1
|
Othman AA, Sadek AA, Ahmed EA, Abdelkreem E. Combined Ketamine and Midazolam Versus Midazolam Alone for Initial Treatment of Pediatric Generalized Convulsive Status Epilepticus (Ket-Mid Study): A Randomized Controlled Trial. Pediatr Neurol 2025; 167:24-32. [PMID: 40186980 DOI: 10.1016/j.pediatrneurol.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Approximately one third of children with generalized convulsive status epilepticus (GCSE) are not controlled by initial benzodiazepine therapy. We investigated the efficacy of adding ketamine to midazolam for first-line treatment of pediatric GCSE. METHODS This randomized controlled trial included 144 children with GCSE aged between six months and 16 years, who were equally randomized to receive ketamine plus midazolam (Ket-Mid group) or placebo plus midazolam (Pla-Mid group). Primary outcome was cessation of clinical seizures at five-minute study timepoint. Secondary outcomes were the need for a second midazolam bolus; cessation of clinical seizures at 15-, 35-, and 55-minute timepoints; 24-hour seizure control; and adverse effects. RESULTS Cessation of clinical seizures at five-minute occurred in 76% of children in the Ket-Mid group compared with 21% in the Pla-Mid group (risk ratio [RR] 3.7; 95% confidence interval [CI] 2.3-5.9; P < 0.001). Compared with the Pla-Mid group, the Ket-Mid group had higher percentages of seizure cessation at 15-minute (76.4% vs 23.6%; RR, 3.2; 95% CI, 2.1-5.0), 35-minute (83.3% vs 45.8%; RR, 1.8; 95% CI, 1.4-2.4), and 55-minute (88.9% vs 72.2%; RR, 1.2; 95% CI, 1.04-1.45) study timepoints as well as lower percentages of repeating midazolam (23.6% vs 79.2%; RR, 0.3; 95% CI, 0.19-0.46) and endotracheal intubation (4.2% vs 20.8%; RR, 0.2; 95% CI, 0.06-0.66). Both groups showed no significant differences in other outcome measures. CONCLUSIONS Ketamine-midazolam combination may be more effective than midazolam alone for the initial treatment of pediatric GCSE, but this should be confirmed in future research.
Collapse
Affiliation(s)
- Amr A Othman
- Neuropsychiatry Unit, Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Abdelrahim A Sadek
- Neuropsychiatry Unit, Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Esraa A Ahmed
- Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Elsayed Abdelkreem
- Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt.
| |
Collapse
|
2
|
Cornelissen AS, van den Berg RM, Klaassen SD, de Koning JC, Langenberg JP, de Lange ECM, Joosen MJA. Synergistic polytherapy for the broad-spectrum treatment of chemically-induced seizures in rats. Toxicol Appl Pharmacol 2024; 493:117137. [PMID: 39476875 DOI: 10.1016/j.taap.2024.117137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/12/2024] [Accepted: 10/27/2024] [Indexed: 11/11/2024]
Abstract
Chemically-induced seizures, as a result of exposure to a neurotoxic compound, present a serious health concern. Compounds can elicit seizure activity through disruption of neuronal signaling by neurotransmitters, either by mimicking, modulating or antagonizing their action at the receptor or interfering with their metabolism. Benzodiazepines, such as diazepam and midazolam, and barbiturates are the mainstay of treatment of seizures. However, chemically-induced seizures are often persistent, requiring repeated treatment and increased doses of anticonvulsants, which in turn may lead to severe adverse effects such as respiratory depression. Here, we investigated the potential of rational polytherapy consisting of the benzodiazepine midazolam and the selective α2-adrenergic agonist dexmedetomidine as an improved, generically applicable anticonvulsant treatment regimen. Therapeutic efficacy was evaluated against two experimental paradigm compounds that induce persistent seizures in rats, the rodenticide TETS and the nerve agent soman. Following exposure, both TETS and soman elicited profound seizure activity and convulsions, associated with substantial mortality. Treatment with midazolam or dexmedetomidine alone provided no or limited suppression of seizure activity and improvement of survival at 4 h. Polytherapy consisting of midazolam and dexmedetomidine showed excellent anticonvulsant efficacy. Even at low doses, polytherapy showed a profound effect that lasted for the duration of the experiment. Analysis of the dose-response relationships confirmed presence of synergy. Administration of polytherapy in non-exposed animals did not indicate aggravation of adverse effects on respiration or heart rate. Even though more research is needed for the translation to clinical use, polytherapy consisting of midazolam and dexmedetomidine shows promise for the broad-spectrum treatment of (chemically-induced) seizures in emergency situations.
Collapse
Affiliation(s)
- Alex S Cornelissen
- Department of CBRN Protection, TNO Defence, Safety and Security, Lange Kleiweg 137, 2288 GJ Rijswijk, the Netherlands; Predictive Pharmacology group, Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Gorlaeus Laboratory, Einsteinweg 55, 2333 CC Leiden, the Netherlands.
| | - Roland M van den Berg
- Department of CBRN Protection, TNO Defence, Safety and Security, Lange Kleiweg 137, 2288 GJ Rijswijk, the Netherlands
| | - Steven D Klaassen
- Department of CBRN Protection, TNO Defence, Safety and Security, Lange Kleiweg 137, 2288 GJ Rijswijk, the Netherlands
| | - Jelle C de Koning
- Department of CBRN Protection, TNO Defence, Safety and Security, Lange Kleiweg 137, 2288 GJ Rijswijk, the Netherlands
| | - Jan P Langenberg
- Department of CBRN Protection, TNO Defence, Safety and Security, Lange Kleiweg 137, 2288 GJ Rijswijk, the Netherlands
| | - Elizabeth C M de Lange
- Predictive Pharmacology group, Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Gorlaeus Laboratory, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Marloes J A Joosen
- Department of CBRN Protection, TNO Defence, Safety and Security, Lange Kleiweg 137, 2288 GJ Rijswijk, the Netherlands
| |
Collapse
|
3
|
Yılmaz GB, Saraçoğlu KT, Aykın U, Akça M, Demirtaş C, Saraçoğlu A, Yıldırım M. Efficacy of Low-Dose Ketamine and Propofol in the Treatment of Experimental Refractory Status Epilepticus on Male Rats. J Neurosci Res 2024; 102:e25393. [PMID: 39584406 PMCID: PMC11586892 DOI: 10.1002/jnr.25393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/13/2024] [Accepted: 10/20/2024] [Indexed: 11/26/2024]
Abstract
Refractory status epilepticus (RSE) is a condition with serious mortality and morbidity rate, resistant to benzodiazepine and second-line antiepileptic drugs. This study aimed to electrophysiologically investigate the combination of NMDA receptor antagonist ketamine and GABAergic agent propofol in an RSE model induced by lithium-pilocarpine in male Sprague-Dawley rats. Seventy-two male Sprague-Dawley rats were divided into nine groups. The RSE model was induced by subcutaneous injection of lithium-CI (5 mEq/kg) and intraperitoneal injection of pilocarpine-HCl (320 mg/kg), after implanting tripolar EEG electrode. Ketamine (30, 60, and 90 mg/kg), propofol (20, 40, and 80 mg/kg), and combinations of both drugs (15 + 20 and 30 + 40 mg/kg) were administered intraperitoneally to animals with RSE. Video-EEG recordings were taken after inducing model and 48 h later. The efficacy of drugs was statistically evaluated based on spike frequencies (spikes/min) and amplitudes (mV). Compared to RSE group, it was determined that 30 and 60 mg/kg doses of ketamine provided effective seizure control and prevented mortality (p < 0.001), while the 90 mg/kg showed toxic effects in all animals and caused mortality. The 80 mg/kg dose of propofol provided seizure control and reduced the mortality rate to 16.7% (p < 0.001), whereas the 20 mg/kg resulted in a 100% mortality rate. The low-dose ketamine+propofol (15 + 20 mg/kg) combination provided early onset seizure control and were as effective as 80 mg/kg propofol (p < 0.05). The study concluded that in the experimental RSE model, seizure control could be achieved with low-dose combination of ketamine and propofol without the need for high doses as in monotherapy, thus preventing dose-related adverse effects.
