1
|
Flex E, Albadri S, Radio FC, Cecchetti S, Lauri A, Priolo M, Kissopoulos M, Carpentieri G, Fasano G, Venditti M, Magliocca V, Bellacchio E, Welch CL, Colombo PC, Kochav SM, Chang R, Barrick R, Trivisano M, Micalizzi A, Borghi R, Messina E, Mancini C, Pizzi S, De Santis F, Rosello M, Specchio N, Compagnucci C, McWalter K, Chung WK, Del Bene F, Tartaglia M. Dominantly acting KIF5B variants with pleiotropic cellular consequences cause variable clinical phenotypes. Hum Mol Genet 2022; 32:473-488. [PMID: 36018820 PMCID: PMC9851748 DOI: 10.1093/hmg/ddac213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 01/25/2023] Open
Abstract
Kinesins are motor proteins involved in microtubule (MT)-mediated intracellular transport. They contribute to key cellular processes, including intracellular trafficking, organelle dynamics and cell division. Pathogenic variants in kinesin-encoding genes underlie several human diseases characterized by an extremely variable clinical phenotype, ranging from isolated neurodevelopmental/neurodegenerative disorders to syndromic phenotypes belonging to a family of conditions collectively termed as 'ciliopathies.' Among kinesins, kinesin-1 is the most abundant MT motor for transport of cargoes towards the plus end of MTs. Three kinesin-1 heavy chain isoforms exist in mammals. Different from KIF5A and KIF5C, which are specifically expressed in neurons and established to cause neurological diseases when mutated, KIF5B is an ubiquitous protein. Three de novo missense KIF5B variants were recently described in four subjects with a syndromic skeletal disorder characterized by kyphomelic dysplasia, hypotonia and DD/ID. Here, we report three dominantly acting KIF5B variants (p.Asn255del, p.Leu498Pro and p.Leu537Pro) resulting in a clinically wide phenotypic spectrum, ranging from dilated cardiomyopathy with adult-onset ophthalmoplegia and progressive skeletal myopathy to a neurodevelopmental condition characterized by severe hypotonia with or without seizures. In vitro and in vivo analyses provide evidence that the identified disease-associated KIF5B variants disrupt lysosomal, autophagosome and mitochondrial organization, and impact cilium biogenesis. All variants, and one of the previously reported missense changes, were shown to affect multiple developmental processes in zebrafish. These findings document pleiotropic consequences of aberrant KIF5B function on development and cell homeostasis, and expand the phenotypic spectrum resulting from altered kinesin-mediated processes.
Collapse
Affiliation(s)
- Elisabetta Flex
- To whom correspondence should be addressed at: Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy. Tel: +39 06 4990 2866; ; Marco Tartaglia, Genetics and Rare Disease Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Viale di San Paolo 15, 00146 Rome, Italy. Tel: +39 06 6859 3742;
| | | | - Francesca Clementina Radio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Serena Cecchetti
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Manuela Priolo
- UOSD Genetica Medica, Grande Ospedale Metropolitano "Bianchi Melacrino Morelli", 89124 Reggio Calabria, Italy
| | - Marta Kissopoulos
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giovanna Carpentieri
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy,Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Giulia Fasano
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Martina Venditti
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Valentina Magliocca
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Emanuele Bellacchio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, NY, New York 10032, USA
| | - Paolo C Colombo
- Department of Medicine, Columbia University Irving Medical Center, NY, New York 10032, USA
| | - Stephanie M Kochav
- Department of Medicine, Columbia University Irving Medical Center, NY, New York 10032, USA
| | - Richard Chang
- Division of Metabolic Disorders, Children's Hospital of Orange County (CHOC), CA, Orange 92868, USA
| | - Rebekah Barrick
- Division of Metabolic Disorders, Children's Hospital of Orange County (CHOC), CA, Orange 92868, USA
| | - Marina Trivisano
- Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Alessia Micalizzi
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Rossella Borghi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Elena Messina
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy,Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Cecilia Mancini
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Flavia De Santis
