Y, Zhang Z, Song T, Zou Y, Jiang H, Fang F. Preliminary investigation on the economic cost of mitochondrial disease in Chinese children. Orphanet J Rare Dis 2025; 20:172. [PMID: 40211354 PMCID: PMC11987409 DOI: 10.1186/s13023-025-03708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/01/2025] [Indexed: 04/13/2025] Open
Abstract
BACKGROUND The prevalence of mitochondrial diseases is increasing, leading to a significant economic burden on families and society. However, nationwide cost data on their effects on China's economy remain limited. This study aimed to investigate the economic cost of mitochondrial diseases in Chinese children, analyse the relevant influencing factors, and provide a foundation for strategies to reduce the healthcare burden. METHODS In this single-centre, cross-sectional study, an online questionnaire was randomly administered to paediatric patients diagnosed with mitochondrial diseases between January 2012 and January 2022. The questionnaire included questions regarding demographic data, clinical information, and expenditure-related costs. Multivariate analysis of economic cost was performed using a generalised linear gamma conjugate model (A1). RESULTS The responses to 102 questionnaires were analysed. The median direct economic cost incurred for the diagnosis of mitochondrial disease was $8,520.19, with direct medical and non-medical costs of $6,769.06 and $2,092.98, respectively, and an indirect cost of $3,162.93. Healthcare insurance covers 27.29% of direct medical expenses. Multivariate analysis showed that the economic cost of diagnosing mitochondrial diseases was significantly correlated with the year of disease onset (P < 0.001). The median annual economic cost for treatment and symptom management after diagnosis was $12,292.79, with direct medical and non-medical costs of $10,887.53 and $1,360.44, respectively, and an indirect cost of $5,442.21. Healthcare insurance covered only 15.16% of direct medical expenses. No significant differences were observed between the subgroups after diagnosis and the annual economic costs of treatment or symptom management. CONCLUSION The study findings indicated that the economic burden of both the diagnosis and treatment of patients with mitochondrial diseases was substantial. Increased emphasis should be placed on primary and secondary prevention strategies to further reduce the overall economic burden of rare genetic diseases, such as mitochondrial diseases.
Collapse
Affiliation(s)
- Chaolong Xu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Dan Zhao
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xin Duan
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhimei Liu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Tongyue Li
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yunxi Zhang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zixuan Zhang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Tianyu Song
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ying Zou
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Huafang Jiang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
- Department of Pediatrics, WeiFang Maternal and Child Health Hospital, Weifang, China.
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| |
Collapse
|
3
|
Na JH, Lee YM. Therapeutic Approach to Epilepsy in Patients with Mitochondrial Diseases. Yonsei Med J 2025; 66:131-140. [PMID: 39999988 PMCID: PMC11865870 DOI: 10.3349/ymj.2024.0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/03/2024] [Accepted: 12/31/2024] [Indexed: 02/27/2025] Open
Abstract
Mitochondrial diseases (MDs) are genetic disorders with diverse phenotypes that affect high-energy-demand organs, notably the central nervous system and muscles. Epilepsy is a common comorbidity, affecting 40%-60% of patients with MDs and significantly reducing their quality of life. This review discusses the different treatment modalities for epilepsy in patients with MDs. Advances in genetic sequencing have identified specific mutations in mitochondrial and nuclear DNA, enabling more precise diagnoses and tailored therapeutic strategies. Anti-seizure medications and dietary interventions, such as ketogenic diets and their variants, have been effective in reducing seizures and improving mitochondrial function. Emerging treatments include gene therapy, mitochondrial transplantation, and antioxidants such as EPI-743, which protect mitochondrial integrity and improve neurological function. Additionally, therapies that promote mitochondrial biogenesis, such as bezafibrate and epicatechin, are being explored for their potential to enhance mitochondrial proliferation and energy production. Gene therapy aims to correct genetic defects underlying MDs. Techniques like mitochondrial gene replacement and using viral vectors to deliver functional genes have shown promise in preclinical studies. Mitochondrial transplantation, an emerging experimental technique, involves transferring healthy mitochondria into cells with dysfunctional mitochondria. This technique has been demonstrated to restore mitochondrial function and energy metabolism in preclinical models. Patient-derived induced pluripotent stem cells can model specific mitochondrial dysfunctions in vitro, allowing for the testing of various treatments tailored to individual genetic and biochemical profiles. The future of mitochondrial medicine is promising, with the development of more targeted and personalized therapeutic strategies offering hope for improved management and prognosis of mitochondrial epilepsy.
