1
|
Shakya SB, Edwards SV, Sackton TB. Convergent evolution of noncoding elements associated with short tarsus length in birds. BMC Biol 2025; 23:52. [PMID: 39984930 PMCID: PMC11846207 DOI: 10.1186/s12915-025-02156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Convergent evolution is the independent evolution of similar traits in unrelated lineages across the Tree of Life. Various genomic signatures can help identify cases of convergent evolution at the molecular level, including changes in substitution rate in the same genes or gene networks. In this study, utilizing tarsus measurements of ~ 5400 species of birds, we identify independent shifts in tarsus length and use both comparative genomic and population genetic data to identify convergent evolutionary changes among focal clades with shifts to shorter optimal tarsus length. RESULTS Using a newly generated, comprehensive and broadly accessible set of 932,467 avian conserved non-exonic elements (CNEEs) and a whole-genome alignment of 79 birds, we find strong evidence for convergent acceleration in short-tarsus clades among 14,422 elements. Analysis of 9854 protein-coding genes, however, yielded no evidence of convergent patterns of positive selection. Accelerated elements in short-tarsus clades are concentrated near genes with functions in development, with the strongest enrichment associated with skeletal system development. Analysis of gene networks supports convergent changes in regulation of broadly homologous limb developmental genes and pathways. CONCLUSIONS Our results highlight the important role of regulatory elements undergoing convergent acceleration in convergent skeletal traits and are consistent with previous studies showing the roles of regulatory elements and skeletal phenotypes.
Collapse
Affiliation(s)
- Subir B Shakya
- Informatics Group, Harvard University, Cambridge, MA, USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Timothy B Sackton
- Informatics Group, Harvard University, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
2
|
Xu Q, Cui L, Lin Y, Cui LA, Xia W. Disruption of FLNB leads to skeletal malformation by interfering with skeletal segmentation through the HOX gene. Bone Rep 2024; 20:101746. [PMID: 38463381 PMCID: PMC10924170 DOI: 10.1016/j.bonr.2024.101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024] Open
Abstract
Filamin B (FLNB) plays an important role in skeletal development. Mutations in FLNB can lead to skeletal malformation such as an abnormal number of ossification centers, indicating that the skeletal segmentation in the embryonic period may be interfered with. We established a mouse model with the pathogenic point mutation FLNB NM_001081427.1: c.4756G > A (p.Gly1586Arg) using CRISPR-Cas9 technology. Micro-CT, HE staining and whole skeletal preparation were performed to examine the skeletal malformation. In situ hybridization of embryos was performed to examine the transcription of HOX genes during embryonic development. The expression of FLNB was downregulated in FLNBG1586R/G1586R and FLNBWT/G1586R mice, compared to FLNBWT/WT mice. Fusions in tarsal bones were found in FLNBG1586R/G1586R and FLNBWT/G1586R mice, indicating that the skeletal segmentation was interfered with. In the embryo of FLNBG1586R/G1586R mice (E12.5), the transcription levels of HOXD10 and HOXB2 were downregulated in the carpal region and cervical spine region, respectively. This study indicated that the loss-of-function mutation G1586R in FLNB may lead to abnormal skeletal segmentation, and the mechanism was possibly associated with the downregulation of HOX gene transcription during the embryonic period.
Collapse
Affiliation(s)
- Qiming Xu
- Department of Orthopedic Oncology, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100085, China
| | - Lijia Cui
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yude Lin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Leigh-Anne Cui
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Weibo Xia
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
3
|
Wang J, Ding X, Guo CA, Zhang X, Feng H, Yang H, Wang Y. An ethnobotanical study of wild edible plants used by the Tibetan in the Rongjia River Valley, Tibet, China. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2023; 19:49. [PMID: 37891585 PMCID: PMC10612173 DOI: 10.1186/s13002-023-00621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Wild edible plants (WEPs) play a crucial role in communities with limited communication with the outside world, where unstable factors, such as poor food supply and insufficient access to timely nutritional supplementation, are common, as in the Himalayan region. To document the traditional knowledge of WEPs and explore their significance for communities with minimal global economic exchange, an ethnobotanical study was conducted in the town of Rongjia, which lies in a narrow valley near Mount Everest, Tibet, China. METHODS This ethnobotanical study was conducted in three villages in the Rongjia River Valley between August 2021 and June 2023. Semi-structured interviews and participatory observations were used to collect information on WEPs. The fieldwork was performed with the assistance of local guides. Voucher specimens were collected from each documented plant species for taxonomic identification. We used the use report (UR) and relative frequency of citations (RFC) to evaluate the comprehensive utilization value of WEPs. RESULTS We interviewed 161 informants who provided us with 2499 use reports. We collected 50 WEPs belonging to 28 families and 42 genera used by the Tibetan people in the Rongjia River Valley. WEPs are used in vegetables, fruits, seasonings, healthcare foods, substitute grains, and beverages. Wild vegetables were the most commonly used, followed by wild fruits. Leaves were the most commonly consumed part of the plant. The three most important WEPs ordered by RFC values were Rosa sericea var. glandulosa Osmaston (RFC = 0.76), Zanthoxylum bungeanum Maxim. (RFC = 0.75), and Urtica hyperborea Jacquem. ex Wedd. (RFC = 0.71). Other than that, we also document some of WEPs used in the past. Arisaema erubescens Schott, Pinellia ternata (Thunb.) Makino, and Satyrium nepalense var. ciliatum (Lindl.) Hook. f. used to serve as important substitute grains, are no longer in use, however, they remain vivid in the memories of older people. CONCLUSIONS WEPs included wild vegetables, fruits, seasonings, healthcare food, and substitute grains for Tibetan people in the Rongjia River Valley. Some WEPs have become important cultural symbols for older people, which can help in understanding the relationship between plants and local people in the past. In addition, WEPs can increase the resilience of local people living in remote areas when facing sudden destabilizing events in future. This is the significance of WEPs for communities with minimal global economic exchange. Therefore, we suggest that future studies focus more on WEPs in communities with limited communication with the world to improve their resilience.
Collapse
Affiliation(s)
- Jin Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Heilongtan, Yunnan, 650201, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyong Ding
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Heilongtan, Yunnan, 650201, Kunming, China
- National Centre for Borderland Ethnic Studies in Southwest China, Yunnan University, Kunming, 650091, China
| | - Chang-An Guo
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Heilongtan, Yunnan, 650201, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Heilongtan, Yunnan, 650201, Kunming, China
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Haowen Feng
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Heilongtan, Yunnan, 650201, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huizhao Yang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Heilongtan, Yunnan, 650201, Kunming, China
| | - Yuhua Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Heilongtan, Yunnan, 650201, Kunming, China.
| |
Collapse
|
4
|
Genome-Wide Association Analysis Identified BMPR1A as a Novel Candidate Gene Affecting the Number of Thoracic Vertebrae in a Large White × Minzhu Intercross Pig Population. Animals (Basel) 2020; 10:ani10112186. [PMID: 33266466 PMCID: PMC7700692 DOI: 10.3390/ani10112186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 01/28/2023] Open
Abstract
Simple Summary The number of thoracic vertebrae (NTV) and number of vertebrae (NV) varies among pig breeds with a high correlation of about 0.8. It is important to discover variants associated with the NTV by considering the effect of the NV in pig. The results suggest that regulation variants on SSC7 might play crucial roles in the NTV and the FOS on SSC7 should be further studied as a critical candidate gene. In addition, BMPR1A was identified as a novel candidate gene affecting the NTV in pigs. Abstract The number of vertebrae (NV), especially the number of thoracic vertebrae (NTV), varies among pig breeds. The NTV is controlled by vertebral segmentation and the number of somites during embryonic development. Although there is a high correlation between the NTV and NV, studies on a fixed NV have mainly considered the absolute numbers of thoracic vertebrae instead of vertebral segmentation. Therefore, this study aimed to discover variants associated with the NTV by considering the effect of the NV in pigs. The NTV and NV of 542 F2 individuals from a Large White × Minzhu pig crossbreed were recorded. All animals were genotyped for VRTN g.19034 A > C, LTBP2 c.4481A > C, and 37 missense or splice variants previously reported in a 951-kb interval on SSC7 and 147 single nucleotide polymorphisms (SNPs) on SSC14. To identify NTV-associated SNPs, we firstly performed a genome-wide association study (GWAS) using the Q + K (population structure + kinship matrix) model in TASSEL. With the NV as a covariate, the obtained data were used to identify the SNPs with the most significant genome-wide association with the NTV by performing a GWAS on a PorcineSNP60K Genotyping BeadChip. Finally, a conditional GWAS was performed by fixing this SNP. The GWAS showed that 31 SNPs on SSC7 have significant genome-wide associations with the NTV. No missense or splice variants were found to be associated with the NTV significantly. A linkage disequilibrium analysis suggested the existence of quantitative trait loci (QTL) in a 479-Kb region on SSC7, which contained a critical candidate gene FOS for the NTV in pigs. Subsequently, a conditional GWAS was performed by fixing M1GA0010658, the most significant of these SNPs. Two SNPs in BMPR1A were found to have significant genome-wide associations and a significant dominant effect. The leading SNP, S14_87859370, accounted for 3.86% of the phenotypic variance. Our study uncovered that regulation variants in FOS on SSC7 and in BMPR1A on SSC14 might play important roles in controlling the NTV, and thus these genetic factors may be harnessed for increasing the NTV in pigs.