Collapse
Affiliation(s)
- Gaye Boztepe Yılmaz
- Department of Anesthesiology and Reanimation, Faculty of MedicineKastamonu UniversityKastamonuTurkey
| | - Kemal Tolga Saraçoğlu
- Department of Anesthesiology, ICU and Perioperative MedicineHamad Medical CorporationDohaQatar
- Qatar University College of MedicineDohaQatar
| | - Uğur Aykın
- Department of Physiology, Hamidiye Faculty of MedicineUniversity of Health SciencesIstanbulTurkey
| | - Metehan Akça
- Department of Physiology, Faculty of MedicineTokat Gaziosmanpasa UniversityTokatTurkey
| | - Cumaali Demirtaş
- Department of Physiology, Hamidiye Faculty of MedicineUniversity of Health SciencesIstanbulTurkey
| | - Ayten Saraçoğlu
- Department of Anesthesiology, ICU and Perioperative MedicineHamad Medical CorporationDohaQatar
- Qatar University College of MedicineDohaQatar
| | - Mehmet Yıldırım
- Department of Physiology, Hamidiye Faculty of MedicineUniversity of Health SciencesIstanbulTurkey
| |
Collapse
|
4
|
Tan Y, Hashimoto K. Therapeutic potential of ketamine in management of epilepsy: Clinical implications and mechanistic insights. Asian J Psychiatr 2024; 101:104246. [PMID: 39366036 DOI: 10.1016/j.ajp.2024.104246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 10/06/2024]
Abstract
Epilepsy, a widespread neurological disorder, affects approximately 50 million people worldwide. This disorder is typified by recurring seizures due to abnormal neuron communication in the brain. The seizures can lead to severe ischemia and hypoxia, potentially threatening patients' lives. However, with proper diagnosis and treatment, up to 70 % of patients can live without seizures. The causes of epilepsy are complex and multifactorial, encompassing genetic abnormalities, structural brain anomalies, ion channel dysfunctions, neurotransmitter imbalances, neuroinflammation, and immune system involvement. These factors collectively disrupt the crucial balance between excitation and inhibition within the brain, leading to epileptic seizures. The management of treatment-resistant epilepsy remains a considerable challenge, necessitating innovative therapeutic approaches. Among emerging potential treatments, ketamine-a drug traditionally employed for anesthesia and depression-has demonstrated efficacy in reducing seizures. It is noteworthy that, independent of its anti-epileptic effects, ketamine has been found to improve the balance between excitatory and inhibitory (E/I) activities in the brain. The balance is crucial for maintaining normal neural function, and its disruption is widely considered a key driver of epileptic seizures. By acting on N-methyl-D-aspartate (NMDA) receptors and other potential mechanisms, ketamine may regulate neuronal excitability, reduce excessive synchronized neural activity, and counteract epileptic seizures. This positive impact on E/I balance reinforces the potential of ketamine as a promising drug for treating epilepsy, especially in patients who are insensitive to traditional anti-epileptic drugs. This review aims to consolidate the current understanding of ketamine's therapeutic role in epilepsy. It will focus its impact on neuronal excitability and synaptic plasticity, its neuroprotective qualities, and elucidate the drug's potential mechanisms of action in treating epilepsy. By scrutinizing ketamine's impact and mechanisms in various types of epilepsy, we aspire to contribute to a more comprehensive and holistic approach to epilepsy management.
Collapse
Affiliation(s)
- Yunfei Tan
- Center for Rehabilitation Medicine, Department of Psychiatry, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Kenji Hashimoto
- Chiba University Center for Forensic Mental Health, Chiba 260-8677, Japan.
| |
Collapse
|
5
|
Magro G, Laterza V. Status epilepticus: Is there a Stage 1 plus? Epilepsia 2024; 65:1560-1567. [PMID: 38507275 DOI: 10.1111/epi.17953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
In status epilepticus (SE), "time is brain." Currently, first-line therapy consists of benzodiazepines (BDZs) and SE is classified by the response to treatment; stage 2 or established SE is defined as "BDZ-resistant SE." Nonetheless, this classification does not always work, especially in the case of prolonged convulsive SE, where many molecular changes occur and γ-aminobutyric acid signaling becomes excitatory. Under these circumstances, BDZ therapy might not be optimal, and might be possibly detrimental, if given alone; as the duration of SE increases, so too does BDZ resistance. Murine models of SE showed how these cases might benefit more from synergistic combined therapy from the start. The definition of Stage 1 plus is suggested, as a stage requiring combined therapy from the start, which includes prolonged SE with seizure activity going on for >10 min, the time that marks the disruption of receptor homeostasis, with increased internalization. This specific stage might require a synergistic approach from the start, with a combination of first- and second-line treatment.