Collapse
Affiliation(s)
- Ji-Hoon Na
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Mock Lee
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Na JH, Lee YM. Diagnosis and Management of Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like Episodes Syndrome. Biomolecules 2024; 14:1524. [PMID: 39766231 PMCID: PMC11672891 DOI: 10.3390/biom14121524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 01/05/2025] Open
Abstract
Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a complex mitochondrial disorder characterized by a wide range of systemic manifestations. Key clinical features include recurrent stroke-like episodes, seizures, lactic acidosis, muscle weakness, exercise intolerance, sensorineural hearing loss, diabetes, and progressive neurological decline. MELAS is most commonly associated with mutations in mitochondrial DNA, particularly the m.3243A>G mutation in the MT-TL1 gene, which encodes tRNALeu (CUR). These mutations impair mitochondrial protein synthesis, leading to defective oxidative phosphorylation and energy failure at the cellular level. The clinical presentation and severity vary widely among patients, but the syndrome often results in significant morbidity and reduced life expectancy because of progressive neurological deterioration. Current management is largely focused on conservative care, including anti-seizure medications, arginine or citrulline supplementation, high-dose taurine, and dietary therapies. However, these therapies do not address the underlying genetic mutations, leaving many patients with substantial disease burden. Emerging experimental treatments, such as gene therapy and mitochondrial replacement techniques, aim to correct the underlying genetic defects and offer potential curative strategies. Further research is essential to understand the pathophysiology of MELAS, optimize current therapies, and develop novel treatments that may significantly improve patient outcomes and extend survival.
Collapse
Affiliation(s)
| | - Young-Mock Lee
- Departments of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea;
| |
Collapse
|
5
|
Na JH, Lee YM. Therapeutic outcome of patients with Lennox-Gastaut syndrome with mitochondrial respiratory chain complex I deficiency. Front Neurol 2024; 15:1305404. [PMID: 38529040 PMCID: PMC10962681 DOI: 10.3389/fneur.2024.1305404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/31/2024] [Indexed: 03/27/2024] Open
Abstract
Background Lennox-Gastaut syndrome (LGS), a severe developmental epileptic encephalopathy, has various underlying causes. Mitochondrial respiratory chain complex I (MRC I) deficiency is an important cause of metabolic disorders such as mitochondrial dysfunction that can compromise brain function, thereby causing intractable epilepsy, including LGS. Thus, it can be expected that the presence or absence of MRC I deficiency may affect the treatment outcome of patients with LGS. Objectives In this retrospective study, we aimed to investigate differences in the epilepsy characteristics and treatment outcomes between patients with LGS with and without MRC I deficiency. Methods We retrospectively reviewed the medical records of 92 patients with LGS. We divided 68 patients with LGS according to the presence (n = 30) or absence (n = 38) of MRC I deficiency and compared their epilepsy characteristics. Results Generalized tonic and drop seizures were significantly worse in patients with LGS and MRC I deficiency than in those without MRC I deficiency group at the 1-year follow-up (p < 0.001) and final follow-up 1 (p < 0.001). Patients with LGS and MRC I deficiency had significantly fewer electroencephalogram (EEG) improvements compared to those without MRC I deficiency at the 1-year follow-up (p = 0.031). Additionally, in the final follow-up period, patients with LGS and MRC I deficiency had significantly less improvement in EEG findings compared to patients without MRC I deficiency (p < 0.001). Conclusion The overall treatment prognosis-in terms of improvement in traumatic generalized tonic seizure, drop seizure, and EEG findings-is worse in patients with LGS and MRC I deficiency than that in patients with LGS but without MRC I deficiency. Additional and targeted treatment is required to treat LGS with MRC I deficiency.