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215 Paris, France
| | - Marion Rosello
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, F-75012 Paris, France
| | - Nicola Specchio
- Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | | | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, NY, New York 10032, USA,Department of Medicine, Columbia University Irving Medical Center, NY, New York 10032, USA
| | | | - Marco Tartaglia
- To whom correspondence should be addressed at: Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy. Tel: +39 06 4990 2866; ; Marco Tartaglia, Genetics and Rare Disease Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Viale di San Paolo 15, 00146 Rome, Italy. Tel: +39 06 6859 3742;
| |
Collapse
|
2
|
Masucci EM, Relich PK, Lakadamyali M, Ostap EM, Holzbaur ELF. Microtubule dynamics influence the retrograde biased motility of kinesin-4 motor teams in neuronal dendrites. Mol Biol Cell 2021; 33:ar52. [PMID: 34705476 PMCID: PMC9265162 DOI: 10.1091/mbc.e21-10-0480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Microtubules establish the directionality of intracellular transport by kinesins and dynein through polarized assembly, but it remains unclear how directed transport occurs along microtubules organized with mixed polarity. We investigated the ability of the plus end–directed kinesin-4 motor KIF21B to navigate mixed polarity microtubules in mammalian dendrites. Reconstitution assays with recombinant KIF21B and engineered microtubule bundles or extracted neuronal cytoskeletons indicate that nucleotide-independent microtubule-binding regions of KIF21B modulate microtubule dynamics and promote directional switching on antiparallel microtubules. Optogenetic recruitment of KIF21B to organelles in live neurons induces unidirectional transport in axons but bidirectional transport with a net retrograde bias in dendrites. Removal of the secondary microtubule-binding regions of KIF21B or dampening of microtubule dynamics with low concentrations of nocodazole eliminates retrograde bias in live dendrites. Further exploration of the contribution of microtubule dynamics in dendrites to directionality revealed plus end–out microtubules to be more dynamic than plus end–in microtubules, with nocodazole preferentially stabilizing the plus end–out population. We propose a model in which both nucleotide-sensitive and -insensitive microtubule-binding sites of KIF21B motors contribute to the search and selection of stable plus end–in microtubules within the mixed polarity microtubule arrays characteristic of mammalian dendrites to achieve net retrograde movement of KIF21B-bound cargoes.
Collapse
Affiliation(s)
- Erin M Masucci
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Peter K Relich
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Melike Lakadamyali
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - E Michael Ostap
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Erika L F Holzbaur
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
3
|
Cojean S, Nicolas V, Lievin-Le Moal V. Key role of the macrophage microtubule network in the intracellular lifestyle of Leishmania amazonensis. Cell Microbiol 2020; 22:e13218. [PMID: 32406568 DOI: 10.1111/cmi.13218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/11/2020] [Accepted: 04/28/2020] [Indexed: 11/30/2022]
Abstract
We conducted a study to decipher the mechanism of the formation of the large communal Leishmania amazonensis-containing parasitophorous vacuole (PV) and found that the macrophage microtubule (MT) network dynamically orchestrates the intracellular lifestyle of this intracellular parasite. Physical disassembly of the MT network of macrophage-like RAW 264.7 cells or silencing of the dynein gene, encoding the MT-associated molecular motor that powers MT-dependent vacuolar movement, by siRNA resulted in most of the infected cells hosting only tight parasite-containing phagosome-like vacuoles randomly distributed throughout the cytoplasm, each insulating a single parasite. Only a minority of the infected cells hosted both isolated parasite-containing phagosome-like vacuoles and a small communal PV, insulating a maximum of two to three parasites. The tight parasite-containing phagosome-like vacuoles never matured, whereas the small PVs only matured to a small degree, shown by the absence or faint acquisition of host-cell endolysosomal characteristics. As a consequence, the parasites were unable to successfully complete promastigote-to-amastigote differentiation and died, regardless of the type of insulation.