Collapse
Affiliation(s)
- Giuseppe Magro
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Græcia University, Catanzaro, Italy
| | - Vincenzo Laterza
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Græcia University, Catanzaro, Italy
| |
Collapse
|
6
|
Nguyen DA, Stone MF, Schultz CR, de Araujo Furtado M, Niquet J, Wasterlain CG, Lumley LA. Evaluation of Midazolam-Ketamine-Allopregnanolone Combination Therapy against Cholinergic-Induced Status Epilepticus in Rats. J Pharmacol Exp Ther 2024; 388:376-385. [PMID: 37770198 PMCID: PMC10801769 DOI: 10.1124/jpet.123.001784] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
Status epilepticus (SE) is a life-threatening development of self-sustaining seizures that becomes resistant to benzodiazepines when treatment is delayed. Benzodiazepine pharmacoresistance is thought in part to result from internalization of synaptic GABAA receptors, which are the main target of the drug. The naturally occurring neurosteroid allopregnanolone is a therapy of interest against SE for its ability to modulate all isoforms of GABAA receptors. Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has been partially effective in combination with benzodiazepines in mitigating SE-associated neurotoxicity. In this study, allopregnanolone as an adjunct to midazolam or midazolam-ketamine combination therapy was evaluated for efficacy against cholinergic-induced SE. Adult male rats implanted with electroencephalographic (EEG) telemetry devices were exposed to the organophosphorus chemical (OP) soman (GD) and treated with an admix of atropine sulfate and HI-6 at 1 minute after exposure followed by midazolam, midazolam-allopregnanolone, or midazolam-ketamine-allopregnanolone 40 minutes after seizure onset. Neurodegeneration, neuronal loss, and neuroinflammation were assessed 2 weeks after GD exposure. Seizure activity, EEG power integral, and epileptogenesis were also compared among groups. Overall, midazolam-ketamine-allopregnanolone combination therapy was effective in reducing cholinergic-induced toxic signs and neuropathology, particularly in the thalamus and hippocampus. Higher dosage of allopregnanolone administered in combination with midazolam and ketamine was also effective in reducing EEG power integral and epileptogenesis. The current study reports that there is a promising potential of neurosteroids in combination with benzodiazepine and ketamine treatments in a GD model of SE. SIGNIFICANCE STATEMENT: Allopregnanolone, a naturally occurring neurosteroid, reduced pathologies associated with soman (GD) exposure such as epileptogenesis, neurodegeneration, and neuroinflammation, and suppressed GD-induced toxic signs when used as an adjunct to midazolam and ketamine in a delayed treatment model of soman-induced status epilepticus (SE) in rats. However, protection was incomplete, suggesting that further studies are needed to identify optimal combinations of antiseizure medications and routes of administration for maximal efficacy against cholinergic-induced SE.
Collapse
Affiliation(s)
- Donna A Nguyen
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, Maryland (D.A.N., M.F.S., C.R.S., L.A.L.); BioSEaD, LLC, Rockville, Maryland (M.D.A.F.); Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California (J.N., C.G.W.); and Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Michael F Stone
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, Maryland (D.A.N., M.F.S., C.R.S., L.A.L.); BioSEaD, LLC, Rockville, Maryland (M.D.A.F.); Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California (J.N., C.G.W.); and Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Caroline R Schultz
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, Maryland (D.A.N., M.F.S., C.R.S., L.A.L.); BioSEaD, LLC, Rockville, Maryland (M.D.A.F.); Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California (J.N., C.G.W.); and Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Marcio de Araujo Furtado
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, Maryland (D.A.N., M.F.S., C.R.S., L.A.L.); BioSEaD, LLC, Rockville, Maryland (M.D.A.F.); Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California (J.N., C.G.W.); and Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Jerome Niquet
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, Maryland (D.A.N., M.F.S., C.R.S., L.A.L.); BioSEaD, LLC, Rockville, Maryland (M.D.A.F.); Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California (J.N., C.G.W.); and Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Claude G Wasterlain
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, Maryland (D.A.N., M.F.S., C.R.S., L.A.L.); BioSEaD, LLC, Rockville, Maryland (M.D.A.F.); Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California (J.N., C.G.W.); and Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Lucille A Lumley
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, Maryland (D.A.N., M.F.S., C.R.S., L.A.L.); BioSEaD, LLC, Rockville, Maryland (M.D.A.F.); Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California (J.N., C.G.W.); and Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| |
Collapse
|
7
|
Lumley LA, Nguyen DA, de Araujo Furtado M, Niquet J, Linz EO, Schultz CR, Stone MF, Wasterlain CG. Efficacy of Lacosamide and Rufinamide as Adjuncts to Midazolam-Ketamine Treatment Against Cholinergic-Induced Status Epilepticus in Rats. J Pharmacol Exp Ther 2024; 388:347-357. [PMID: 37977809 PMCID: PMC10801783 DOI: 10.1124/jpet.123.001789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Benzodiazepine pharmacoresistance develops when treatment of status epilepticus (SE) is delayed. This response may result from gamma-aminobutyric acid A receptors (GABAAR) internalization that follows prolonged SE; this receptor trafficking results in fewer GABAAR in the synapse to restore inhibition. Increase in synaptic N-methyl-D-aspartate receptors (NMDAR) also occurs in rodent models of SE. Lacosamide, a third-generation antiseizure medication (ASM), acts on the slow inactivation of voltage-gated sodium channels. Another ASM, rufinamide, similarly acts on sodium channels by extending the duration of time spent in the inactivation stage. Combination therapy of the benzodiazepine midazolam, NMDAR antagonist ketamine, and ASMs lacosamide (or rufinamide) was investigated for efficacy against soman (GD)-induced SE and neuropathology. Adult male rats implanted with telemetry transmitters for monitoring electroencephalographic (EEG) activity were exposed to a seizure-inducing dose of GD and treated with an admix of atropine sulfate and HI-6 1 minute later and with midazolam monotherapy or combination therapy 40 minutes after EEG seizure onset. Rats were monitored continuously for seizure activity for two weeks, after which brains were processed for assessment of neurodegeneration, neuronal loss, and neuroinflammatory responses. Simultaneous administration of midazolam, ketamine, and lacosamide (or rufinamide) was more protective against GD-induced SE compared with midazolam monotherapy. In general, lacosamide triple therapy had more positive outcomes on measures of epileptogenesis, EEG power integral, and the number of brain regions protected from neuropathology compared with rats treated with rufinamide triple therapy. Overall, both drugs were well tolerated in these combination models. SIGNIFICANCE STATEMENT: We currently report on improved efficacy of antiseizure medications lacosamide and rufinamide, each administered in combination with ketamine (NMDAR antagonist) and midazolam (benzodiazepine), in combatting soman (GD)-induced seizure, epileptogenesis, and brain pathology over that provided by midazolam monotherapy, or dual therapy of midazolam and lacosamide (or rufinamide) in rats. Administration of lacosamide as adjunct to midazolam and ketamine was particularly effective against GD-induced toxicity. However, protection was incomplete, suggesting the need for further study.