Collapse
Affiliation(s)
| | - Young-Mock Lee
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Conti F, Di Martino S, Drago F, Bucolo C, Micale V, Montano V, Siciliano G, Mancuso M, Lopriore P. Red Flags in Primary Mitochondrial Diseases: What Should We Recognize? Int J Mol Sci 2023; 24:16746. [PMID: 38069070 PMCID: PMC10706469 DOI: 10.3390/ijms242316746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Primary mitochondrial diseases (PMDs) are complex group of metabolic disorders caused by genetically determined impairment of the mitochondrial oxidative phosphorylation (OXPHOS). The unique features of mitochondrial genetics and the pivotal role of mitochondria in cell biology explain the phenotypical heterogeneity of primary mitochondrial diseases and the resulting diagnostic challenges that follow. Some peculiar features ("red flags") may indicate a primary mitochondrial disease, helping the physician to orient in this diagnostic maze. In this narrative review, we aimed to outline the features of the most common mitochondrial red flags offering a general overview on the topic that could help physicians to untangle mitochondrial medicine complexity.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Filippo Drago
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95213 Catania, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Vincenzo Montano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Gabriele Siciliano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Michelangelo Mancuso
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Piervito Lopriore
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| |
Collapse
|
7
|
Wahedi A, Soondram C, Murphy AE, Skene N, Rahman S. Transcriptomic analyses reveal neuronal specificity of Leigh syndrome associated genes. J Inherit Metab Dis 2023; 46:243-260. [PMID: 36502462 DOI: 10.1002/jimd.12578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Leigh syndrome is a rare, inherited, complex neurometabolic disorder with genetic and clinical heterogeneity. Features present in affected patients range from classical stepwise developmental regression to ataxia, seizures, tremor, and occasionally psychiatric manifestations. Currently, more than 100 monogenic causes of Leigh syndrome have been identified, yet the pathophysiology remains unknown. Here, we sought to determine the cellular specificity within the brain of all genes currently associated with Leigh syndrome. Further, we aimed to investigate potential genetic commonalities between Leigh syndrome and other disorders with overlapping clinical features. Enrichment of our target genes within the brain was evaluated with co-expression (CoExp) network analyses constructed using existing UK Brain Expression Consortium data. To determine the cellular specificity of the Leigh associated genes, we employed expression weighted cell type enrichment (EWCE) analysis of single-cell RNA-Seq data. Finally, CoExp network modules demonstrating enrichment of Leigh syndrome associated genes were then utilised for synaptic gene ontology analysis and heritability analysis. CoExp network analyses revealed that Leigh syndrome associated genes exhibit the highest levels of expression in brain regions most affected on MRI in affected patients. EWCE revealed significant enrichment of target genes in hippocampal and somatosensory pyramidal neurons and interneurons of the brain. Analysis of CoExp modules enriched with our target genes revealed preferential association with pre-synaptic structures. Heritability studies suggested some common enrichment between Leigh syndrome and Parkinson disease and epilepsy. Our findings suggest a primary mitochondrial dysfunction as the underlying basis of Leigh syndrome, with associated genes primarily expressed in neuronal cells.
Collapse
Affiliation(s)
- Azizia Wahedi
- Mitochondrial Research Group, Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Chandika Soondram
- Mitochondrial Research Group, Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Biochemistry, University College London, London, UK
| | - Alan E Murphy
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Nathan Skene
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Shamima Rahman
- Mitochondrial Research Group, Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Metabolic Unit, Great Ormond Street Hospital, London, UK
| |
Collapse
|
8
|
Duc NM, Thu NTM, Bui CB, Hoa G, Le Trung Hieu N. Genotype and phenotype characteristics of West syndrome in 20 Vietnamese children: Two novel variants detected by next-generation sequencing. Epilepsy Res 2023; 190:107094. [PMID: 36689859 DOI: 10.1016/j.eplepsyres.2023.107094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND In children with West syndrome (WS), whose treatment is challenging due to drug resistance and poor prognosis, investigation of genetic etiology and genotype-phenotype characteristics might assist in treatment optimization and genetic counseling. OBJECTIVE In this study, we aimed to present the results of genetic analysis and the corresponding phenotypes in a cohort of twenty children with WS in Vietnam. METHODS Our study was designed as a single-institution retrospective case series, in which consecutive sampling was used to select WS children having undergone genetic testing. Identified variants were investigated individually or as a variant combination by bioinformatics platforms. Clinical data were used to establish the genotype-phenotype correlation and compare clinical characteristics between groups of genetic causes and unknown causes. RESULTS Genetic testing identified at least one variant in 17/20 children. According to ACMG 2015, of all variants, one variant (3.9%) was classified as a benign variant, 16 variants (61.5%) were variants of uncertain significance, 4 (15.4%) were likely pathogenic variants, and 5 (19.2%) were pathogenic variants. These 26 variants belonged to 21 genes, of which eight candidate genes were CREBBP, MED25, HDAC8, SCN3A, ABCD1, TSC2, COL4A1, and NDUFA10. Two novel variants of SCN3A and TSC2 were found. Predicted pathogenic variant combinations were identified in two cases. Compared to three children of unknown etiology, five children with genetic causes had a higher rate of abnormal brain structures, developmental delay, and treatment resistance. CONCLUSIONS WS has a genetically heterogeneous etiology, and some cases might be polygenically susceptible. Our findings expand the disease's genotype-phenotype spectrum and support previous literature results that genetic etiology poses an unfavorable outcome in WS.