Collapse
Affiliation(s)
- Sandrine Cojean
- CNRS, UMR 8076 BioCis, University Paris-Saclay, Châtenay-Malabry, France
| | - Valérie Nicolas
- Institut Paris-Saclay d'Innovation Thérapeutique (IPSIT), UMS -US31 -UMS3679, Microscopy facility (MIPSIT), University Paris-Saclay, Châtenay-Malabry, France
| | - Vanessa Lievin-Le Moal
- Inserm, UMR-S 996 Inflammation, Microbiome and Immunosurveillance, University Paris-Saclay, Clamart, France
| |
Collapse
|
4
|
Shima T, Morikawa M, Kaneshiro J, Kambara T, Kamimura S, Yagi T, Iwamoto H, Uemura S, Shigematsu H, Shirouzu M, Ichimura T, Watanabe TM, Nitta R, Okada Y, Hirokawa N. Kinesin-binding-triggered conformation switching of microtubules contributes to polarized transport. J Cell Biol 2018; 217:4164-4183. [PMID: 30297389 PMCID: PMC6279379 DOI: 10.1083/jcb.201711178] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 06/13/2018] [Accepted: 09/14/2018] [Indexed: 01/15/2023] Open
Abstract
Kinesin-1, the founding member of the kinesin superfamily of proteins, is known to use only a subset of microtubules for transport in living cells. This biased use of microtubules is proposed as the guidance cue for polarized transport in neurons, but the underlying mechanisms are still poorly understood. Here, we report that kinesin-1 binding changes the microtubule lattice and promotes further kinesin-1 binding. This high-affinity state requires the binding of kinesin-1 in the nucleotide-free state. Microtubules return to the initial low-affinity state by washing out the binding kinesin-1 or by the binding of non-hydrolyzable ATP analogue AMPPNP to kinesin-1. X-ray fiber diffraction, fluorescence speckle microscopy, and second-harmonic generation microscopy, as well as cryo-EM, collectively demonstrated that the binding of nucleotide-free kinesin-1 to GDP microtubules changes the conformation of the GDP microtubule to a conformation resembling the GTP microtubule.
Collapse
Affiliation(s)
- Tomohiro Shima
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Manatsu Morikawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junichi Kaneshiro
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Taketoshi Kambara
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Shinji Kamimura
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Toshiki Yagi
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Hiroyuki Iwamoto
- Life and Environmental Division, SPring-8, Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hideki Shigematsu
- Structural Biology Group, RIKEN Center for Biosystems Dynamics Research, Kanagawa, Japan
| | - Mikako Shirouzu
- Structural Biology Group, RIKEN Center for Biosystems Dynamics Research, Kanagawa, Japan
| | - Taro Ichimura
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Tomonobu M Watanabe
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Ryo Nitta
- Structural Biology Group, RIKEN Center for Biosystems Dynamics Research, Kanagawa, Japan
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Yasushi Okada
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
- Department of Physics, Universal Biology Institute and the International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Center of Excellence in Genome Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Peet DR, Burroughs NJ, Cross RA. Kinesin expands and stabilizes the GDP-microtubule lattice. NATURE NANOTECHNOLOGY 2018; 13:386-391. [PMID: 29531331 PMCID: PMC5937683 DOI: 10.1038/s41565-018-0084-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 01/30/2018] [Indexed: 05/30/2023]
Abstract
Kinesin-1 is a nanoscale molecular motor that walks towards the fast-growing (plus) ends of microtubules, hauling molecular cargo to specific reaction sites in cells. Kinesin-driven transport is central to the self-organization of eukaryotic cells and shows great promise as a tool for nano-engineering 1 . Recent work hints that kinesin may also play a role in modulating the stability of its microtubule track, both in vitro2,3 and in vivo 4 , but the results are conflicting5-7 and the mechanisms are unclear. Here, we report a new dimension to the kinesin-microtubule interaction, whereby strong-binding state (adenosine triphosphate (ATP)-bound and apo) kinesin-1 motor domains inhibit the shrinkage of guanosine diphosphate (GDP) microtubules by up to two orders of magnitude and expand their lattice spacing by ~1.6%. Our data reveal an unexpected mechanism by which the mechanochemical cycles of kinesin and tubulin interlock, and so allow motile kinesins to influence the structure, stability and mechanics of their microtubule track.
