1
|
Paul S, Mukherjee T, Das K. Coagulation Protease-Driven Cancer Immune Evasion: Potential Targets for Cancer Immunotherapy. Cancers (Basel) 2024; 16:1568. [PMID: 38672649 PMCID: PMC11048528 DOI: 10.3390/cancers16081568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Blood coagulation and cancer are intrinsically connected, hypercoagulation-associated thrombotic complications are commonly observed in certain types of cancer, often leading to decreased survival in cancer patients. Apart from the common role in coagulation, coagulation proteases often trigger intracellular signaling in various cancers via the activation of a G protein-coupled receptor superfamily protease: protease-activated receptors (PARs). Although the role of PARs is well-established in the development and progression of certain types of cancer, their impact on cancer immune response is only just emerging. The present review highlights how coagulation protease-driven PAR signaling plays a key role in modulating innate and adaptive immune responses. This is followed by a detailed discussion on the contribution of coagulation protease-induced signaling in cancer immune evasion, thereby supporting the growth and development of certain tumors. A special section of the review demonstrates the role of coagulation proteases, thrombin, factor VIIa, and factor Xa in cancer immune evasion. Targeting coagulation protease-induced signaling might be a potential therapeutic strategy to boost the immune surveillance mechanism of a host fighting against cancer, thereby augmenting the clinical consequences of targeted immunotherapeutic regimens.
Collapse
Affiliation(s)
- Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India;
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA;
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India
| |
Collapse
|
2
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
3
|
Neto BV, Tavares V, da Silva JB, Liz-Pimenta J, Marques IS, Carvalho L, Salgado L, Pereira D, Medeiros R. Thrombogenesis-associated genetic determinants as predictors of thromboembolism and prognosis in cervical cancer. Sci Rep 2023; 13:9519. [PMID: 37308506 DOI: 10.1038/s41598-023-36161-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
Venous thromboembolism (VTE) is a leading cause of death among cancer patients. Khorana score (KS) is the most studied tool to predict cancer-related VTE, however, it exerts poor sensitivity. Several single-nucleotide polymorphisms (SNPs) have been associated with VTE risk in the general population, but whether they are predictors of cancer-related VTE is a matter of discussion. Compared to other solid tumours, little is known about VTE in the setting of cervical cancer (CC) and whether thrombogenesis-related polymorphisms could be valuable biomarkers in patients with this neoplasia. This study aims to analyse the effect of VTE occurrence on the prognosis of CC patients, explore the predictive capability of KS and the impact of thrombogenesis-related polymorphisms on CC-related VTE incidence and patients' prognosis regardless of VTE. A profile of eight SNPs was evaluated. A retrospective hospital-based cohort study was conducted with 400 CC patients under chemoradiotherapy. SNP genotyping was carried on by using TaqMan® Allelic Discrimination methodology. Time to VTE occurrence and overall survival were the two measures of clinical outcome evaluated. The results indicated that VTE occurrence (8.5%) had a significant impact on the patient's survival (log-rank test, P < 0.001). KS showed poor performance (KS ≥ 3, χ2, P = 0.191). PROCR rs10747514 and RGS7 rs2502448 were significantly associated with the risk of CC-related VTE development (P = 0.021 and P = 0.006, respectively) and represented valuable prognostic biomarkers regardless of VTE (P = 0.004 and P = 0.010, respectively). Thus, thrombogenesis-related genetic polymorphisms may constitute valuable biomarkers among CC patients allowing a more personalized clinical intervention.
Collapse
Affiliation(s)
- Beatriz Vieira Neto
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072, Porto, Portugal
- FMUP, Faculty of Medicine, University of Porto, 4200-072, Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172, Porto, Portugal
| | - Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072, Porto, Portugal
- FMUP, Faculty of Medicine, University of Porto, 4200-072, Porto, Portugal
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172, Porto, Portugal
| | - José Brito da Silva
- Oncology Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072, Porto, Portugal
| | - Joana Liz-Pimenta
- FMUP, Faculty of Medicine, University of Porto, 4200-072, Porto, Portugal
- Department of Medical Oncology, Centro Hospitalar de Trás-os-Montes e Alto Douro (CHTMAD), 5000-508, Vila Real, Portugal
| | - Inês Soares Marques
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072, Porto, Portugal
- FCUP, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Luísa Carvalho
- External Radiotherapy Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072, Porto, Portugal
| | - Lurdes Salgado
- External Radiotherapy Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072, Porto, Portugal
| | - Deolinda Pereira
- Oncology Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072, Porto, Portugal.
- FMUP, Faculty of Medicine, University of Porto, 4200-072, Porto, Portugal.