Collapse
Affiliation(s)
- Nguyen Minh Duc
- Neurology Department, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 70000, Vietnam.
| | - Nguyen Thuy Minh Thu
- Neurology Department, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 70000, Vietnam; Neurology Department, Children Hospital 2, Ho Chi Minh City 70000, Vietnam.
| | - Chi-Bao Bui
- School of Medicine, Vietnam National University, Ho Chi Minh City 70701, Vietnam.
| | - Giang Hoa
- Medical Genetics Institute, Ho Chi Minh City 70000, Vietnam.
| | - Nguyen Le Trung Hieu
- Neurology Department, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 70000, Vietnam; Neurology Department, Children Hospital 2, Ho Chi Minh City 70000, Vietnam.
| |
Collapse
|
9
|
Lopriore P, Gomes F, Montano V, Siciliano G, Mancuso M. Mitochondrial Epilepsy, a Challenge for Neurologists. Int J Mol Sci 2022; 23:ijms232113216. [PMID: 36362003 PMCID: PMC9656379 DOI: 10.3390/ijms232113216] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 01/29/2023] Open
Abstract
Primary mitochondrial diseases are relatively common inborn errors of energy metabolism, with a combined prevalence of 1 in 4300. These disorders typically affect tissues with high energy requirements, including the brain. Epilepsy affects >1% of the worldwide population, making it one of the most common neurological illnesses; it may be the presenting feature of a mitochondrial disease, but is often part of a multisystem clinical presentation. The major genetic causes of mitochondrial epilepsy are mutations in mitochondrial DNA and in the nuclear-encoded gene POLG. Treatment of mitochondrial epilepsy may be challenging, often representing a poor prognostic feature. This narrative review will cover the most recent advances in the field of mitochondrial epilepsy, from pathophysiology and genetic etiologies to phenotype and treatment options.
Collapse
Affiliation(s)
- Piervito Lopriore
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Fábio Gomes
- Neurology Department, Coimbra University Hospital Centre, 3004-561 Coimbra, Portugal
| | - Vincenzo Montano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Gabriele Siciliano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Michelangelo Mancuso
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
10
|
Discovery of Therapeutics Targeting Oxidative Stress in Autosomal Recessive Cerebellar Ataxia: A Systematic Review. Pharmaceuticals (Basel) 2022; 15:ph15060764. [PMID: 35745683 PMCID: PMC9228961 DOI: 10.3390/ph15060764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 01/05/2023] Open
Abstract
Autosomal recessive cerebellar ataxias (ARCAs) are a heterogeneous group of rare neurodegenerative inherited disorders. The resulting motor incoordination and progressive functional disabilities lead to reduced lifespan. There is currently no cure for ARCAs, likely attributed to the lack of understanding of the multifaceted roles of antioxidant defense and the underlying mechanisms. This systematic review aims to evaluate the extant literature on the current developments of therapeutic strategies that target oxidative stress for the management of ARCAs. We searched PubMed, Web of Science, and Science Direct Scopus for relevant peer-reviewed articles published from 1 January 2016 onwards. A total of 28 preclinical studies fulfilled the eligibility criteria for inclusion in this systematic review. We first evaluated the altered cellular processes, abnormal signaling cascades, and disrupted protein quality control underlying the pathogenesis of ARCA. We then examined the current potential therapeutic strategies for ARCAs, including aromatic, organic and pharmacological compounds, gene therapy, natural products, and nanotechnology, as well as their associated antioxidant pathways and modes of action. We then discussed their potential as antioxidant therapeutics for ARCAs, with the long-term view toward their possible translation to clinical practice. In conclusion, our current understanding is that these antioxidant therapies show promise in improving or halting the progression of ARCAs. Tailoring the therapies to specific disease stages could greatly facilitate the management of ARCAs.