Collapse
Affiliation(s)
- Daniel R Peet
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Coventry, UK
- Warwick Systems Biology Centre, University of Warwick, Coventry, UK
| | - Nigel J Burroughs
- Warwick Systems Biology Centre, University of Warwick, Coventry, UK
- Mathematics Institute, University of Warwick, Coventry, UK
| | - Robert A Cross
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Coventry, UK.
| |
Collapse
|
6
|
Alver Ö, Parlak C, Fatih Kaya M, Dikmen G, Genç L. Vibrational spectroscopic investigation of methyl(5-[2-thienylcarbonyl]-1H-benzimidazol-2-yl: A comparative density functional study. J STRUCT CHEM+ 2014. [DOI: 10.1134/s002247661403007x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Sheets K, Wunsch S, Ng C, Nain AS. Shape-dependent cell migration and focal adhesion organization on suspended and aligned nanofiber scaffolds. Acta Biomater 2013; 9:7169-77. [PMID: 23567946 DOI: 10.1016/j.actbio.2013.03.042] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/20/2013] [Accepted: 03/29/2013] [Indexed: 01/13/2023]
Abstract
In the body, cells dynamically respond to chemical and mechanical cues from the extracellular matrix (ECM), yet precise mechanisms by which biophysical parameters (stiffness, topography and alignment) affect cell behavior remain unclear. Here, highly aligned and suspended multilayer polystyrene (PS) nanofiber scaffolds are used to study biophysical influences on focal adhesion complex (FAC) arrangement and associated migration behavior of mouse C2C12 cells arranged in specific shapes: spindle, parallel and polygonal. Furthermore, the role of cytoskeletal-altering drugs including blebbistatin, nocodazole and cytochalasin-D on FAC formation and migratory behavior is investigated. For the first time, this work reports that cells on suspended fiber networks, including cells with administered drugs, elongated along the fiber axes and developed longer (∼ 4×) and more concentrated FAC clusters compared to cells on flat PS control substrates. Additionally, substrate designs which topographically restrict sites of cell attachment and align adhesions were found to promote higher migration speeds (spindle: 52μmh(-1), parallel: 39μmh(-1), polygonal: 25μmh(-1), flat: 32μmh(-1)). This work demonstrates that suspended fiber topography-induced concentration of FACs along fiber axes generates increased migration potential as opposed to flat surfaces, which diffuse and randomly orient adhesions.
Collapse
|
8
|
Pilon A, Poüs C. Compartimentation et plasticité du réseau microtubulaire. Med Sci (Paris) 2013; 29:194-9. [DOI: 10.1051/medsci/2013292018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
9
|
Drummond DR. Regulation of microtubule dynamics by kinesins. Semin Cell Dev Biol 2011; 22:927-34. [PMID: 22001250 DOI: 10.1016/j.semcdb.2011.09.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 09/30/2011] [Indexed: 01/14/2023]
Abstract
The simple mechanistic and functional division of the kinesin family into either active translocators or non-motile microtubule depolymerases was initially appropriate but is now proving increasingly unhelpful, given evidence that several translocase kinesins can affect microtubule dynamics, whilst non-translocase kinesins can promote microtubule assembly and depolymerisation. Such multi-role kinesins act either directly on microtubule dynamics, by interaction with microtubules and tubulin, or indirectly, through the transport of other factors along the lattice to the microtubule tip. Here I review recent progress on the mechanisms and roles of these translocase kinesins.
Collapse
Affiliation(s)
- Douglas R Drummond
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| |
Collapse
|
10
|
Froidevaux-Klipfel L, Poirier F, Boursier C, Crépin R, Poüs C, Baudin B, Baillet A. Modulation of septin and molecular motor recruitment in the microtubule environment of the Taxol-resistant human breast cancer cell line MDA-MB-231. Proteomics 2011; 11:3877-86. [PMID: 21761557 DOI: 10.1002/pmic.201000789] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 06/08/2011] [Accepted: 07/05/2011] [Indexed: 01/09/2023]
Abstract
Cell resistance to low doses of paclitaxel (Taxol) involves a modulation of microtubule (MT) dynamics. We applied a proteomic approach based on 2-DE coupled with MS to identify changes in the MT environment of Taxol-resistant breast cancer cells. Having established a proteomic pattern of the microtubular proteins extracted from MDA-MB-231 cells, we verified by Western blotting that in resistant cells, α- and β-tubulins (more specifically the βIII and βIV isotypes) increased. Interestingly, four septins (SEPT2, 8, 9 and 11), which are GTPases involved in cytokinesis and in MT/actin cytoskeleton organization, were overexpressed and enriched in the MT environment of Taxol-resistant cells compared to their sensitive counterpart. Changes in the MT proteome of resistant cells also comprised increased kinesin-1 heavy chain expression and recruitment on MTs while dynein light chain-1 was downregulated. Modulation of motor protein recruitment around MTs might reflect their important role in controlling MT dynamics via the organization of signaling pathways. The identification of proteins previously unknown to be linked to taxane-resistance could also be valuable to identify new biological markers of resistance.