Collapse
Affiliation(s)
- Lucille A Lumley
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (L.A.L., D.A.N., E.O.L., C.R.S., M.F.S.); BioSEaD, LLC, Rockville, Maryland (M.d.A.F.); and Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, and Epilepsy Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Donna A Nguyen
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (L.A.L., D.A.N., E.O.L., C.R.S., M.F.S.); BioSEaD, LLC, Rockville, Maryland (M.d.A.F.); and Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, and Epilepsy Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Marcio de Araujo Furtado
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (L.A.L., D.A.N., E.O.L., C.R.S., M.F.S.); BioSEaD, LLC, Rockville, Maryland (M.d.A.F.); and Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, and Epilepsy Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Jerome Niquet
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (L.A.L., D.A.N., E.O.L., C.R.S., M.F.S.); BioSEaD, LLC, Rockville, Maryland (M.d.A.F.); and Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, and Epilepsy Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Emily O Linz
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (L.A.L., D.A.N., E.O.L., C.R.S., M.F.S.); BioSEaD, LLC, Rockville, Maryland (M.d.A.F.); and Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, and Epilepsy Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Caroline R Schultz
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (L.A.L., D.A.N., E.O.L., C.R.S., M.F.S.); BioSEaD, LLC, Rockville, Maryland (M.d.A.F.); and Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, and Epilepsy Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Michael F Stone
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (L.A.L., D.A.N., E.O.L., C.R.S., M.F.S.); BioSEaD, LLC, Rockville, Maryland (M.d.A.F.); and Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, and Epilepsy Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Claude G Wasterlain
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (L.A.L., D.A.N., E.O.L., C.R.S., M.F.S.); BioSEaD, LLC, Rockville, Maryland (M.d.A.F.); and Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, and Epilepsy Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| |
Collapse
|
8
|
Putra M, Vasanthi SS, Rao NS, Meyer C, Van Otterloo M, Thangi L, Thedens DR, Kannurpatti SS, Thippeswamy T. Inhibiting Inducible Nitric Oxide Synthase with 1400W Reduces Soman (GD)-Induced Ferroptosis in Long-Term Epilepsy-Associated Neuropathology: Structural and Functional Magnetic Resonance Imaging Correlations with Neurobehavior and Brain Pathology. J Pharmacol Exp Ther 2024; 388:724-738. [PMID: 38129129 PMCID: PMC10801728 DOI: 10.1124/jpet.123.001929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Organophosphate (OP) nerve agent (OPNA) intoxication leads to long-term brain dysfunctions. The ineffectiveness of current treatments for OPNA intoxication prompts a quest for the investigation of the mechanism and an alternative effective therapeutic approach. Our previous studies on 1400W, a highly selective inducible nitric oxide synthase (iNOS) inhibitor, showed improvement in epilepsy and seizure-induced brain pathology in rat models of kainate and OP intoxication. In this study, magnetic resonance imaging (MRI) modalities, behavioral outcomes, and biomarkers were comprehensively investigated for brain abnormalities following soman (GD) intoxication in a rat model. T1 and T2 MRI robustly identified pathologic microchanges in brain structures associated with GD toxicity, and 1400W suppressed those aberrant alterations. Moreover, functional network reduction was evident in the cortex, hippocampus, and thalamus after GD exposure, and 1400W rescued the losses except in the thalamus. Behavioral tests showed protection by 1400W against GD-induced memory dysfunction, which also correlated with the extent of brain pathology observed in structural and functional MRIs. GD exposure upregulated iron-laden glial cells and ferritin levels in the brain and serum, 1400W decreased ferritin levels in the epileptic foci in the brain but not in the serum. The levels of brain ferritin also correlated with MRI parameters. Further, 1400W mitigated the overproduction of nitroxidative markers after GD exposure. Overall, this study provides direct evidence for the relationships of structural and functional MRI modalities with behavioral and molecular abnormalities following GD exposure and the neuroprotective effect of an iNOS inhibitor, 1400W. SIGNIFICANT STATEMENT: Our studies demonstrate the MRI microchanges in the brain following GD toxicity, which strongly correlate with neurobehavioral performances and iron homeostasis. The inhibition of iNOS with 1400W mitigates GD-induced cognitive decline, iron dysregulation, and aberrant brain MRI findings.
Collapse
Affiliation(s)
- Marson Putra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Suraj S Vasanthi
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Nikhil S Rao
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Christina Meyer
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Madison Van Otterloo
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Lal Thangi
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Daniel R Thedens
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Sridhar S Kannurpatti
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| |
Collapse
|
9
|
Aracava Y, Albuquerque EX, Pereira EFR. (R,S)-trihexyphenidyl, acting via a muscarinic receptor-independent mechanism, inhibits hippocampal glutamatergic and GABAergic synaptic transmissions: Potential relevance for treatment of organophosphorus intoxication. Neuropharmacology 2023; 239:109684. [PMID: 37549771 PMCID: PMC10590273 DOI: 10.1016/j.neuropharm.2023.109684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Preclinical studies have reported that, compared to the muscarinic receptor (mAChR) antagonist atropine, (R,S)-trihexyphenidyl (THP) more effectively counters the cholinergic crisis, seizures, and neuropathology triggered by organophosphorus (OP)-induced acetylcholinesterase (AChE) inhibition. The greater effectiveness of THP was attributed to its ability to block mAChRs and N-methyl-d-aspartate-type glutamatergic receptors (NMDARs) in the brain. However, THP also inhibits α7 nicotinic receptors (nAChRs). The present study examined whether THP-induced inhibition of mAChRs, α7 nAChRs, and NMDARs is required to suppress glutamatergic synaptic transmission, whose overstimulation sustains OP-induced seizures. In primary hippocampal cultures, THP (1-30 μM) suppressed the frequency of excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs, respectively) recorded from neurons in nominally Mg2+-free solution. A single sigmoidal function adequately fit the overlapping concentration-response relationships for THP-induced suppression of IPSC and EPSC frequencies yielding an IC50 of 6.3 ± 1.3 μM. Atropine (1 μM), the NMDAR antagonist d,l-2-amino-5-phosphonopentanoic acid (D,L-AP5, 50 μM), and the α7 nAChR antagonist methyllycaconitine (MLA, 10 nM) did not prevent THP-induced inhibition of synaptic transmission. THP (10 μM) did not affect the probability of transmitter release because it had no effect on the frequency of miniature IPSCs and EPSCs recorded in the presence of tetrodotoxin. Additionally, THP had no effect on the amplitudes and decay-time constants of miniature IPSCs and EPSCs; therefore, it did not affect the activity of postsynaptic GABAA and glutamate receptors. This study provides the first demonstration that THP can suppress action potential-dependent synaptic transmission via a mechanism independent of NMDAR, mAChR, and α7 nAChR inhibition.