Collapse
|
5
|
Clinical Aspects and Current Therapeutic Approaches for FOP. Biomedicines 2020; 8:biomedicines8090325. [PMID: 32887348 PMCID: PMC7555688 DOI: 10.3390/biomedicines8090325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an extremely rare heritable disorder of connective tissues characterized by progressive heterotopic ossification in various skeletal sites. It is caused by gain-of-function mutations in the gene encoding activin A receptor type I (ACVR1)/activin-like kinase 2 (ALK2), a bone morphogenetic protein (BMP) type I receptor. Heterotopic ossification is usually progressive leading to severe deformities in the trunk and extremities. Early clinical diagnosis is important to prevent unnecessary iatrogenic harm or trauma. Clinicians should become aware of early detectable skeletal malformations, including great toe deformities, shortened thumb, neck stiffness associated with hypertrophy of the posterior elements of the cervical spine, multiple ossification centers in the calcaneus, and osteochondroma-like lesions of the long bones. Although there is presently no definitive medical treatment to prevent, stop or reverse heterotopic ossification in FOP, exciting advances of novel pharmacological drugs focusing on target inhibition of the activated ACVR1 receptor, including palovarotene, REGN 2477, rapamycin, and saracatinib, have developed and are currently in clinical trials.
Collapse
|
6
|
Bondos SE, Geraldo Mendes G, Jons A. Context-dependent HOX transcription factor function in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:225-262. [PMID: 32828467 DOI: 10.1016/bs.pmbts.2020.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During animal development, HOX transcription factors determine the fate of developing tissues to generate diverse organs and appendages. The power of these proteins is striking: mis-expressing a HOX protein causes homeotic transformation of one body part into another. During development, HOX proteins interpret their cellular context through protein interactions, alternative splicing, and post-translational modifications to regulate cell proliferation, cell death, cell migration, cell differentiation, and angiogenesis. Although mutation and/or mis-expression of HOX proteins during development can be lethal, changes in HOX proteins that do not pattern vital organs can result in survivable malformations. In adults, mutation and/or mis-expression of HOX proteins disrupts their gene regulatory networks, deregulating cell behaviors and leading to arthritis and cancer. On the molecular level, HOX proteins are composed of DNA binding homeodomain, and large regions of unstructured, or intrinsically disordered, protein sequence. The primary roles of HOX proteins in arthritis and cancer suggest that mutations associated with these diseases in both the structured and disordered regions of HOX proteins can have substantial functional effects. These insights lead to new questions critical for understanding and manipulating HOX function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Sarah E Bondos
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, United States.
| | - Gabriela Geraldo Mendes
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, United States
| | - Amanda Jons
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, United States
| |
Collapse
|
7
|
Zhu Y, Cheng Z, Wang J, Liu B, Cheng L, Chen B, Cao Y, Wang B. A novel mutation of HOXA11 in a patient with septate uterus. Orphanet J Rare Dis 2017; 12:178. [PMID: 29229001 PMCID: PMC5725892 DOI: 10.1186/s13023-017-0727-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/23/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The etiology of Müllerian duct anomalies (MDAs) is poorly understood at present. The HOXA11 gene is crucial for the development of the Müllerian duct. The objective of this study is to report a unique case of MDAs with a novel mutation in HOXA11. RESULTS We identified a potential disease-causing mutation (p. E255K) in a patient with a septate uterus. The mutation was not detected in 169 control subjects or listed in any databases of variations. Bioinformatic predictions and functional studies showed that the mutation reduces the DNA binding affinity and disrupts transactivation ability of HOXA11. CONCLUSION In conclusion, this is the first report to describe a HOXA11 mutation in Chinese women with MDAs. The results demonstrated that mutation in HOXA11 can contribute to the etiology of MDAs, especially the septate uterus, but might not be a common cause.
Collapse
Affiliation(s)
- Ying Zhu
- Reproductive Medicine Center, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Zhi Cheng
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,National Research Institute for Family Planning, Beijing, 100081, People's Republic of China
| | - Jing Wang
- National Research Institute for Family Planning, Beijing, 100081, People's Republic of China
| | - Beihong Liu
- National Research Institute for Family Planning, Beijing, 100081, People's Republic of China
| | - Longfei Cheng
- National Research Institute for Family Planning, Beijing, 100081, People's Republic of China
| | - Beili Chen
- Reproductive Medicine Center, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yunxia Cao
- Reproductive Medicine Center, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, People's Republic of China.
| | - Binbin Wang
- National Research Institute for Family Planning, Beijing, 100081, People's Republic of China. .,Center for Genetics, National Research Institute for Family Planning, 12, Dahuisi Road, Haidian, Beijing, 100081, China.
| |
Collapse
|
8
|
Akbari A, Agah S, Heidari M, Mobini GR, Faghihloo E, Sarveazad A, Mirzaei A. Homeodomain Protein Transforming Growth Factor Beta-Induced Factor 2 Like, X-Linked Function in Colon Adenocarcinoma Cells. Asian Pac J Cancer Prev 2017:2101-2108. [PMID: 28843229 PMCID: PMC5697467 DOI: 10.22034/apjcp.2017.18.8.2101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background: TGIF2LX (transforming growth factor beta-induced factor 2 like, X-linked) is a homeodomain (HD) protein that has been implicated in the negative regulation of cell signaling pathways. The aim of this study was to investigate the possible functions of TGIF2LX in colon adenocarcinoma cells. Methods: The human SW48 cell line was transfected with cDNA for the wild-type TGIF2LX gene and gene/protein over-expression was confirmed by microscopic analysis, real time RT-PCR and Western blotting techniques. In vitro cell proliferation was evaluated by MTT and BrdU assays. After developing a colon tumor model in nude mice, immunohistochemical (IHC) staining of tumor tissue was carried out for Ki-67 (proliferation) and CD34 (angiogenesis) markers. To predict potential protein partners of TGIF2LX, in-silico analysis was also conducted. Results: Obtained results showed over-expression of TGIF2LX as a potential transcription factor could inhibit either proliferation or angiogenesis (P<0.05) in colon tumors. In-silico results predicted interaction of TGIF2LX with other proteins considered important for cellular development. Conclusions: Our findings provided evidence of molecular mechanisms by which TGIF2LX could act as a tumor suppressor in colon adenocarcinoma cells. Thus, this gene may potentially be a promising option for colon cancer gene-based therapeutic strategies.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
9
|
Genetic Variants Contributing to Colistin Cytotoxicity: Identification of TGIF1 and HOXD10 Using a Population Genomics Approach. Int J Mol Sci 2017; 18:ijms18030661. [PMID: 28335481 PMCID: PMC5372673 DOI: 10.3390/ijms18030661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 12/27/2022] Open
Abstract
Colistin sulfate (polymixin E) is an antibiotic prescribed with increasing frequency for severe Gram-negative bacterial infections. As nephrotoxicity is a common side effect, the discovery of pharmacogenomic markers associated with toxicity would benefit the utility of this drug. Our objective was to identify genetic markers of colistin cytotoxicity that were also associated with expression of key proteins using an unbiased, whole genome approach and further evaluate the functional significance in renal cell lines. To this end, we employed International HapMap lymphoblastoid cell lines (LCLs) of Yoruban ancestry with known genetic information to perform a genome-wide association study (GWAS) with cellular sensitivity to colistin. Further association studies revealed that single nucleotide polymorphisms (SNPs) associated with gene expression and protein expression were significantly enriched in SNPs associated with cytotoxicity (p ≤ 0.001 for gene and p = 0.015 for protein expression). The most highly associated SNP, chr18:3417240 (p = 6.49 × 10−8), was nominally a cis-expression quantitative trait locus (eQTL) of the gene TGIF1 (transforming growth factor β (TGFβ)-induced factor-1; p = 0.021) and was associated with expression of the protein HOXD10 (homeobox protein D10; p = 7.17 × 10−5). To demonstrate functional relevance in a murine colistin nephrotoxicity model, HOXD10 immunohistochemistry revealed upregulated protein expression independent of mRNA expression in response to colistin administration. Knockdown of TGIF1 resulted in decreased protein expression of HOXD10 and increased resistance to colistin cytotoxicity. Furthermore, knockdown of HOXD10 in renal cells also resulted in increased resistance to colistin cytotoxicity, supporting the physiological relevance of the initial genomic associations.