Collapse
|
11
|
Na JH, Kim HD, Lee YM. Effective application of corpus callosotomy in pediatric intractable epilepsy patients with mitochondrial dysfunction. Ther Adv Neurol Disord 2022; 15:17562864221092551. [PMID: 35498367 PMCID: PMC9039434 DOI: 10.1177/17562864221092551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Whether epilepsy surgery, such as corpus callosotomy is effective in patients with pediatric intractable epilepsy with mitochondrial dysfunction is controversial, and there is a paucity of literature on this issue. Objective: This study aimed to assess and describe the effective application of corpus callosotomy for treating pediatric patients with intractable epilepsy with mitochondrial dysfunction in a single institution in Korea. Methods: This was a retrospective study of pediatric patients with intractable epilepsy and mitochondrial dysfunction who underwent corpus callosotomy in a single tertiary care center. Ten patients with intractable epilepsy with mitochondrial dysfunction were included, and 10 patients with intractable epilepsy with non-mitochondrial dysfunctions were included as a control group. The outcomes of corpus callosotomy in the two groups were evaluated and compared. Results: Corpus callosotomy was safely performed and was efficacious in reducing seizure frequency in both groups. The group with non-mitochondrial dysfunction showed slightly better treatment outcomes, with greater reductions in overall seizures, traumatic falling seizures, and electroencephalography improvements, but the differences in treatment effects were not statistically significant. Conclusions: Our study is meaningful as it identified the use of corpus callosotomy as a means to save lives and improve quality of life by reducing the frequency of seizures and those associated with traumatic falling in pediatric patients with intractable epilepsy with mitochondrial dysfunction. Larger multicenter studies are necessary to confirm the efficacy of the procedure.
Collapse
Affiliation(s)
- Ji-Hoon Na
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
- Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Heung Dong Kim
- Department of Pediatrics, Yonsei University College of Medicine, Severance Children’s Hospital, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Mock Lee
- Department of Pediatrics, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-ro, Gangnam-gu, Seoul 135-720, Korea
- Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
USE OF KETOGENIC DIET THERAPY IN EPILEPSY WITH MITOCHONDRIAL DYSFUNCTION: A SYSTEMATIC AND CRITICAL REVIEW. BIOTECHNOLOGIA ACTA 2022. [DOI: 10.15407/biotech15.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With the development of molecular techniques over time more than %60 of epilepsy has associated with mitochondrial (mt) dysfunction. Ketogenic diet (KD) has been used in the treatment of epilepsy since the 1920s. Aim. To evaluate the evidence behind KD in mt dysfunction in epilepsy. Methods. Databases PubMed, Google Scholar and MEDLINE were searched in an umbrella approach to 12 March 2021 in English. To identify relevant studies specific search strategies were devised for the following topics: (1) mitochondrial dysfunction (2) epilepsy (3) KD treatment. Results. From 1794 papers, 36 articles were included in analysis: 16 (%44.44) preclinical studies, 11 (%30.55) case reports, 9 (%25) clinical studies. In all the preclinic studies, KD regulated the number of mt profiles, transcripts of metabolic enzymes and encoding mt proteins, protected the mice against to seizures and had an anticonvulsant mechanism. Case reports and clinical trials have reported patients with good results in seizure control and mt functions, although not all of them give good results as well as preclinical. Conclusion. Healthcare institutions, researchers, neurologists, health promotion organizations, and dietitians should consider these results to improve KD programs and disease outcomes for mt dysfunction in epilepsy.