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
- FCUP, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal.
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172, Porto, Portugal.
- CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, 4200-150, Porto, Portugal.
| |
Collapse
|
4
|
Welsh J, Bak MJ, Narvaez CJ. New insights into vitamin K biology with relevance to cancer. Trends Mol Med 2022; 28:864-881. [PMID: 36028390 PMCID: PMC9509427 DOI: 10.1016/j.molmed.2022.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/23/2022] [Accepted: 07/22/2022] [Indexed: 10/24/2022]
Abstract
Phylloquinone (vitamin K1) and menaquinones (vitamin K2 family) are essential for post-translational γ-carboxylation of a small number of proteins, including clotting factors. These modified proteins have now been implicated in diverse physiological and pathological processes including cancer. Vitamin K intake has been inversely associated with cancer incidence and mortality in observational studies. Newly discovered functions of vitamin K in cancer cells include activation of the steroid and xenobiotic receptor (SXR) and regulation of oxidative stress, apoptosis, and autophagy. We provide an update of vitamin K biology, non-canonical mechanisms of vitamin K actions, the potential functions of vitamin K-dependent proteins in cancer, and observational trials on vitamin K intake and cancer.
Collapse
Affiliation(s)
- JoEllen Welsh
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA.
| | - Min Ji Bak
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA
| | - Carmen J Narvaez
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA
| |
Collapse
|
5
|
Church FC. Suggestions on leading an academic research laboratory group. Open Life Sci 2022; 17:599-609. [PMID: 35800075 PMCID: PMC9202531 DOI: 10.1515/biol-2022-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/24/2022] [Accepted: 03/25/2022] [Indexed: 11/15/2022] Open
Abstract
This commentary is about running an academic research laboratory group, including some reflections, memories, and tips on effectively managing such a group of scientists focused on one’s research. The author’s academic career has spanned from 1982 to 2022, including postdoctoral research associate through the rank of professor with tenure. Currently, the author is in the final year of 3 years of phased retirement. One must be willing to work hard at running a research laboratory. Also, stay focused on funding the laboratory tasks and publishing one’s work. Recruit the best people possible with advice from the collective laboratory group. Laboratory group members felt more like they were a part of a collective family than simply employees; however, what works best for the researcher is what matters. Several other points to discuss will include managing university roles, recruiting laboratory personnel, getting recognition, dealing with intellectual property rights, and publishing work. In closing, there are many more positives than negatives to leading a research laboratory group. Finally, one cannot replace the unforgettable memories and the legacy of a research laboratory group.
Collapse
Affiliation(s)
- Frank C. Church
- Department of Pathology and Laboratory Medicine, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Mamtimin M, Pinarci A, Han C, Braun A, Anders HJ, Gudermann T, Mammadova-Bach E. Extracellular DNA Traps: Origin, Function and Implications for Anti-Cancer Therapies. Front Oncol 2022; 12:869706. [PMID: 35574410 PMCID: PMC9092261 DOI: 10.3389/fonc.2022.869706] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
Extracellular DNA may serve as marker in liquid biopsies to determine individual diagnosis and prognosis in cancer patients. Cell death or active release from various cell types, including immune cells can result in the release of DNA into the extracellular milieu. Neutrophils are important components of the innate immune system, controlling pathogens through phagocytosis and/or the release of neutrophil extracellular traps (NETs). NETs also promote tumor progression and metastasis, by modulating angiogenesis, anti-tumor immunity, blood clotting and inflammation and providing a supportive niche for metastasizing cancer cells. Besides neutrophils, other immune cells such as eosinophils, dendritic cells, monocytes/macrophages, mast cells, basophils and lymphocytes can also form extracellular traps (ETs) during cancer progression, indicating possible multiple origins of extracellular DNA in cancer. In this review, we summarize the pathomechanisms of ET formation generated by different cell types, and analyze these processes in the context of cancer. We also critically discuss potential ET-inhibiting agents, which may open new therapeutic strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Medina Mamtimin
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Akif Pinarci
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Chao Han
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Hans-Joachim Anders
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research, Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
7
|