Collapse
|
10
|
Liu D, Pattabiraman V, Bacanamwo M, Anderson LM. Iroquois homeobox transcription factor (Irx5) promotes G1/S-phase transition in vascular smooth muscle cells by CDK2-dependent activation. Am J Physiol Cell Physiol 2016; 311:C179-89. [PMID: 27170637 PMCID: PMC5129766 DOI: 10.1152/ajpcell.00293.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/06/2016] [Indexed: 12/30/2022]
Abstract
The Iroquois homeobox (Irx5) gene is essential in embryonic development and cardiac electrophysiology. Although recent studies have reported that IRX5 protein is involved in regulation of the cell cycle and apoptosis in prostate cancer cells, little is known about the role of IRX5 in the adult vasculature. Here we report novel observations on the role of IRX5 in adult vascular smooth muscle cells (VSMCs) during proliferation in vitro and in vivo. Comparative studies using primary human endothelial cells, VSMCs, and intact carotid arteries to determine relative expression of Irx5 in the peripheral vasculature demonstrate significantly higher expression in VSMCs. Sprague-Dawley rat carotid arteries were subjected to balloon catherization, and the presence of IRX5 was examined by immunohistochemistry after 2 wk. Results indicate markedly elevated IRX5 signal at 14 days compared with uninjured controls. Total RNA was isolated from injured and uninjured arteries, and Irx5 expression was measured by RT-PCR. Results demonstrate a significant increase in Irx5 expression at 3-14 days postinjury compared with controls. Irx5 genetic gain- and loss-of-function studies using thymidine and 5-bromo-2'-deoxyuridine incorporation assays resulted in modulation of DNA synthesis in primary rat aortic VSMCs. Quantitative RT-PCR results revealed modulation of cyclin-dependent kinase inhibitor 1B (p27(kip1)), E2F transcription factor 1 (E2f1), and proliferating cell nuclear antigen (Pcna) expression in Irx5-transduced VSMCs compared with controls. Subsequently, apoptosis was observed and confirmed by morphological observation, caspase-3 cleavage, and enzymatic activation compared with control conditions. Taken together, these results indicate that Irx5 plays an important role in VSMC G1/S-phase cell cycle checkpoint control and apoptosis.
Collapse
Affiliation(s)
- Dong Liu
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia; Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia; and
| | - Vaishnavi Pattabiraman
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia; Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia
| | - Methode Bacanamwo
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia; Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia; and
| | - Leonard M Anderson
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia; Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
11
|
Kalyani R, Lee JY, Min H, Yoon H, Kim MH. Genes Frequently Coexpressed with Hoxc8 Provide Insight into the Discovery of Target Genes. Mol Cells 2016; 39:395-402. [PMID: 27025388 PMCID: PMC4870187 DOI: 10.14348/molcells.2016.2311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 12/12/2022] Open
Abstract
Identifying Hoxc8 target genes is at the crux of understanding the Hoxc8-mediated regulatory networks underlying its roles during development. However, identification of these genes remains difficult due to intrinsic factors of Hoxc8, such as low DNA binding specificity, context-dependent regulation, and unknown cofactors. Therefore, as an alternative, the present study attempted to test whether the roles of Hoxc8 could be inferred by simply analyzing genes frequently coexpressed with Hoxc8, and whether these genes include putative target genes. Using archived gene expression datasets in which Hoxc8 was differentially expressed, we identified a total of 567 genes that were positively coexpressed with Hoxc8 in at least four out of eight datasets. Among these, 23 genes were coexpressed in six datasets. Gene sets associated with extracellular matrix and cell adhesion were most significantly enriched, followed by gene sets for skeletal system development, morphogenesis, cell motility, and transcriptional regulation. In particular, transcriptional regulators, including paralogs of Hoxc8, known Hox co-factors, and transcriptional remodeling factors were enriched. We randomly selected Adam19, Ptpn13, Prkd1, Tgfbi, and Aldh1a3, and validated their coexpression in mouse embryonic tissues and cell lines following TGF-β2 treatment or ectopic Hoxc8 expression. Except for Aldh1a3, all genes showed concordant expression with that of Hoxc8, suggesting that the coexpressed genes might include direct or indirect target genes. Collectively, we suggest that the coexpressed genes provide a resource for constructing Hoxc8-mediated regulatory networks.
Collapse
Affiliation(s)
- Ruthala Kalyani
- Department of Anatomy, Embryology Lab., Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Ji-Yeon Lee
- Department of Anatomy, Embryology Lab., Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Hyehyun Min
- Department of Anatomy, Embryology Lab., Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Heejei Yoon
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul 06351,
Korea
| | - Myoung Hee Kim
- Department of Anatomy, Embryology Lab., Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722,
Korea
| |
Collapse
|
12
|
Embryonic Lethality Due to Arrested Cardiac Development in Psip1/Hdgfrp2 Double-Deficient Mice. PLoS One 2015; 10:e0137797. [PMID: 26367869 PMCID: PMC4569352 DOI: 10.1371/journal.pone.0137797] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/20/2015] [Indexed: 12/28/2022] Open
Abstract
Hepatoma-derived growth factor (HDGF) related protein 2 (HRP2) and lens epithelium-derived growth factor (LEDGF)/p75 are closely related members of the HRP2 protein family. LEDGF/p75 has been implicated in numerous human pathologies including cancer, autoimmunity, and infectious disease. Knockout of the Psip1 gene, which encodes for LEDGF/p75 and the shorter LEDGF/p52 isoform, was previously shown to cause perinatal lethality in mice. The function of HRP2 was by contrast largely unknown. To learn about the role of HRP2 in development, we knocked out the Hdgfrp2 gene, which encodes for HRP2, in both normal and Psip1 knockout mice. Hdgfrp2 knockout mice developed normally and were fertile. By contrast, the double deficient mice died at approximate embryonic day (E) 13.5. Histological examination revealed ventricular septal defect (VSD) associated with E14.5 double knockout embryos. To investigate the underlying molecular mechanism(s), RNA recovered from ventricular tissue was subjected to RNA-sequencing on the Illumina platform. Bioinformatic analysis revealed several genes and biological pathways that were significantly deregulated by the Psip1 knockout and/or Psip1/Hdgfrp2 double knockout. Among the dozen genes known to encode for LEDGF/p75 binding factors, only the expression of Nova1, which encodes an RNA splicing factor, was significantly deregulated by the knockouts. However the expression of other RNA splicing factors, including the LEDGF/p52-interacting protein ASF/SF2, was not significantly altered, indicating that deregulation of global RNA splicing was not a driving factor in the pathology of the VSD. Tumor growth factor (Tgf) β-signaling, which plays a key role in cardiac morphogenesis during development, was the only pathway significantly deregulated by the double knockout as compared to control and Psip1 knockout samples. We accordingly speculate that deregulated Tgf-β signaling was a contributing factor to the VSD and prenatal lethality of Psip1/Hdgfrp2 double-deficient mice.