Collapse
|
11
|
Daire V, Poüs C. Kinesins and protein kinases: key players in the regulation of microtubule dynamics and organization. Arch Biochem Biophys 2011; 510:83-92. [PMID: 21345331 DOI: 10.1016/j.abb.2011.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/05/2011] [Accepted: 02/11/2011] [Indexed: 02/04/2023]
Abstract
Microtubule dynamics is controlled and amplified in vivo by complex sets of regulators. Among these regulatory proteins, molecular motors from the kinesin superfamily are taking an increasing importance. Here we review how microtubule disassembly or assembly into interphase microtubules, mitotic spindle or cilia may involve kinesins and how protein kinases may participate in these kinesin-dependent regulations.
Collapse
Affiliation(s)
- Vanessa Daire
- UPRES EA, Univ. Paris-Sud, Faculté de Pharmacie, Châtenay-Malabry, France
| | | |
Collapse
|
12
|
Lulevich V, Yang HY, Isseroff RR, Liu GY. Single cell mechanics of keratinocyte cells. Ultramicroscopy 2010; 110:1435-42. [PMID: 20728993 DOI: 10.1016/j.ultramic.2010.07.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 07/05/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022]
Abstract
Keratinocytes represent the major cell type of the uppermost layer of human skin, the epidermis. Using AFM-based single cell compression, the ability of individual keratinocytes to resist external pressure and global rupturing forces is investigated and compared with various cell types. Keratinocytes are found to be 6-70 times stiffer than other cell types, such as white blood, breast epithelial, fibroblast, or neuronal cells, and in contrast to other cell types they retain high mechanic strength even after the cell's death. The absence of membrane rupturing peaks in the force-deformation profiles of keratinocytes and their high stiffness during a second load cycle suggests that their unique mechanical resistance is dictated by the cytoskeleton. A simple analytical model enables the quantification of Young's modulus of keratinocyte cytoskeleton, as high as 120-340 Pa. Selective disruption of the two major cytoskeletal networks, actin filaments and microtubules, does not significantly affect keratinocyte mechanics. F-actin is found to impact cell deformation under pressure. During keratinocyte compression, the plasma membrane stretches to form peripheral blebs. Instead of blebbing, cells with depolymerized F-actin respond to pressure by detaching the plasma membrane from the cytoskeleton underneath. On the other hand, the compression force of keratinocytes expressing a mutated keratin (cell line, KEB-7) is 1.6-2.2 times less than that for the control cell line that has normal keratin networks. Therefore, we infer that the keratin intermediate filament network is responsible for the extremely high keratinocyte stiffness and resilience. This could manifest into the rugged protective nature of the human epidermis.
Collapse
Affiliation(s)
- Valentin Lulevich
- Department of Chemistry, University of California, One Shields Ave., Davis, CA 95616, USA
| | | | | | | |
Collapse
|
13
|
Daire V, Giustiniani J, Leroy-Gori I, Quesnoit M, Drevensek S, Dimitrov A, Perez F, Poüs C. Kinesin-1 regulates microtubule dynamics via a c-Jun N-terminal kinase-dependent mechanism. J Biol Chem 2009; 284:31992-2001. [PMID: 19759393 DOI: 10.1074/jbc.m109.007906] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the kinesin family, all the molecular motors that have been implicated in the regulation of microtubule dynamics have been shown to stimulate microtubule depolymerization. Here, we report that kinesin-1 (also known as conventional kinesin or KIF5B) stimulates microtubule elongation and rescues. We show that microtubule-associated kinesin-1 carries the c-Jun N-terminal kinase (JNK) to allow its activation and that microtubule elongation requires JNK activity throughout the microtubule life cycle. We also show that kinesin-1 and JNK promoted microtubule rescues to similar extents. Stimulation of microtubule rescues by the kinesin-1/JNK pathway could not be accounted for by the rescue factor CLIP-170. Indeed only a dual inhibition of kinesin-1/JNK and CLIP-170 completely blocked rescues and led to extensive microtubule loss. We propose that the kinesin-1/JNK signaling pathway is a major regulator of microtubule dynamics in living cells and that it is required with the rescue factor CLIP-170 to allow cells to build their interphase microtubule network.