Collapse
Affiliation(s)
- Yasco Aracava
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Niquet J, Nguyen D, de Araujo Furtado M, Lumley L. Treatment of cholinergic-induced status epilepticus with polytherapy targeting GABA and glutamate receptors. Epilepsia Open 2023; 8 Suppl 1:S117-S140. [PMID: 36807554 PMCID: PMC10173853 DOI: 10.1002/epi4.12713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
Despite new antiseizure medications, the development of cholinergic-induced refractory status epilepticus (RSE) continues to be a therapeutic challenge as pharmacoresistance to benzodiazepines and other antiseizure medications quickly develops. Studies conducted by Epilepsia. 2005;46:142 demonstrated that the initiation and maintenance of cholinergic-induced RSE are associated with trafficking and inactivation of gamma-aminobutyric acid A receptors (GABAA R) thought to contribute to the development of benzodiazepine pharmacoresistance. In addition, Dr. Wasterlain's laboratory reported that increased N-methyl-d-aspartate receptors (NMDAR) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) contribute to enhanced glutamatergic excitation (Neurobiol Dis. 2013;54:225; Epilepsia. 2013;54:78). Thus, Dr. Wasterlain postulated that targeting both maladaptive responses of reduced inhibition and increased excitation that is associated with cholinergic-induced RSE should improve therapeutic outcome. We currently review studies in several animal models of cholinergic-induced RSE that demonstrate that benzodiazepine monotherapy has reduced efficacy when treatment is delayed and that polytherapy with drugs that include a benzodiazepine (eg midazolam and diazepam) to counter loss of inhibition, concurrent with an NMDA antagonist (eg ketamine) to reduce excitation provide improved efficacy. Improved efficacy with polytherapy against cholinergic-induced seizure is demonstrated by reduction in (1) seizure severity, (2) epileptogenesis, and (3) neurodegeneration compared with monotherapy. Animal models reviewed include pilocarpine-induced seizure in rats, organophosphorus nerve agent (OPNA)-induced seizure in rats, and OPNA-induced seizure in two mouse models: (1) carboxylesterase knockout (Es1-/- ) mice which, similarly to humans, lack plasma carboxylesterase and (2) human acetylcholinesterase knock-in carboxylesterase knockout (KIKO) mice. We also review studies showing that supplementing midazolam and ketamine with a third antiseizure medication (valproate or phenobarbital) that targets a nonbenzodiazepine site rapidly terminates RSE and provides further protection against cholinergic-induced SE. Finally, we review studies on the benefits of simultaneous compared with sequential drug treatments and the clinical implications that lead us to predict improved efficacy of early combination drug therapies. The data generated from seminal rodent studies of efficacious treatment of cholinergic-induced RSE conducted under Dr. Wasterlain's guidance suggest that future clinical trials should treat the inadequate inhibition and temper the excess excitation that characterize RSE and that early combination therapies may provide improved outcome over benzodiazepine monotherapy.
Collapse
Affiliation(s)
- Jerome Niquet
- Department of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
- Epilepsy Research LaboratoryVeterans Affairs Greater Los Angeles Healthcare SystemLos AngelesCaliforniaUSA
| | - Donna Nguyen
- Neuroscience DepartmentU.S. Army Medical Research Institute of Chemical Defense (USAMRICD)Aberdeen Proving GroundMarylandUSA
| | | | - Lucille Lumley
- Neuroscience DepartmentU.S. Army Medical Research Institute of Chemical Defense (USAMRICD)Aberdeen Proving GroundMarylandUSA
| |
Collapse
|
11
|
The Role of Glutamate Receptors in Epilepsy. Biomedicines 2023; 11:biomedicines11030783. [PMID: 36979762 PMCID: PMC10045847 DOI: 10.3390/biomedicines11030783] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Glutamate is an essential excitatory neurotransmitter in the central nervous system, playing an indispensable role in neuronal development and memory formation. The dysregulation of glutamate receptors and the glutamatergic system is involved in numerous neurological and psychiatric disorders, especially epilepsy. There are two main classes of glutamate receptor, namely ionotropic and metabotropic (mGluRs) receptors. The former stimulate fast excitatory neurotransmission, are N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), and kainate; while the latter are G-protein-coupled receptors that mediate glutamatergic activity via intracellular messenger systems. Glutamate, glutamate receptors, and regulation of astrocytes are significantly involved in the pathogenesis of acute seizure and chronic epilepsy. Some glutamate receptor antagonists have been shown to be effective for the treatment of epilepsy, and research and clinical trials are ongoing.
Collapse
|
12
|
Naylor DE. In the fast lane: Receptor trafficking during status epilepticus. Epilepsia Open 2023; 8 Suppl 1:S35-S65. [PMID: 36861477 PMCID: PMC10173858 DOI: 10.1002/epi4.12718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Status epilepticus (SE) remains a significant cause of morbidity and mortality and often is refractory to standard first-line treatments. A rapid loss of synaptic inhibition and development of pharmacoresistance to benzodiazepines (BZDs) occurs early during SE, while NMDA and AMPA receptor antagonists remain effective treatments after BZDs have failed. Multimodal and subunit-selective receptor trafficking within minutes to an hour of SE involves GABA-A, NMDA, and AMPA receptors and contributes to shifts in the number and subunit composition of surface receptors with differential impacts on the physiology, pharmacology, and strength of GABAergic and glutamatergic currents at synaptic and extrasynaptic sites. During the first hour of SE, synaptic GABA-A receptors containing γ2 subunits move to the cell interior while extrasynaptic GABA-A receptors with δ subunits are preserved. Conversely, NMDA receptors containing N2B subunits are increased at synaptic and extrasynaptic sites, and homomeric GluA1 ("GluA2-lacking") calcium permeant AMPA receptor surface expression also is increased. Molecular mechanisms, largely driven by NMDA receptor or calcium permeant AMPA receptor activation early during circuit hyperactivity, regulate subunit-specific interactions with proteins involved with synaptic scaffolding, adaptin-AP2/clathrin-dependent endocytosis, endoplasmic reticulum (ER) retention, and endosomal recycling. Reviewed here is how SE-induced shifts in receptor subunit composition and surface representation increase the excitatory to inhibitory imbalance that sustains seizures and fuels excitotoxicity contributing to chronic sequela such as "spontaneous recurrent seizures" (SRS). A role for early multimodal therapy is suggested both for treatment of SE and for prevention of long-term comorbidities.
Collapse
Affiliation(s)
- David E Naylor
- VA Greater Los Angeles Healthcare System, Department of Neurology, David Geffen School of Medicine at UCLA, and The Lundquist Institute at Harbor-UCLA Medical Center, Los Angeles, California, USA
| |
Collapse
|
13
|
Sivakumar S, Ghasemi M, Schachter SC. Targeting NMDA Receptor Complex in Management of Epilepsy. Pharmaceuticals (Basel) 2022; 15:ph15101297. [PMID: 36297409 PMCID: PMC9609646 DOI: 10.3390/ph15101297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are widely distributed in the central nervous system (CNS) and play critical roles in neuronal excitability in the CNS. Both clinical and preclinical studies have revealed that the abnormal expression or function of these receptors can underlie the pathophysiology of seizure disorders and epilepsy. Accordingly, NMDAR modulators have been shown to exert anticonvulsive effects in various preclinical models of seizures, as well as in patients with epilepsy. In this review, we provide an update on the pathologic role of NMDARs in epilepsy and an overview of the NMDAR antagonists that have been evaluated as anticonvulsive agents in clinical studies, as well as in preclinical seizure models.