Collapse
|
13
|
Mishima K, Kitoh H, Haga N, Nakashima Y, Kamizono J, Katagiri T, Susami T, Matsushita M, Ishiguro N. Radiographic characteristics of the hand and cervical spine in fibrodysplasia ossificans progressiva. Intractable Rare Dis Res 2014; 3:46-51. [PMID: 25343126 PMCID: PMC4204539 DOI: 10.5582/irdr.2014.01009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 04/24/2014] [Accepted: 05/07/2014] [Indexed: 11/05/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a disabling heritable disorder of connective tissue characterized by progressive heterotopic ossification in various extraskeletal sites. Early correct diagnosis of FOP is important to prevent additional iatrogenic harm or trauma. Congenital malformation of the great toes is a well-known diagnostic clue, but some patients show normal-appearing great toes. The thumb shortening and cervical spine abnormalities are other skeletal features often observed in FOP. This study aimed to address the quantitative assessment of these features in a cohort of patients with FOP, which potentially helps early diagnosis of FOP. Radiographs of the hand and cervical spine were retrospectively analyzed from a total of 18 FOP patients (9 males and 9 females) with an average age of 13.9 years (range 0.7-39.3 years). The elevated ratio of the second metacarpal bone to the distal phalanx of the thumb (> +1SD) was a consistent finding irrespective of the patient's age and gender. Infant FOP patients, in addition, exhibited an extremely high ratio of the second metacarpal bone to the first metacarpal bone (> +3SD). The height/depth ratio of the C5 vertebra increased in patients over 4 years of age (> +2SD). Additionally, the ratio of (height+depth) of the C5 spinous process to the C5 vertebral depth was markedly elevated in young patients (> +2SD). We quantitatively demonstrated the hand and cervical spine characteristics of FOP. These findings, which can be seen from early infancy, could be useful for early diagnosis of FOP even in patients without great toe abnormalities.
Collapse
Affiliation(s)
- Kenichi Mishima
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiroshi Kitoh
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- The Research Committee on Fibrodysplasia Ossificans Progressiva, Tokyo, Japan
- Address correspondence to: Dr. Hiroshi Kitoh, Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan. E-mail:
| | - Nobuhiko Haga
- The Research Committee on Fibrodysplasia Ossificans Progressiva, Tokyo, Japan
| | - Yasuharu Nakashima
- The Research Committee on Fibrodysplasia Ossificans Progressiva, Tokyo, Japan
| | - Junji Kamizono
- The Research Committee on Fibrodysplasia Ossificans Progressiva, Tokyo, Japan
| | - Takenobu Katagiri
- The Research Committee on Fibrodysplasia Ossificans Progressiva, Tokyo, Japan
| | - Takafumi Susami
- The Research Committee on Fibrodysplasia Ossificans Progressiva, Tokyo, Japan
| | - Masaki Matsushita
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Naoki Ishiguro
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
14
|
Interaction between Tbx1 and HoxD10 and connection with TGFβ-BMP signal pathway during kidney development. Gene 2014; 536:197-202. [DOI: 10.1016/j.gene.2012.06.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 06/19/2012] [Indexed: 12/22/2022]
|
15
|
Regulatory interactions between androgens, Hoxb5, and TGF β signaling in murine lung development. BIOMED RESEARCH INTERNATIONAL 2013; 2013:320249. [PMID: 24078914 PMCID: PMC3776362 DOI: 10.1155/2013/320249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/17/2013] [Indexed: 12/25/2022]
Abstract
Androgens enhance airway branching but delay alveolar maturation contributing to increased respiratory morbidity in prematurely born male infants. Hoxb5 protein positively regulates airway branching in developing lung. In other organs, androgen regulation intersects with Hox proteins and TGFβ-SMAD signaling, but these interactions have not been studied in the lung. We hypothesized that androgen alteration of airway branching early in lung development requires Hoxb5 expression and that these androgen-Hoxb5 interactions occur partially through regional changes in TGFβ signaling. To evaluate acute effects of androgen and TGFβ on Hoxb5, E11 whole fetal mouse lungs were cultured with dihydrotestosterone (DHT) with/without Hoxb5 siRNA or TGFβ inhibitory antibody. Chronic in utero DHT exposure was accomplished by exposing pregnant mice to DHT (subcutaneous pellet) from E11 to E18. DHT's ability to enhance airway branching and alter phosphorylated SMAD2 cellular localization was partially dependent on Hoxb5. Hoxb5 inhibition also changed the cellular distribution of SMAD7 protein. Chronic in utero DHT increased Hoxb5 and altered SMAD7 mesenchymal localization. TGFβ inhibition enhanced airway branching, and Hoxb5 protein cellular localization was more diffuse. We conclude that DHT controls lung airway development partially through modulation of Hoxb5 protein expression and that this level of regulation involves interactions with TGFβ signaling.
Collapse
|
16
|
Merabet S, Dard A. Tracking context-specific transcription factors regulating hox activity. Dev Dyn 2013; 243:16-23. [PMID: 23794379 DOI: 10.1002/dvdy.24002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/07/2013] [Accepted: 06/11/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hox proteins are key developmental regulators involved in almost every embryonic tissue for specifying cell fates along longitudinal axes or during organ formation. It is thought that the panoply of Hox activities relies on interactions with tissue-, stage-, and/or cell-specific transcription factors. High-throughput approaches in yeast or cell culture systems have shown that Hox proteins bind to various types of nuclear and cytoplasmic components, illustrating their remarkable potential to influence many different cell regulatory processes. However, these approaches failed to identify a relevant number of context-specific transcriptional partners, suggesting that these interactions are hard to uncover in non-physiological conditions. Here we discuss this problematic. RESULTS In this review, we present intrinsic Hox molecular signatures that are probably involved in multiple (yet specific) interactions with transcriptional partners. We also recapitulate the current knowledge on Hox cofactors, highlighting the difficulty to tracking context-specific cofactors through traditional large-scale approaches. CONCLUSION We propose experimental approaches that will allow a better characterisation of interaction networks underlying Hox contextual activities in the next future.
Collapse
|
17
|
Jefferis J, Rakoczy J, Simmons DG, Dawson PA. Molecular analysis of the human SLC13A4 sulfate transporter gene promoter. Biochem Biophys Res Commun 2013; 433:79-83. [PMID: 23485456 DOI: 10.1016/j.bbrc.2013.02.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 02/17/2013] [Indexed: 11/25/2022]
Abstract
The human solute linked carrier (SLC) 13A4 gene is primarily expressed in the placenta where it is proposed to mediate the transport of nutrient sulfate from mother to fetus. The molecular mechanisms involved in the regulation of SLC13A4 expression remain unknown. To investigate the regulation of SLC13A4 gene expression, we analysed the transcriptional activity of the human SLC13A4 5'-flanking region in the JEG-3 placental cell line using luciferase reporter assays. Basal transcriptional activity was identified in the region -57 to -192 nucleotides upstream of the SLC13A4 transcription initiation site. Mutational analysis of the minimal promoter region identified Nuclear factor Y (NFY), Specificity protein 1 (SP1) and Krüppel like factor 7 (KLF7) motifs which conferred positive transcriptional activity, as well as Zinc finger protein of the cerebellum 2 (ZIC2) and helix-loop-helix protein 1 (HEN1) motifs that repressed transcription. The conserved NFY, SP1, KLF7, ZIC2 and HEN1 motifs in the SLC13A4 promoter of placental species but not in non-placental species, suggests a potential role for these putative transcriptional factor binding motifs in the physiological control of SLC13A4 mRNA expression.