Collapse
|
13
|
Yao R, Zhou Y, Tang J, Li N, Yu T, He Y, Wang C, Wang J, Wang J. Genetic Diagnosis Spectrum and Multigenic Burden of Exome-Level Rare Variants in a Childhood Epilepsy Cohort. Front Genet 2022; 12:782419. [PMID: 34992632 PMCID: PMC8725238 DOI: 10.3389/fgene.2021.782419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
Childhood epilepsy is a considerably heterogeneous neurological condition with a high worldwide incidence. Genetic diagnosis of childhood epilepsy provides the most accurate pathogenetic evidence; however, a large proportion of highly suspected cases remain undiagnosed. Accumulation of rare variants at the exome level as a multigenic burden contributing to childhood epilepsy should be further evaluated. In this retrospective analysis, exome-level sequencing was used to depict the mutation spectra of 294 childhood epilepsy patients from Shanghai Children’s Medical Center, Department of Neurology. Furthermore, variant information from exome sequencing data was analyzed apart from monogenic diagnostic purposes to elucidate the possible multigenic burden of rare variants related to epilepsy pathogenesis. Exome sequencing reached a diagnostic rate of 30.61% and identified six genes not currently listed in the epilepsy-associated gene list. A multigenic burden study revealed a three-fold possibility that deleterious missense mutations in ion channel and synaptic genes in the undiagnosed cohort may contribute to the genetic risk of childhood epilepsy, whereas variants in the gene categories of cell growth, metabolic, and regulatory function showed no significant difference. Our study provides a comprehensive overview of the genetic diagnosis of a Chinese childhood epilepsy cohort and provides novel insights into the genetic background of these patients. Harmful missense mutations in genes related to ion channels and synapses are most likely to produce a multigenic burden in childhood epilepsy.
Collapse
Affiliation(s)
- Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yunqing Zhou
- Department of Neurology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Tang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Niu Li
- Department of Neurology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Yu
- Department of Neurology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingzhong He
- Department of Neurology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cuijin Wang
- Department of Neurology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiwen Wang
- Department of Neurology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Epilepsy in Mitochondrial Diseases-Current State of Knowledge on Aetiology and Treatment. CHILDREN-BASEL 2021; 8:children8070532. [PMID: 34206602 PMCID: PMC8303198 DOI: 10.3390/children8070532] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022]
Abstract
Mitochondrial diseases are a heterogeneous group of diseases resulting from energy deficit and reduced adenosine triphosphate (ATP) production due to impaired oxidative phosphorylation. The manifestation of mitochondrial disease is usually multi-organ. Epilepsy is one of the most common manifestations of diseases resulting from mitochondrial dysfunction, especially in children. The onset of epilepsy is associated with poor prognosis, while its treatment is very challenging, which further adversely affects the course of these disorders. Fortunately, our knowledge of mitochondrial diseases is still growing, which gives hope for patients to improve their condition in the future. The paper presents the pathophysiology, clinical picture and treatment options for epilepsy in patients with mitochondrial disease.
Collapse
|
15
|
Abstract
Mitochondrial disorders (MIDs) are a heterogeneous group of genetic metabolic diseases due to mutations in the mitochondrial DNA (mtDNA) or in the nuclear DNA (nDNA) (Rahman and Rahman, 2018). Some affected genes encode proteins with various functions, or structural RNAs such as transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs). MIDs may also be caused by mutations in non-coding regions (e.g., D-loop of mtDNA) (Rahman and Rahman, 2018). Proteins involved in MIDs include enzymes, assembling factors, transport proteins, signaling proteins, pore proteins, and fusion/fission proteins (Gorman et al., 2016). The pathways most frequently affected by mutations in "mitochondrial genes" are the respiratory chain and the oxidative phosphorylation. Dysfunction of many other pathways (e.g., β-oxidation, pyruvate-dehydrogenase complex, and heme synthesis) may also manifest as MIDs (Hu et al., 2019). The estimated prevalence of MIDs is at least 1:5000 (Ng and Turnbull, 2016).