Collapse
Affiliation(s)
- Shravan Sivakumar
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Correspondence: (M.G.); (S.C.S.)
| | - Steven C. Schachter
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02114, USA
- Consortia for Improving Medicine with Innovation & Technology (CIMIT), Boston, MA 02114, USA
- Correspondence: (M.G.); (S.C.S.)
| |
Collapse
|
14
|
Chen S, Xu D, Fan L, Fang Z, Wang X, Li M. Roles of N-Methyl-D-Aspartate Receptors (NMDARs) in Epilepsy. Front Mol Neurosci 2022; 14:797253. [PMID: 35069111 PMCID: PMC8780133 DOI: 10.3389/fnmol.2021.797253] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders characterized by recurrent seizures. The mechanism of epilepsy remains unclear and previous studies suggest that N-methyl-D-aspartate receptors (NMDARs) play an important role in abnormal discharges, nerve conduction, neuron injury and inflammation, thereby they may participate in epileptogenesis. NMDARs belong to a family of ionotropic glutamate receptors that play essential roles in excitatory neurotransmission and synaptic plasticity in the mammalian CNS. Despite numerous studies focusing on the role of NMDAR in epilepsy, the relationship appeared to be elusive. In this article, we reviewed the regulation of NMDAR and possible mechanisms of NMDAR in epilepsy and in respect of onset, development, and treatment, trying to provide more evidence for future studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Lumley LA, Marrero-Rosado B, Rossetti F, Schultz CR, Stone MF, Niquet J, Wasterlain CG. Combination of antiseizure medications phenobarbital, ketamine, and midazolam reduces soman-induced epileptogenesis and brain pathology in rats. Epilepsia Open 2021; 6:757-769. [PMID: 34657398 PMCID: PMC8633481 DOI: 10.1002/epi4.12552] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022] Open
Abstract
Objective Cholinergic‐induced status epilepticus (SE) is associated with a loss of synaptic gamma‐aminobutyric acid A receptors (GABAAR) and an increase in N‐methyl‐D‐aspartate receptors (NMDAR) and amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptors (AMPAR) that may contribute to pharmacoresistance when treatment with benzodiazepine antiseizure medication is delayed. The barbiturate phenobarbital enhances inhibitory neurotransmission by binding to a specific site in the GABAAR to increase the open state of the channel, decrease neuronal excitability, and reduce glutamate‐induced currents through AMPA/kainate receptors. We hypothesized that phenobarbital as an adjunct to midazolam would augment the amelioration of soman‐induced SE and associated neuropathological changes and that further protection would be provided by the addition of an NMDAR antagonist. Methods We investigated the efficacy of combining antiseizure medications to include a benzodiazepine and a barbiturate allosteric GABAAR modulator (midazolam and phenobarbital, respectively) to correct loss of inhibition, and ketamine to reduce excitation caused by increased synaptic localization of NMDAR and AMPAR, which are NMDA‐dependent. Rats implanted with transmitters to record electroencephalographic (EEG) activity were exposed to soman and treated with atropine sulfate and HI‐6 one min after exposure and with antiseizure medication(s) 40 minutes after seizure onset. Results The triple therapy combination of phenobarbital, midazolam, and ketamine administered at 40 minutes after seizure onset effectively prevented soman‐induced epileptogenesis and reduced neurodegeneration. In addition, dual therapy with phenobarbital and midazolam or ketamine was more effective than monotherapy (midazolam or phenobarbital) in reducing cholinergic‐induced toxicity. Significance Benzodiazepine efficacy is drastically reduced with time after seizure onset and inversely related to seizure duration. To overcome pharmacoresistance in severe benzodiazepine‐refractory cholinergic‐induced SE, simultaneous drug combination to include drugs that target both the loss of inhibition (eg, midazolam, phenobarbital) and the increased excitatory response (eg, ketamine) is more effective than benzodiazepine or barbiturate monotherapy.
Collapse
Affiliation(s)
- Lucille A Lumley
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, Maryland, USA
| | - Brenda Marrero-Rosado
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, Maryland, USA
| | - Franco Rossetti
- Military Psychiatry and Neuroscience Department, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Caroline R Schultz
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, Maryland, USA
| | - Michael F Stone
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, Maryland, USA
| | - Jerome Niquet
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Claude G Wasterlain
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
16
|
Calsbeek JJ, González EA, Bruun DA, Guignet MA, Copping N, Dawson ME, Yu AJ, MacMahon JA, Saito NH, Harvey DJ, Silverman JL, Lein PJ. Persistent neuropathology and behavioral deficits in a mouse model of status epilepticus induced by acute intoxication with diisopropylfluorophosphate. Neurotoxicology 2021; 87:106-119. [PMID: 34509511 PMCID: PMC8595753 DOI: 10.1016/j.neuro.2021.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 01/01/2023]
Abstract
Organophosphate (OP) nerve agents and pesticides are a class of neurotoxic compounds that can cause status epilepticus (SE), and death following acute high-dose exposures. While the standard of care for acute OP intoxication (atropine, oxime, and high-dose benzodiazepine) can prevent mortality, survivors of OP poisoning often experience long-term brain damage and cognitive deficits. Preclinical studies of acute OP intoxication have primarily used rat models to identify candidate medical countermeasures. However, the mouse offers the advantage of readily available knockout strains for mechanistic studies of acute and chronic consequences of OP-induced SE. Therefore, the main objective of this study was to determine whether a mouse model of acute diisopropylfluorophosphate (DFP) intoxication would produce acute and chronic neurotoxicity similar to that observed in rat models and humans following acute OP intoxication. Adult male C57BL/6J mice injected with DFP (9.5 mg/kg, s.c.) followed 1 min later with atropine sulfate (0.1 mg/kg, i.m.) and 2-pralidoxime (25 mg/kg, i.m.) developed behavioral and electrographic signs of SE within minutes that continued for at least 4 h. Acetylcholinesterase inhibition persisted for at least 3 d in the blood and 14 d in the brain of DFP mice relative to vehicle (VEH) controls. Immunohistochemical analyses revealed significant neurodegeneration and neuroinflammation in multiple brain regions at 1, 7, and 28 d post-exposure in the brains of DFP mice relative to VEH controls. Deficits in locomotor and home-cage behavior were observed in DFP mice at 28 d post-exposure. These findings demonstrate that this mouse model replicates many of the outcomes observed in rats and humans acutely intoxicated with OPs, suggesting the feasibility of using this model for mechanistic studies and therapeutic screening.