Collapse
Affiliation(s)
- J Jefferis
- Mater Medical Research Institute, South Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
18
|
Lambert B, Vandeputte J, Remacle S, Bergiers I, Simonis N, Twizere JC, Vidal M, Rezsohazy R. Protein interactions of the transcription factor Hoxa1. BMC DEVELOPMENTAL BIOLOGY 2012; 12:29. [PMID: 23088713 PMCID: PMC3514159 DOI: 10.1186/1471-213x-12-29] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 10/16/2012] [Indexed: 11/10/2022]
Abstract
Background Hox proteins are transcription factors involved in crucial processes during animal development. Their mode of action remains scantily documented. While other families of transcription factors, like Smad or Stat, are known cell signaling transducers, such a function has never been squarely addressed for Hox proteins. Results To investigate the mode of action of mammalian Hoxa1, we characterized its interactome by a systematic yeast two-hybrid screening against ~12,200 ORF-derived polypeptides. Fifty nine interactors were identified of which 45 could be confirmed by affinity co-purification in animal cell lines. Many Hoxa1 interactors are proteins involved in cell-signaling transduction, cell adhesion and vesicular trafficking. Forty-one interactions were detectable in live cells by Bimolecular Fluorescence Complementation which revealed distinctive intracellular patterns for these interactions consistent with the selective recruitment of Hoxa1 by subgroups of partner proteins at vesicular, cytoplasmic or nuclear compartments. Conclusions The characterization of the Hoxa1 interactome presented here suggests unexplored roles for Hox proteins in cell-to-cell communication and cell physiology.
Collapse
Affiliation(s)
- Barbara Lambert
- Molecular and Cellular Animal Embryology group, Life Sciences Institute (ISV), Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Cai M, Li G, Tao K, Yang Y, Lou L, Cai Z, Yu Y. Maohuoside A Acts in a BMP-dependent Manner during Osteogenesis. Phytother Res 2012; 27:1179-84. [PMID: 23007945 DOI: 10.1002/ptr.4840] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 08/09/2012] [Accepted: 08/15/2012] [Indexed: 11/06/2022]
Affiliation(s)
| | - Guodong Li
- Shanghai Tenth People's Hospital of Tongji University; Shanghai 200027 PR China
| | - Kun Tao
- Shanghai Tenth People's Hospital of Tongji University; Shanghai 200027 PR China
| | - Yunji Yang
- Shanghai Tenth People's Hospital of Tongji University; Shanghai 200027 PR China
| | - Lieming Lou
- Shanghai Tenth People's Hospital of Tongji University; Shanghai 200027 PR China
| | - Zhengdong Cai
- Shanghai Tenth People's Hospital of Tongji University; Shanghai 200027 PR China
| | - Yongchun Yu
- Shanghai Tenth People's Hospital of Tongji University; Shanghai 200027 PR China
| |
Collapse
|
20
|
Wu X, Ellmann S, Rubin E, Gil M, Jin K, Han L, Chen H, Kwon EM, Guo J, Ha HC, Sukumar S. ADP ribosylation by PARP-1 suppresses HOXB7 transcriptional activity. PLoS One 2012; 7:e40644. [PMID: 22844406 PMCID: PMC3402478 DOI: 10.1371/journal.pone.0040644] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 06/13/2012] [Indexed: 12/29/2022] Open
Abstract
Interactions with cofactors regulate transcriptional activity and also help HOX proteins to achieve the specificity required for transcriptional regulation of target genes. In this study, we describe a novel protein/protein interaction of HOXB7 with poly (ADP-ribose) polymerase-1 (PARP-1) that involves the homeodomain of HOXB7 and the first zinc finger domain of PARP-1. Upon binding to PARP-1, HOXB7 undergoes poly(ADP-ribosyl)altion resulting in a reduction of its transcriptional activity. Since aspartic acid and glutamic acid residues are acceptors of the ADP ribose moiety transferred by PARP-1, deletion of the evolutionarily conserved C-terminal Glu-rich tail of HOXB7 dramatically attenuates ADP-ribosylation of HOXB7 by PARP-1. Further, a mutant of HOXB7 without the Glu-rich tail loses the ability to be negatively regulated by PARP-1 and becomes transcriptionally more active in luciferase reporter assays. Since the homeodomain is highly conserved among HOX proteins, five other HOX proteins were tested. All six showed interaction with, and were poly(ADP-ribosyl)ated by PARP-1. However, among them, this modification altered the DNA binding activity of only HOXA7 and HOXB7. In summary, this study identifies a new interacting partner of HOX proteins. More importantly, this study reveals a novel mechanism whereby polyADP-ribosylation regulates transcriptional activities of HOX proteins such as HOXB7 and HOXA7.
Collapse
Affiliation(s)
- Xinyan Wu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (SS); (XW)
| | - Stephan Ellmann
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ethel Rubin
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Minchan Gil
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Kideok Jin
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Liangfeng Han
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Hexin Chen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Erika M. Kwon
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jianhui Guo
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Hyo Chol Ha
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (SS); (XW)
| |
Collapse
|
21
|
Estrada KD, Retting KN, Chin AM, Lyons KM. Smad6 is essential to limit BMP signaling during cartilage development. J Bone Miner Res 2011; 26:2498-510. [PMID: 21681813 PMCID: PMC3183270 DOI: 10.1002/jbmr.443] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bone morphogenetic protein (BMP) signaling pathways regulate multiple aspects of endochondral bone formation. The importance of extracellular antagonists as regulators of BMP signaling has been defined. In vitro studies reveal that the intracellular regulators, inhibitory Smads 6 and 7, can regulate BMP-mediated effects on chondrocytes. Although in vivo studies in which inhibitory Smads were overexpressed in cartilage have shown that inhibitory Smads have the potential to limit BMP signaling in vivo, the physiological relevance of inhibitory Smad activity in skeletal tissues is unknown. In this study, we have determined the role of Smad6 in endochondral bone formation. Loss of Smad6 in mice leads to defects in both axial and appendicular skeletal development. Specifically, Smad6-/- mice exhibit a posterior transformation of the seventh cervical vertebra, bilateral ossification centers in lumbar vertebrae, and bifid sternebrae due to incomplete sternal band fusion. Histological analysis of appendicular bones revealed delayed onset of hypertrophic differentiation and mineralization at midgestation in Smad6-/- mice. By late gestation, however, an expanded hypertrophic zone, associated with an increased pool of proliferating cells undergoing hypertrophy, was evident in Smad6 mutant growth plates. The mutant phenotype is attributed, at least in part, to increased BMP responsiveness in Smad6-deficient chondrocytes. Overall, our results show that Smad6 is required to limit BMP signaling during endochondral bone formation.
Collapse
Affiliation(s)
- Kristine D Estrada
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
22
|
Vinarskaja A, Yamanaka M, Ingenwerth M, Schulz WA. DNA Methylation and the HOXC6 Paradox in Prostate Cancer. Cancers (Basel) 2011; 3:3714-25. [PMID: 24213107 PMCID: PMC3763392 DOI: 10.3390/cancers3043714] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/08/2011] [Accepted: 09/22/2011] [Indexed: 12/18/2022] Open
Abstract
Overexpression of the classical homeobox transcription factor HOXC6 is frequent in prostate cancers and correlates with adverse clinical parameters. Since surprisingly many HOXC6 target genes are downregulated in prostate cancer, it has been posited that oncogenic effects of HOXC6 in prostate cancer may be unmasked by concurrent epigenetic downregulation of target genes exerting tumor suppressive effects. To test this hypothesis, we have studied the expression of three HOXC6 target genes, CNTN1 (encoding a cell adhesion protein), DKK3 and WIF1 (encoding WNT growth factor antagonists) as well as DNA methylation of DKK3 and WIF1. HOXC6 upregulation and association with poor prognosis were confirmed in our tissue series. The three target genes were each significantly downregulated in cancer tissues and expression of each one correlated inversely with that of HOXC6. Cases with lower WIF1 expression showed significantly earlier recurrence (p = 0.021), whereas no statistical significance was reached for CNTN1 and DKK3. Hypermethylation of DKK3 or WIF1 gene promoters was observed in a subset of cancers with downregulated expression, but was often weak. Our data support the hypothesis that HOXC6 target genes exerting tumor-suppressive effects are epigenetically downregulated in prostate cancer, but DNA methylation appears to follow or bolster rather than to cause their transcriptional inactivation.