Collapse
Affiliation(s)
- Vanessa Daire
- Faculté de Pharmacie, Université Paris-Sud 11, JE2493, IFR141, 92296 Châtenay-Malabry Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Schnekenburger J, Weber IA, Hahn D, Buchwalow I, Krüger B, Albrecht E, Domschke W, Lerch MM. The role of kinesin, dynein and microtubules in pancreatic secretion. Cell Mol Life Sci 2009; 66:2525-37. [PMID: 19488676 PMCID: PMC11115865 DOI: 10.1007/s00018-009-0052-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/08/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
Abstract
The regulated secretion of pancreatic zymogens depends on a functional cytoskeleton and intracellular vesicle transport. To study the dynamics of tubulin and its motor proteins dynein and kinesin during secretion in pancreatic acinar cells, we infused rats with 0.1 mug/kg/h caerulein. Electron and fluorescence microscopy detected neither dynein nor kinesin at the apical secretory pole, nor on the surface of mature zymogen granules. After 30 min of secretagogue stimulation, kinesin and the Golgi marker protein 58 K were reallocated towards the apical plasma membrane and association of kinesin with tubulin was enhanced. Disruption of acinar cell microtubules had no effect on initial caerulein-induced amylase release but completely blocked secretion during a second stimulus. Our results suggest that mature zymogen granule exocytosis is independent of intact microtubules, kinesin and dynein. However, microtubule-dependent mechanisms seem to be important for the replenishment of secretory vesicles by redistribution of Golgi elements towards the apical cell pole.
Collapse
Affiliation(s)
- Jürgen Schnekenburger
- Department of Medicine B, Westfälische Wilhelms-University, Domagkstr. 3A, 48149 Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Yea C, Dembowy J, Pacione L, Brown M. Microtubule-mediated and microtubule-independent transport of adenovirus type 5 in HEK293 cells. J Virol 2007; 81:6899-908. [PMID: 17442712 PMCID: PMC1933318 DOI: 10.1128/jvi.02330-05] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adenovirus serotypes 2 and 5 are taken into cells by receptor-mediated endocytosis, and following release from endosomes, destabilized virions travel along microtubules to accumulate around the nucleus. The entry process culminates in delivery of the viral genome through nuclear pores. This model is based on studies with conventional cell lines, such as HeLa and HEp-2, but in HEK293 cells, which are routinely used in this laboratory because they are permissive for replication of multiple adenovirus serotypes, a different trafficking pattern has been observed. Nuclei of 293 cells have an irregular shape, with an indented region, and virions directly labeled with carboxyfluorescein accumulate in a cluster within that indented region. The clusters, which form in close proximity to the microtubule organizing center (MTOC) and to the Golgi apparatus, are remarkably stable; a fluorescent signal can be seen in the MTOC region up to 16 h postinfection. Furthermore, if cells are infected and then undergo mitosis after the cluster is formed, the signal is found at each spindle pole. Despite the sequestration of virions near the MTOC, 293 cells are no less sensitive than other cells to productive infection with adenovirus. Even though cluster formation depends on intact microtubules, infectivity is not compromised by disruption of microtubules with either nocodazole or colchicine, as determined by expression of an enhanced green fluorescent protein reporter gene inserted in the viral genome. These results indicate that virion clusters do not represent the infectious pathway and suggest an alternative route to the nucleus that does not depend on nocodazole-sensitive microtubules.
Collapse
Affiliation(s)
- Carmen Yea
- Dept. of Medical Genetics and Microbiology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | | | | | |
Collapse
|