Collapse
Affiliation(s)
- Jonas J Calsbeek
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Eduardo A González
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Donald A Bruun
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Michelle A Guignet
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Nycole Copping
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA.
| | - Mallory E Dawson
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Alexandria J Yu
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Jeremy A MacMahon
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Naomi H Saito
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA, 95616, USA.
| | - Danielle J Harvey
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA, 95616, USA.
| | - Jill L Silverman
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
17
|
Löscher W, Klein P. New approaches for developing multi-targeted drug combinations for disease modification of complex brain disorders. Does epilepsy prevention become a realistic goal? Pharmacol Ther 2021; 229:107934. [PMID: 34216705 DOI: 10.1016/j.pharmthera.2021.107934] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Over decades, the prevailing standard in drug discovery was the concept of designing highly selective compounds that act on individual drug targets. However, more recently, multi-target and combinatorial drug therapies have become an important treatment modality in complex diseases, including neurodegenerative diseases such as Alzheimer's and Parkinson's disease. The development of such network-based approaches is facilitated by the significant advance in our understanding of the pathophysiological processes in these and other complex brain diseases and the adoption of modern computational approaches in drug discovery and repurposing. However, although drug combination therapy has become an effective means for the symptomatic treatment of many complex diseases, the holy grail of identifying clinically effective disease-modifying treatments for neurodegenerative and other brain diseases remains elusive. Thus, despite extensive research, there remains an urgent need for novel treatments that will modify the progression of the disease or prevent its development in patients at risk. Here we discuss recent approaches with a focus on multi-targeted drug combinations for prevention or modification of epilepsy. Over the last ~10 years, several novel promising multi-targeted therapeutic approaches have been identified in animal models. We envision that synergistic combinations of repurposed drugs as presented in this review will be demonstrated to prevent epilepsy in patients at risk within the next 5-10 years.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
| |
Collapse
|
18
|
Angrand L, Takillah S, Malissin I, Berriche A, Cervera C, Bel R, Gerard Q, Knoertzer J, Baati R, Kononchik JP, Megarbane B, Thibault K, Dal Bo G. Persistent brainwave disruption and cognitive impairment induced by acute sarin surrogate sub-lethal dose exposure. Toxicology 2021; 456:152787. [PMID: 33887375 DOI: 10.1016/j.tox.2021.152787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 11/15/2022]
Abstract
Warfare neurotoxicants such as sarin, soman or VX, are organophosphorus compounds which irreversibly inhibit cholinesterase. High-dose exposure with nerve agents (NA) is known to produce seizure activity and related brain damage, while less is known about the effects of acute sub-lethal dose exposure. The aim of this study was to characterize behavioral, brain activity and neuroinflammatory modifications at different time points after exposure to 4-nitrophenyl isopropyl methylphosphonate (NIMP), a sarin surrogate. In order to decipher the impacts of sub-lethal exposure, we chose 4 different doses of NIMP each corresponding to a fraction of the median lethal dose (LD50). First, we conducted a behavioral analysis of symptoms during the first hour following NIMP challenge and established a specific scoring scale for the intoxication severity. The intensity of intoxication signs was dose-dependent and proportional to the cholinesterase activity inhibition evaluated in mice brain. The lowest dose (0.3 LD50) did not induce significant behavioral, electrocorticographic (ECoG) nor cholinesterase activity changes. Animals exposed to one of the other doses (0.5, 0.7 and 0.9 LD50) exhibited substantial changes in behavior, significant cholinesterase activity inhibition, and a disruption of brainwave distribution that persisted in a dose-dependent manner. To evaluate long lasting changes, we conducted ECoG recording for 30 days on mice exposed to 0.5 or 0.9 LD50 of NIMP. Mice in both groups showed long-lasting impairment of theta rhythms, and a lack of restoration in hippocampal ChE activity after 1-month post-exposure. In addition, an increase in neuroinflammatory markers (IBA-1, TNF-α, NF-κB) and edema were transiently observed in mice hippocampus. Furthermore, a novel object recognition test showed an alteration of short-term memory in both groups, 1-month post-NIMP intoxication. Our findings identified both transient and long-term ECoG alterations and some long term cognitive impairments following exposure to sub-lethal doses of NIMP. These may further impact morphopathological alterations in the brain.
Collapse
Affiliation(s)
- Loïc Angrand
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France; EnvA, IMRB, Maisons-Alfort, France; Université Paris-Est Créteil, INSERM, Team Relaix, Créteil, France
| | - Samir Takillah
- Departement of Neuroscience, Unit of Fatigue and Vigilance, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France; VIFASOM Team (EA 7330), Paris Descartes University, Sorbonne Paris Cité, Hôtel Dieu, Paris, France
| | - Isabelle Malissin
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, Federation of Toxicology APHP, Paris-Diderot University, INSERM UMRS-1144, Paris, France
| | - Asma Berriche
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France; CEA, Fontenay aux roses, France
| | - Chloe Cervera
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France
| | - Rosalie Bel
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France
| | - Quentin Gerard
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France; Normandie University, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen, France
| | - Julie Knoertzer
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France
| | - Rachid Baati
- ICPEES UMR CNRS 7515, Institut de Chimie des Procédés, pour l'Energie, l'Environnement, et la Santé, Strasbourg, France
| | - Joseph P Kononchik
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France
| | - Bruno Megarbane
- VIFASOM Team (EA 7330), Paris Descartes University, Sorbonne Paris Cité, Hôtel Dieu, Paris, France; Department of Medical and Toxicological Critical Care, Lariboisière Hospital, Federation of Toxicology APHP, Paris-Diderot University, INSERM UMRS-1144, Paris, France
| | - Karine Thibault
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France.
| | - Gregory Dal Bo
- Departement of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France.