Collapse
Affiliation(s)
- Anna Vinarskaja
- Department of Urology, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | | | | | | |
Collapse
|
23
|
Lambert B, Vandeputte J, Desmet PM, Hallet B, Remacle S, Rezsohazy R. Pentapeptide insertion mutagenesis of the Hoxa1 protein: mapping of transcription activation and DNA-binding regulatory domains. J Cell Biochem 2010; 110:484-96. [PMID: 20336696 DOI: 10.1002/jcb.22563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mode of action of Hoxa1, like that of most Hox proteins, remains poorly characterized. In an effort to identify functional determinants contributing to the activity of Hoxa1 as a transcription factor, we generated 18 pentapeptide insertion mutants of the Hoxa1 protein and we assayed them in transfected cells for their activity on target enhancers from the EphA2 and Hoxb1 genes known to respond to Hoxa1 in the developing hindbrain. Only four mutants displayed a complete loss-of-function. Three of them contained an insertion in the homeodomain of Hoxa1, whereas the fourth loss-of-function mutant harbored an insertion in the very N-terminal end of the protein. Transcription activation assays in yeast further revealed that the integrity of both the N-terminal end and homeodomain is required for Hoxa1-mediated transcriptional activation. Furthermore, an insertion in the serine-threonine-proline rich C-terminal extremity of Hoxa1 induced an increase in activity in mammalian cells as well as in the yeast assay. The C-terminal extremity thus modulates the transcriptional activation capacity of the protein. Finally, electrophoretic mobility shift assays revealed that the N-terminal extremity of the protein also exerts a modulatory influence on DNA binding by Hoxa1-Pbx1a heterodimers.
Collapse
Affiliation(s)
- Barbara Lambert
- Unit of Veterinary Sciences, Life Sciences Institute (ISV), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
24
|
Zhang H, He JW, Gao G, Yue H, Yu JB, Hu WW, Gu JM, Hu YQ, Li M, Fu WZ, Liu YJ, Zhang ZL. Polymorphisms in the HOXD4 gene are not associated with peak bone mineral density in Chinese nuclear families. Acta Pharmacol Sin 2010; 31:977-83. [PMID: 20686522 DOI: 10.1038/aps.2010.91] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM To determine the associations between HOXD4 gene polymorphisms with peak bone mineral density (BMD) throughing measuring three tagging single nucleotide polymorphisms (tagSNPs), including rs1867863, rs13418078, and rs4972504, in HOXD4. METHODS Four hundred Chinese nuclear families with male offspring (1215 subjects) and 401 Chinese nuclear families with female offspring (1260 subjects) were recruited. BMD of the lumbar spine 1-4 (L1-4) and left proximal femur including total hip and femoral neck were measured by dual-energy X-ray absorptiometry. The quantitative transmission disequilibrium test (QTDT) was performed to investigate the association among the tagging SNPs, haplotypes and peak BMD. RESULTS Only the CC genotype was identified in rs13418078 in the Chinese population, unlike other populations. We failed to find significant within-family association among these SNPs, haplotypes and peak BMD at any bone site in either male- or female-offspring nuclear families. CONCLUSION The results suggest that genetic polymorphisms in HOXD4 may not be a major contributor to the observed variability in peak BMD in the lumbar spine and the hip in Chinese men and women.
Collapse
|
25
|
Abstract
OBJECTIVE Homeobox genes of the Hox class are required for proper patterning of skeletal elements and play a role in cartilage differentiation. In transgenic mice with overexpression of Hoxc8 and Hoxd4 during cartilage development, the authors observed severe defects, namely, physical instability of cartilage, accumulation of immature chondrocytes, and decreased maturation to hypertrophy. To define the molecular basis underlying these defects, the authors performed gene expression profiling using the Affymetrix microarray platform. RESULTS Primary chondrocytes were isolated from Hoxc8- and Hoxd4-transgenic mouse embryo rib cartilage at 18.5 days of gestation. In both cases, differentially expressed genes were identified that have a role in cell proliferation and cell cycle regulation. A comparison between the controls for both experimental groups did not reveal significant differences, as expected. However, the repertoires of differentially expressed genes were found not to overlap between Hoxc8- and Hoxd4-transgenic cartilage. This included different Wnt genes, cell cycle, and apoptosis regulators. CONCLUSION Overexpression of Hoxc8 and Hoxd4 transcription factors alters transcriptional profiles in chondrocytes at E18.5. The differences in repertoires of altered gene expression between the 2 transgenic conditions suggest that the molecular mechanisms underlying the cartilage defects may be different in both transgenic paradigms, despite apparently similar phenotypes.
Collapse
Affiliation(s)
- Claudia Kruger
- Developmental Biology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Claudia Kappen
- Developmental Biology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| |
Collapse
|
26
|
Mouse Homologue of the Schizophrenia Susceptibility Gene ZNF804A as a Target of Hoxc8. J Biomed Biotechnol 2010; 2010:231708. [PMID: 20508826 PMCID: PMC2876248 DOI: 10.1155/2010/231708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 02/10/2010] [Accepted: 03/08/2010] [Indexed: 12/03/2022] Open
Abstract
Using a ChIP-cloning technique, we identified a Zinc finger protein 804a (Zfp804a) as one of the putative Hoxc8 downstream target genes. We confirmed binding of Hoxc8 to an intronic region of Zfp804a by ChIP-PCR in F9 cells as well as in mouse embryos. Hoxc8 upregulated Zfp804a mRNA levels and augmented minimal promoter activity in vitro. In E11.5 mouse embryos, Zfp804a and Hoxc8 were coexpressed. Recent genome-wide studies identified Zfp804a (or ZNF804A in humans) as a plausible marker for schizophrenia, leading us to hypothesize that this embryogenic regulatory control might also exert influence in development of complex traits such as psychosis.
Collapse
|
27
|
Pbx1 represses osteoblastogenesis by blocking Hoxa10-mediated recruitment of chromatin remodeling factors. Mol Cell Biol 2010; 30:3531-41. [PMID: 20439491 DOI: 10.1128/mcb.00889-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abdominal-class homeodomain-containing (Hox) factors form multimeric complexes with TALE-class homeodomain proteins (Pbx, Meis) to regulate tissue morphogenesis and skeletal development. Here we have established that Pbx1 negatively regulates Hoxa10-mediated gene transcription in mesenchymal cells and identified components of a Pbx1 complex associated with genes in osteoblasts. Expression of Pbx1 impaired osteogenic commitment of C3H10T1/2 multipotent cells and differentiation of MC3T3-E1 preosteoblasts. Conversely, targeted depletion of Pbx1 by short hairpin RNA (shRNA) increased expression of osteoblast-related genes. Studies using wild-type and mutated osteocalcin and Bsp promoters revealed that Pbx1 acts through a Pbx-binding site that is required to attenuate gene activation by Hoxa10. Chromatin-associated Pbx1 and Hoxa10 were present at osteoblast-related gene promoters preceding gene expression, but only Hoxa10 was associated with these promoters during transcription. Our results show that Pbx1 is associated with histone deacetylases normally linked with chromatin inactivation. Loss of Pbx1 from osteoblast promoters in differentiated osteoblasts was associated with increased histone acetylation and CBP/p300 recruitment, as well as decreased H3K9 methylation. We propose that Pbx1 plays a central role in attenuating the ability of Hoxa10 to activate osteoblast-related genes in order to establish temporal regulation of gene expression during osteogenesis.
Collapse
|
28
|
Abstract
Hox genes, a highly conserved subgroup of the homeobox superfamily, have crucial roles in development, regulating numerous processes including apoptosis, receptor signalling, differentiation, motility and angiogenesis. Aberrations in Hox gene expression have been reported in abnormal development and malignancy, indicating that altered expression of Hox genes could be important for both oncogenesis and tumour suppression, depending on context. Therefore, Hox gene expression could be important in diagnosis and therapy.