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Vienna, Austria
| |
Collapse
|
16
|
Moro L, Rech G, Linazzi AM, Dos Santos TG, de Oliveira DL. An optimized method for adult zebrafish brain-tissue dissociation that allows access mitochondrial function under healthy and epileptic conditions. Brain Res 2021; 1765:147498. [PMID: 33894225 DOI: 10.1016/j.brainres.2021.147498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/27/2021] [Accepted: 04/19/2021] [Indexed: 11/26/2022]
Abstract
Mitochondria play key roles in brain metabolism. Not surprisingly, mitochondria dysfunction is a ubiquitous cause of neurodegenerative diseases. In turn, acquired forms of epilepsy etiology is specifically intriguing since mitochondria function and dysfunction remain not completely enlightened. Investigation in the field includes models of epileptic disorder using mainly rodents followed by mitochondrial function evaluation, which in general evidenced controversial data. So, we considered the efforts and limitations in this research field and we took into account that sample preparation and quality are critical for bioenergetics investigation. For these reasons the aim of the present study was to develop a thorough protocol for adult zebrafish brain-tissue dissociation to evaluate oxygen consumption flux and reach the bioenergetics profile in health and models of epileptic disorder in both, in vitro using pentylenetetrazole (PTZ) and N-methyl-D-Aspartic acid (NMDA), and in vivo after kainic acid (KA)-induced status epilepticus. In conclusion, we verify that fire-polished glass Pasteur pipette is eligible to brain-tissue dissociation and to study mitochondrial function and dysfunction in adult zebrafish. The results give evidence for large effect size in increase of coupling efficiency respiration (p/O2) correlated to treatment with PTZ and spare respiratory capacity (SRC) in KA-induced model indicating oxidative phosphorylation (OXPHOS) variable alterations. Further investigation is needed in order to clarify the bioenergetics role as well as other mitochondrial functions in epilepsy.
Collapse
Affiliation(s)
- Luana Moro
- Laboratory of Cellular Neurochemistry - Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Porto Alegre, RS, Brazil.
| | - Giovana Rech
- Laboratory of Cellular Neurochemistry - Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Porto Alegre, RS, Brazil.
| | - Amanda Martins Linazzi
- Laboratory of Cellular Neurochemistry - Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Porto Alegre, RS, Brazil
| | - Thainá Garbino Dos Santos
- Laboratory of Cellular Neurochemistry - Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Porto Alegre, RS, Brazil
| | - Diogo Lösch de Oliveira
- Laboratory of Cellular Neurochemistry - Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Porto Alegre, RS, Brazil
| |
Collapse
|
17
|
Plantone D, Pardini M, Rinaldi G. Riboflavin in Neurological Diseases: A Narrative Review. Clin Drug Investig 2021; 41:513-527. [PMID: 33886098 DOI: 10.1007/s40261-021-01038-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 12/11/2022]
Abstract
Riboflavin is classified as one of the water-soluble B vitamins. It is part of the functional group of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) cofactors and is required for numerous flavoprotein-catalysed reactions. Riboflavin has important antioxidant properties, essential for correct cell functioning. It is required for the conversion of oxidised glutathione to the reduced form and for the mitochondrial respiratory chain as complexes I and II contain flavoprotein reductases and electron transferring flavoproteins. Riboflavin deficiency has been demonstrated to impair the oxidative state of the body, especially in relation to lipid peroxidation status, in both animal and human studies. In the nervous system, riboflavin is essential for the synthesis of myelin and its deficiency can determine the disruption of myelin lamellae. The inherited condition of restricted riboflavin absorption and utilisation, reported in about 10-15% of world population, warrants further investigation in relation to its association with the main neurodegenerative diseases. Several successful trials testing riboflavin for migraine prevention were performed, and this drug is currently classified as a Level B medication for migraine according to the American Academy of Neurology evidence-based rating, with evidence supporting its efficacy. Brown-Vialetto-Van Laere syndrome and Fazio-Londe diseases are now renamed as "riboflavin transporter deficiency" because these are autosomal recessive diseases caused by mutations of SLC52A2 and SLC52A3 genes that encode riboflavin transporters. High doses of riboflavin represent the mainstay of the therapy of these diseases and high doses of riboflavin should be rapidly started as soon as the diagnosis is suspected and continued lifelong. Remarkably, some mitochondrial diseases respond to supplementation with riboflavin. These include multiple acyl-CoA-dehydrogenase deficiency (which is caused by ETFDH gene mutations in the majority of the cases, or mutations in the ETFA and ETFB genes in a minority), mutations of ACAD9 gene, mutations of AIFM1 gene, mutations of the NDUFV1 and NDUFV2 genes. Therapeutic riboflavin administration has been tried in other neurological diseases, including stroke, multiple sclerosis, Friedreich's ataxia and Parkinson's disease. Unfortunately, the design of these clinical trials was not uniform, not allowing to accurately assess the real effects of this molecule on the disease course. In this review we analyse the properties of riboflavin and its possible effects on the pathogenesis of different neurological diseases, and we will review the current indications of this vitamin as a therapeutic intervention in neurology.