| |
Collapse
|
19
|
Lumley L, Niquet J, Marrero-Rosado B, Schultz M, Rossetti F, de Araujo Furtado M, Wasterlain C. Treatment of acetylcholinesterase inhibitor-induced seizures with polytherapy targeting GABA and glutamate receptors. Neuropharmacology 2021; 185:108444. [PMID: 33359073 PMCID: PMC7944923 DOI: 10.1016/j.neuropharm.2020.108444] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/30/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
The initiation and maintenance of cholinergic-induced status epilepticus (SE) are associated with decreased synaptic gamma-aminobutyric acid A receptors (GABAAR) and increased N-methyl-d-aspartate receptors (NMDAR) and amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR). We hypothesized that trafficking of synaptic GABAAR and glutamate receptors is maladaptive and contributes to the pharmacoresistance to antiseizure drugs; targeting these components should ameliorate the pathophysiological consequences of refractory SE (RSE). We review studies of rodent models of cholinergic-induced SE, in which we used a benzodiazepine allosteric GABAAR modulator to correct loss of inhibition, concurrent with the NMDA antagonist ketamine to reduce excitation caused by increased synaptic localization of NMDAR and AMPAR, which are NMDAR-dependent. Models included lithium/pilocarpine-induced SE in rats and soman-induced SE in rats and in Es1-/- mice, which similar to humans lack plasma carboxylesterase, and may better model soman toxicity. These model human soman toxicity and are refractory to benzodiazepines administered at 40 min after seizure onset, when enough synaptic GABAAR may not be available to restore inhibition. Ketamine-midazolam combination reduces seizure severity, epileptogenesis, performance deficits and neuropathology following cholinergic-induced SE. Supplementing that treatment with valproate, which targets a non-benzodiazepine site, effectively terminates RSE, providing further benefit against cholinergic-induced SE. The therapeutic index of drug combinations is also reviewed and we show the improved efficacy of simultaneous administration of midazolam, ketamine and valproate compared to sequential drug administration. These data suggest that future clinical trials should treat both the lack of sufficient inhibition and the excess excitation that characterize RSE, and include early combination drug therapies. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.
Collapse
Affiliation(s)
- Lucille Lumley
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD, USA.
| | - Jerome Niquet
- Department of Neurology, David Geffen School of Medicine at UCLA, Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Brenda Marrero-Rosado
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD, USA
| | - Mark Schultz
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD, USA
| | - Franco Rossetti
- Military Psychiatry and Neuroscience Department, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Claude Wasterlain
- Department of Neurology, David Geffen School of Medicine at UCLA, Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
20
|
Marrero-Rosado BM, Stone MF, de Araujo Furtado M, Schultz CR, Cadieux CL, Lumley LA. Novel Genetically Modified Mouse Model to Assess Soman-Induced Toxicity and Medical Countermeasure Efficacy: Human Acetylcholinesterase Knock-in Serum Carboxylesterase Knockout Mice. Int J Mol Sci 2021; 22:1893. [PMID: 33672922 PMCID: PMC7918218 DOI: 10.3390/ijms22041893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
The identification of improved medical countermeasures against exposure to chemical warfare nerve agents (CWNAs), a class of organophosphorus compounds, is dependent on the choice of animal model used in preclinical studies. CWNAs bind to acetylcholinesterase and prevent the catalysis of acetylcholine, causing a plethora of peripheral and central physiologic manifestations, including seizure. Rodents are widely used to elucidate the effects of CWNA-induced seizure, albeit with a caveat: they express carboxylesterase activity in plasma. Carboxylesterase, an enzyme involved in the detoxification of some organophosphorus compounds, plays a scavenging role and decreases CWNA availability, thus exerting a protective effect. Furthermore, species-specific amino acid differences in acetylcholinesterase confound studies that use oximes or other compounds to restore its function after inhibition by CWNA. The creation of a human acetylcholinesterase knock-in/serum carboxylesterase knockout (C57BL/6-Ces1ctm1.1LocAChEtm1.1Loc/J; a.k.a KIKO) mouse may facilitate better modeling of CWNA toxicity in a small rodent species. The current studies characterize the effects of exposure to soman, a highly toxic CWNA, and evaluate the efficacy of anti-seizure drugs in this newly developed KIKO mouse model. Data demonstrate that a combination of midazolam and ketamine reduces seizure duration and severity, eliminates the development of spontaneous recurrent seizures, and protects certain brain regions from neuronal damage in a genetically modified model with human relevance to organophosphorus compound toxicity. This new animal model and the results of this study and future studies using it will enhance medical countermeasures development for both defense and homeland security purposes.
Collapse
Affiliation(s)
- Brenda M. Marrero-Rosado
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA; (B.M.M.-R.); (M.F.S.); (C.R.S.); (C.L.C.)
| | - Michael F. Stone
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA; (B.M.M.-R.); (M.F.S.); (C.R.S.); (C.L.C.)
| | - Marcio de Araujo Furtado
- Anatomy, Physiology and Genetics Department, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
- BioSEaD, LLC, Rockville, MD 20850, USA
| | - Caroline R. Schultz
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA; (B.M.M.-R.); (M.F.S.); (C.R.S.); (C.L.C.)
| | - C. Linn Cadieux
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA; (B.M.M.-R.); (M.F.S.); (C.R.S.); (C.L.C.)
| | - Lucille A. Lumley
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA; (B.M.M.-R.); (M.F.S.); (C.R.S.); (C.L.C.)
| |
Collapse
|
21
|
Kundrick ER, Marrero-Rosado BM, de Araujo Furtado M, Stone M, Schultz CR, Lumley LA. Cannabidiol reduces soman-induced lethality and seizure severity in female plasma carboxylesterase knockout mice treated with midazolam. Neurotoxicology 2020; 82:130-136. [PMID: 33290784 DOI: 10.1016/j.neuro.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 11/18/2022]
Abstract
Cannabidiol, approved for treatment of pediatric refractory epilepsy, has anti-seizure effects in various animal seizure models. Chemical warfare nerve agents, including soman, are organophosphorus chemicals that can induce seizure and death if untreated or if treatment is delayed. Our objective was to evaluate whether cannabidiol would ameliorate soman-induced toxicity using a mouse model that similar to humans lacks plasma carboxylesterase. In the present study, adult female plasma carboxylesterase knockout (Es1-/-) mice were pre-treated with cannabidiol (20-150 mg/kg) or vehicle 1 h prior to exposure to a seizure-inducing dose of soman and evaluated for survival and seizure activity. The muscarinic antagonist atropine sulfate and the oxime HI-6 were administered at 1 min after exposure, and the benzodiazepine midazolam was administered at 30 min after seizure onset. Cannabidiol (150 mg/kg) pre-treatment led to a robust increase in survival rate and attenuated body weight loss in soman-exposed mice treated with medical countermeasures, compared to mice pre-treated with vehicle. In addition, mice pretreated with cannabidiol (150 mg/kg) had a modest reduction in seizure severity after midazolam treatment compared to vehicle-pretreated. These findings of improved outcome with cannabidiol administration in a severe seizure model of soman exposure provide additional pre-clinical support for the benefits of cannabidiol against exposure to seizure-inducing chemical agents and suggest cannabidiol may augment the anti-seizure effects of midazolam.
Collapse
Affiliation(s)
- Erica R Kundrick
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, United States
| | - Brenda M Marrero-Rosado
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, United States
| | - Marcio de Araujo Furtado
- Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, United States; BioSEaD, LLC, Rockville, MD, 20850, United States
| | - Michael Stone
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, United States
| | - Caroline R Schultz
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, United States
| | - Lucille A Lumley
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, United States.
| |
Collapse
|