Collapse
Affiliation(s)
- Nilay Shah
- Nilay Shah and Saraswati Sukumar are at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | |
Collapse
|
29
|
|
30
|
Kubosaki A, Tomaru Y, Tagami M, Arner E, Miura H, Suzuki T, Suzuki M, Suzuki H, Hayashizaki Y. Genome-wide investigation of in vivo EGR-1 binding sites in monocytic differentiation. Genome Biol 2009; 10:R41. [PMID: 19374776 PMCID: PMC2688932 DOI: 10.1186/gb-2009-10-4-r41] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/06/2009] [Accepted: 04/19/2009] [Indexed: 01/10/2023] Open
Abstract
A Genome-wide analysis of EGR-1 binding sites reveals co-localization with CpG islands and histone H3 lysine 9 binding. SP-1 binding occupancies near EGR-1 binding sites are dramatically altered. Background Immediate early genes are considered to play important roles in dynamic gene regulatory networks following exposure to appropriate stimuli. One of the immediate early genes, early growth response gene 1 (EGR-1), has been implicated in differentiation of human monoblastoma cells along the monocytic commitment following treatment with phorbol ester. EGR-1 has been thought to work as a modifier of monopoiesis, but the precise function of EGR-1 in monocytic differentiation has not been fully elucidated. Results We performed the first genome-wide analysis of EGR-1 binding sites by chromatin immunoprecipitation with promoter array (ChIP-chip) and identified EGR-1 target sites in differentiating THP-1 cells. By combining the results with previously reported FANTOM4 data, we found that EGR-1 binding sites highly co-localized with CpG islands, acetylated histone H3 lysine 9 binding sites, and CAGE tag clusters. Gene Ontology (GO) analysis revealed enriched terms, including binding of molecules, in EGR-1 target genes. In addition, comparison with gene expression profiling data showed that EGR-1 binding influenced gene expression. Moreover, observation of in vivo occupancy changes of DNA binding proteins following PMA stimulation indicated that SP1 binding occupancies were dramatically changed near EGR-1 binding sites. Conclusions We conclude that EGR-1 mainly recognizes GC-rich consensus sequences in promoters of active genes. GO analysis and gene expression profiling data confirm that EGR-1 is involved in initiation of information transmission in cell events. The observations of in vivo occupancy changes of EGR-1 and SP1 suggest that several types of interplay between EGR-1 and other proteins result in multiple responses to EGR-1 downstream genes.
Collapse
Affiliation(s)
- Atsutaka Kubosaki
- RIKEN Omics Science Center, RIKEN Yokohama Institute 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zheng YJ, Chung HJ, Min H, Kang M, Kim SH, Gadi J, Kim MH. In vitro osteoblast differentiation is negatively regulated by Hoxc8. Appl Biochem Biotechnol 2009; 160:891-900. [PMID: 19214787 DOI: 10.1007/s12010-009-8558-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 02/03/2009] [Indexed: 10/21/2022]
Abstract
Hoxc8 has multiple roles in normal skeletal development. In this paper, a MC3T3-E1 subclone 4 osteogenic cell differentiation model was used to examine expression of Hoxc8 at multiple stages of osteogenesis. We found that Hoxc8 expression levels do not change in the early stage but increase in the middle stage and decrease in the late stage of osteogenesis. A knockdown of Hoxc8 by small-interfering RNA transfection in C2C12 cells indicated that Hoxc8 is a negative regulator of osteogenesis. Similarly, expression of Hoxc8 in C2C12 cells decreases alkaline phosphatase levels induced by bone morphogenetic protein-2 (BMP-2). The results of this study showed that Hoxc8 is involved in BMP-2-induced osteogenesis, and osteoblast differentiation in vitro is negatively regulated by Hoxc8, suggesting that Hoxc8 regulation is essential for osteoblast differentiation.
Collapse
Affiliation(s)
- Yan-Jun Zheng
- Department of Anatomy, Embryology Lab, Brain Korea 21 Project for Medical Science, College of Medicine, Yonsei University, 134 Seodaemun-gu, Shinchon-dong, 120-752 Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
MicroRNAs (miRNAs) are a class of highly conserved small noncoding RNAs that negatively regulate gene expression by imperfectly base pairing to the 3'-untranslated region of their target mRNAs, leading to mRNA degradation or translational inhibition. The emerging field of miRNA biology has begun to unravel roles for these regulatory molecules in a variety of biological processes. This review concentrates on the roles of miRNAs in skeletogenesis as well as in skeleton-related disease processes. Before describing these data, we present a brief review of the biogenesis and action of miRNAs, the approaches to miRNAs study, and miRNAs as global regulators of development. We finish by emphasizing that the study of the biological functions of miRNAs in skeletogenesis and dysplasia represents an entirely new avenue in the exploration of bone and cartilage biology, and large gaps remain in our knowledge of miRNAs in skeletogenesis in vivo and in our knowledge of the molecular events underlying miRNA-mediated musculoskeletal disorders.
Collapse
Affiliation(s)
- Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, New York 10003, USA.
| |
Collapse
|
33
|
Chae SW, Jee BK, Lee JY, Han CW, Jeon YW, Lim Y, Lee KH, Rha HK, Chae GT. HOX gene analysis in the osteogenic differentiation of human mesenchymal stem cells. Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008005000019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Song Wha Chae
- Neuroscience Genome Research Center, The Catholic University of Korea, Republic of Korea
| | - Bo Keun Jee
- Neuroscience Genome Research Center, The Catholic University of Korea, Republic of Korea
| | - Joo Yong Lee
- Neuroscience Genome Research Center, The Catholic University of Korea, Republic of Korea
| | - Chang Whan Han
- Department of Orthopedic Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Yang-Whan Jeon
- Department of Psychiatry, Our Lady of Mercy Hospital, The Catholic University of Korea, Republic of Korea
| | - Young Lim
- Department of Occupational and Environmental Medicine, St. Mary's Hospital, The Catholic University of Korea, Republic of Korea
| | - Kweon-Haeng Lee
- Neuroscience Genome Research Center, The Catholic University of Korea, Republic of Korea
| | - Hyoung Kyun Rha
- Neuroscience Genome Research Center, The Catholic University of Korea, Republic of Korea
| | - Gue-Tae Chae
- Institute of Hansen's Disease, The Catholic University of Korea, Republic of Korea
| |
Collapse
|
34
|
Zhou B, Chen L, Wu X, Wang J, Yin Y, Zhu G. MH1 domain of SMAD4 binds N-terminal residues of the homeodomain of Hoxc9. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:747-52. [PMID: 18339330 DOI: 10.1016/j.bbapap.2008.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 01/18/2008] [Accepted: 01/22/2008] [Indexed: 11/28/2022]
Abstract
Smad family proteins mediate signaling initiated by bone morphogenetic proteins (BMPs). Upon BMP stimulation, the Smads such as Smad4 can interact directly with Hox proteins and suppress their DNA-binding activity. Although the interaction between the MAD-homology 1 (MH1) domain of Smad4 and Hox was found to regulate the transcription activity of Hox proteins, the molecular mechanism is not well characterized and direct contact residues remain to be elucidated. In the present study, the interaction between the recombinant homeodomain (HD) of Hoxc9 and MH1 domain of Smad4 was investigated with the use of the GST pull-down assay, surface plasmon resonance (SPR) analysis as well as multidimensional nuclear magnetic resonance (NMR) techniques. The Hoxc9-HD was precipitated with the GST-fused Smad4-MH1 but not with GST alone, demonstrating a direct interaction between Hoxc9-HD and Smad4-MH1 in vitro. SPR measurement further confirmed a moderately strong interaction (K(d) approximately 400 nM) between these two domains. Moreover, NMR titration experiments showed that a strong and specific binding occurred between Smad4-MH1 and Hoxc9-HD. NMR triple-resonance experiments and backbone assignments revealed that the N-terminal arm of Hoxc9-HD, spanning the positive-charged DNA-binding segment of Arg190-Arg196, was intimately involved in the interaction with Smad4-MH1. Ala-substitutions of Arg190-Arg196 led to the loss of interaction between Hoxc9-HD and Smad4-MH1 in both GST-pull down assay and SPR analysis; further provided functional evidence for the critical role of this positive-charged region in binding to Smad4-MH1. This suggested that Smad4-MH1 could occupy one of the DNA binding sites of Hoxc9 and consequently inhibits its transcription activity. The above results are in good agreement and yield the first insight into the interaction between the homeodomain of Hox proteins and the conserved MH1 domain of Smad family proteins.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, PR China
| | | | | | | | | | | |
Collapse
|
35
|
Javed A, Bae JS, Afzal F, Gutierrez S, Pratap J, Zaidi SK, Lou Y, van Wijnen AJ, Stein JL, Stein GS, Lian JB. Structural coupling of Smad and Runx2 for execution of the BMP2 osteogenic signal. J Biol Chem 2008; 283:8412-22. [PMID: 18204048 DOI: 10.1074/jbc.m705578200] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Two regulatory pathways, bone morphogenetic protein (BMP)/transforming growth factor-beta (TGFbeta) and the transcription factor RUNX2, are required for bone formation in vivo. Here we show the interdependent requirement of these pathways to induce an osteogenic program. A panel of Runx2 deletion and point mutants was used to examine RUNX2-SMAD protein-protein interaction and the biological consequences on BMP2-induced osteogenic signaling determined in Runx2 null cells. These cells do not respond to BMP2 signal in the absence of Runx2. We established that a triple mutation in the C-terminal domain of RUNX2, HTY (426-428), disrupts the RUNX2-SMAD interaction, is deficient in its ability to integrate the BMP2/TGFbeta signal on promoter reporter assays, and is only marginally functional in promoting early stages of osteoblast differentiation. Furthermore, the HTY mutation overlaps the unique nuclear matrix targeting signal of Runx factors and exhibits reduced subnuclear targeting. Thus, formation of a RUNX2-SMAD osteogenic complex and subnuclear targeting are structurally and functionally inseparable. Our results establish the critical residues of RUNX2 for execution and completion of BMP2 signaling for osteoblastogenesis through a mechanism that requires RUNX2-SMAD transcriptional activity.