Collapse
Affiliation(s)
- Domenico Plantone
- Neurology Unit, Azienda Sanitaria Locale della Provincia di Bari, Di Venere Teaching Hospital, Via Ospedale Di Venere 1, 70131, Bari, Italy.
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Giuseppe Rinaldi
- Neurology Unit, Azienda Sanitaria Locale della Provincia di Bari, Di Venere Teaching Hospital, Via Ospedale Di Venere 1, 70131, Bari, Italy
| |
Collapse
|
18
|
Barcelos I, Shadiack E, Ganetzky RD, Falk MJ. Mitochondrial medicine therapies: rationale, evidence, and dosing guidelines. Curr Opin Pediatr 2020; 32:707-718. [PMID: 33105273 PMCID: PMC7774245 DOI: 10.1097/mop.0000000000000954] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Primary mitochondrial disease is a highly heterogeneous but collectively common inherited metabolic disorder, affecting at least one in 4300 individuals. Therapeutic management of mitochondrial disease typically involves empiric prescription of enzymatic cofactors, antioxidants, and amino acid and other nutrient supplements, based on biochemical reasoning, historical experience, and consensus expert opinion. As the field continues to rapidly advance, we review here the preclinical and clinical evidence, and specific dosing guidelines, for common mitochondrial medicine therapies to guide practitioners in their prescribing practices. RECENT FINDINGS Since publication of Mitochondrial Medicine Society guidelines for mitochondrial medicine therapies management in 2009, data has emerged to support consideration for using additional therapeutic agents and discontinuation of several previously used agents. Preclinical animal modeling data have indicated a lack of efficacy for vitamin C as an antioxidant for primary mitochondrial disease, but provided strong evidence for vitamin E and N-acetylcysteine. Clinical data have suggested L-carnitine may accelerate atherosclerotic disease. Long-term follow up on L-arginine use as prophylaxis against or acute treatment for metabolic strokes has provided more data supporting its clinical use in individuals with mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome and Leigh syndrome. Further, several precision therapies have been developed for specific molecular causes and/or shared clinical phenotypes of primary mitochondrial disease. SUMMARY We provide a comprehensive update on mitochondrial medicine therapies based on current evidence and our single-center clinical experience to support or refute their use, and provide detailed dosing guidelines, for the clinical management of mitochondrial disease. The overarching goal of empiric mitochondrial medicines is to utilize therapies with favorable benefit-to-risk profiles that may stabilize and enhance residual metabolic function to improve cellular resiliency and slow clinical disease progression and/or prevent acute decompensation.
Collapse
Affiliation(s)
- Isabella Barcelos
- Center for Applied Genomics, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Edward Shadiack
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rebecca D. Ganetzky
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Abstract
Mitochondrial disease presenting in childhood is characterized by clinical, biochemical and genetic complexity. Some children are affected by canonical syndromes, but the majority have nonclassical multisystemic disease presentations involving virtually any organ in the body. Each child has a unique constellation of clinical features and disease trajectory, leading to enormous challenges in diagnosis and management of these heterogeneous disorders. This review discusses the classical mitochondrial syndromes presenting most frequently in childhood and then presents an organ-based perspective including systems less frequently linked to mitochondrial disease, such as skin and hair abnormalities and immune dysfunction. An approach to diagnosis is then presented, encompassing clinical evaluation and biochemical, neuroimaging and genetic investigations, and emphasizing the problem of phenocopies. The impact of next-generation sequencing is discussed, together with the importance of functional validation of novel genetic variants never previously linked to mitochondrial disease. The review concludes with a brief discussion of currently available and emerging therapies. The field of mitochondrial medicine has made enormous strides in the last 30 years, with approaching 400 different genes across two genomes now linked to primary mitochondrial disease. However, many important questions remain unanswered, including the reasons for tissue specificity and variability of clinical presentation of individuals sharing identical gene defects, and a lack of disease-modifying therapies and biomarkers to monitor disease progression and/or response to treatment.
Collapse
Affiliation(s)
- S Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|