Collapse
Affiliation(s)
- Amjad Javed
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sharma S, Gurudutta GU, Satija NK, Pati S, Afrin F, Gupta P, Verma YK, Singh VK, Tripathi RP. Stem cell c-KIT and HOXB4 genes: critical roles and mechanisms in self-renewal, proliferation, and differentiation. Stem Cells Dev 2007; 15:755-78. [PMID: 17253940 DOI: 10.1089/scd.2006.15.755] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Hematopoietic stem cells (HSCs) possess a distinct ability to perpetuate through self-renewal and to generate progeny that differentiate into mature cells of myeloid and lymphoid lineages. A better understanding of the molecular mechanisms by which HSCs replicate and differentiate from the perspective of developing new approaches for HSC transplantation is necessary for further advances. The interaction of the receptor tyrosine kinase--c-KIT--with its ligand stem cell factor plays a key role in HSC survival, mitogenesis, proliferation, differentiation, adhesion, homing, migration, and functional activation. Evidence that activating site-directed point mutations in the c-KIT gene contributes to its ligand-independent constitutive activation, which induces enhanced proliferation of HSCs, is accumulating. Similarly, and equally important, self-renewal is a process by which HSCs generate daughter cells via division. Self-renewal is necessary for retaining the HSC pool. Therefore, elucidating the molecular machinery that governs self-renewal is of key importance. The transcription factor, HOXB4 is a key molecule that has been reported to induce the in vitro expansion of HSCs via self-renewal. However, critical downstream effector molecules of HOXB4 remain to be determined. This concisely reviewed information on c-KIT and HOXB4 helps us to update our understanding of their function and mechanism of action in self-renewal, proliferation, and differentiation of HSCs, particularly modulation by c-KIT mutant interactions, and HOXB4 overexpression showing certain therapeutic implications.
Collapse
Affiliation(s)
- Shilpa Sharma
- Stem-Cell Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences, Lucknow Road, Delhi, India-110054
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shi W, Chang C, Nie S, Xie S, Wan M, Cao X. Endofin acts as a Smad anchor for receptor activation in BMP signaling. J Cell Sci 2007; 120:1216-24. [PMID: 17356069 DOI: 10.1242/jcs.03400] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Signaling through receptors of the transforming growth factor beta (TGFbeta) superfamily is mediated by cytoplasmic Smad proteins. It has been demonstrated that Smad anchor for receptor activation (SARA) facilitates TGFbeta and activin/nodal signaling by recruiting and presenting Smad2/3 to the receptor complex. SARA does not bind Smad1 and hence does not enhance bone morphogenetic protein (BMP) signaling. Here we report for the first time that the endosome-associated FYVE-domain protein endofin acts as a Smad anchor for receptor activation in BMP signaling. We demonstrate that endofin binds Smad1 preferentially and enhances Smad1 phosphorylation and nuclear localization upon BMP stimulation. Silencing of endofin by RNAi resulted in a reduction in BMP-dependent Smad1 phosphorylation. Moreover, disruption of the membrane-anchoring FYVE motif by point mutation led to a reduction of BMP-responsive gene expression in cell culture and Xenopus ectodermal explants. Furthermore, we demonstrate that endofin contains a protein-phosphatase-binding motif, which functions to negatively modulate BMP signals through receptor dephosphorylation. Taken together, our results suggest that endofin plays an important role in both positive and negative feedback regulation of the BMP signaling pathway.
Collapse
Affiliation(s)
- Weibin Shi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
38
|
Wang N, Kim HG, Cotta CV, Wan M, Tang Y, Klug CA, Cao X. TGFbeta/BMP inhibits the bone marrow transformation capability of Hoxa9 by repressing its DNA-binding ability. EMBO J 2006; 25:1469-80. [PMID: 16525506 PMCID: PMC1440313 DOI: 10.1038/sj.emboj.7601037] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 02/14/2006] [Indexed: 11/09/2022] Open
Abstract
Homeobox (Hox) gene mutations and their altered expressions are frequently linked to human leukemia. Here, we report that transforming growth factor beta (TGFbeta)/bone morphogenetic protein (BMP) inhibits the bone marrow transformation capability of Hoxa9 and Nup98-Hoxa9, the chimeric fusion form of Hoxa9 identified in human acute myeloid leukemia (AML), through Smad4, the common Smad (Co-Smad) in the TGFbeta/BMP signaling pathway. Smad4 interacts directly with the homeodomain of Hoxa9 and blocks the ability of Nup98-Hoxa9 to bind DNA, thereby suppressing its ability to regulate downstream gene transcription. Mapping data revealed that the amino-terminus of Smad4 mediates this interaction and overexpression of the Hoxa9 interaction domain of Smad4 was sufficient to inhibit the enhanced serial replating ability of primary bone marrow cells induced by Nup98-Hoxa9. These studies establish a novel mechanism by which TGFbeta/BMP regulates hematopoiesis and suggest that modification of Hox DNA-binding activity may serve as a novel therapeutic intervention for those leukemias that involve deregulation of Hox.
Collapse
Affiliation(s)
- Ning Wang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pharmacology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hyung-Gyoong Kim
- Department of Microbiology, Division of Developmental and Clinical Immunology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Claudiu V Cotta
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Microbiology, Division of Developmental and Clinical Immunology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mei Wan
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yi Tang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christopher A Klug
- Department of Microbiology, Division of Developmental and Clinical Immunology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xu Cao
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pharmacology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
39
|
Kusser W, Zimmer K, Fiedler F. Characteristics of the binding of aminoglycoside antibiotics to teichoic acids. A potential model system for interaction of aminoglycosides with polyanions. Dev Dyn 1985; 243:117-31. [PMID: 2411558 DOI: 10.1002/dvdy.24060] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/09/2013] [Accepted: 08/30/2013] [Indexed: 12/15/2022] Open
Abstract
The binding of the aminoglycoside antibiotic dihydrostreptomycin to defined cell-wall teichoic acids and to lipoteichoic acid isolated from various gram-positive eubacteria was followed by equilibrium dialysis. Dihydrostreptomycin was used at a wide range of concentration under different conditions of ionic strength, concentration of teichoic acid, presence of cationic molecules like Mg2+, spermidine, other aminoglycoside antibiotics (gentamicin, neomycin, paromomycin). Interaction of dihydrostreptomycin with teichoic acid was found to be a cooperative binding process. The binding characteristics seem to be dependent on structural features of teichoic acid and are influenced by cationic molecules. Mg2+, spermidine and other aminoglycosides antibiotics inhibit the binding of dihydrostreptomycin to teichoic acid competitively. The binding of aminoglycosides to teichoic acids is considered as a model system for the interaction of aminoglycoside antibiotics with cellular polyanions. Conclusions of physiological significance are drawn.
Collapse
|