Ma Q, Yang T. E2F transcription factor 1/small nucleolar RNA host gene 18/microRNA-338-5p/forkhead box D1: an important regulatory axis in glioma progression. Bioengineered 2021; 13:418-430. [PMID: 34937497 PMCID: PMC8805867 DOI: 10.1080/21655979.2021.2005990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This study aims to probe the biological functions of long non-coding RNA small nucleolar RNA host gene 18 (SNHG18) on glioma cells and its underlying mechanism. In this study, SNHG18 expression in glioma tissues was quantified employing GEPIA database; quantitative real-time PCR was adopted to examine the expressions of SNHG18, microRNA-338-5p (miR-338-5p) and forkhead box D1 (FOXD1) mRNA in glioma tissues and cell lines; cell proliferation, migration and invasion were detected utilizing cell counting kit-8, EdU and Transwell assays; Western blot was utilized to quantify the protein expressions of E-cadherin, N-cadherin, Vimentin and FOXD1; dual-luciferase reporter gene and RNA immunoprecipitation experiments were utilized to validate the targeting relationships between SNHG18 and miR-338-5p, as well as miR-338-5p and FOXD1 mRNA 3ʹUTR; dual-luciferase reporter gene and chromatin immunoprecipitation assays were utilized to verify the binding of E2F transcription factor 1 (E2F1) to the SNHG18 promoter region. It was revealed that, SNHG18 expression in glioma was up-regulated and associated with unfavorable prognosis of the patients; knockdown of SNHG18 repressed the malignant biological behaviors of glioma cells, enhanced E-cadherin expression and repressed N-cadherin and Vimentin expressions. MiR-338-5p was a target of SNHG18, and SNHG18 promoted the expression of FOXD1 by decoying miR-338-5p. Additionally, E2F1 could bind to the promoter of SNHG18 to elevate its expression. In conclusion, SNHG18 accelerates glioma progression via regulating the miR-338-5p/FOXD1 axis.
Collapse
Affiliation(s)
- Quanfeng Ma
- Department of Neurosurg, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurg Institution, Tianjin China
| | - Tianhao Yang
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin China
| |
Collapse
|
8
|
Implications of venous thromboembolism GWAS reported genetic makeup in the clinical outcome of ovarian cancer patients. THE PHARMACOGENOMICS JOURNAL 2020; 21:222-232. [PMID: 33161412 DOI: 10.1038/s41397-020-00201-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022]
Abstract
Ovarian cancer (OC) represents the most lethal gynaecological neoplasia. Conversely, venous thromboembolism (VTE) and OC are intricately connected, with many haemostatic components favouring OC progression. In light of this bilateral relationship, genome-wide association studies (GWAS) have reported several single-nucleotide polymorphisms (SNPs) associated with VTE risk that could be used as predictors of OC clinical outcome for better therapeutic management strategies. Thus, the present study aimed to analyse the impact of VTE GWAS-identified SNPs on the clinical outcome of 336 epithelial ovarian cancer (EOC) patients. Polymorphism genotyping was performed using the TaqMan® Allelic Discrimination methodology. Carriers with the ZFPM2 rs4734879 G allele presented a significantly higher 5-year OS, 10-year OS and disease-free survival (DFS) compared to AA genotype patients with FIGO I/II stages (P = 0.009, P = 0.001 and P = 0.003, respectively). Regarding SLC19A2 rs2038024 polymorphism, carriers with the CC genotype presented a significantly lower 5-year OS, 10-year OS and DFS compared to A allele carriers in the same FIGO subgroup (P < 0.001, P = 0.004 and P = 0.005, respectively). As for CNTN6 rs6764623 polymorphism, carriers with the CC genotype presented a significantly lower 5-year OS compared to A allele carriers with FIGO I/II stages (P = 0.015). As for OTUD7A rs7164569, F11 rs4253417 and PROCR rs10747514, no significant impact on EOC patients' survival was observed. However, future studies are required to validate these results and uncover the biological mechanisms underlying our results.
Collapse
|
9
|
Qiu Y, Wang L, Zhong X, Li L, Chen F, Xiao L, Liu F, Fu B, Zheng H, Ye F, Bu H. A multiple breast cancer stem cell model to predict recurrence of T 1-3, N 0 breast cancer. BMC Cancer 2019; 19:729. [PMID: 31340763 PMCID: PMC6657050 DOI: 10.1186/s12885-019-5941-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 04/23/2019] [Indexed: 02/05/2023] Open
Abstract
Background Local or distant relapse is the key event for the overall survival of early-stage breast cancer after initial surgery. A small subset of breast cancer cells, which share similar properties with normal stem cells, has been proven to resist to clinical therapy contributing to recurrence. Methods In this study, we aimed to develop a prognostic model to predict recurrence based on the prevalence of breast cancer stem cells (BCSCs) in breast cancer. Immunohistochemistry and dual-immunohistochemistry were performed to quantify the stem cells of the breast cancer patients. The performance of Cox proportional hazard regression model was assessed using the holdout methods, where the dataset was randomly split into two exclusive sets (70% training and 30% testing sets). Additionally, we performed bootstrapping to overcome a possible biased error estimate and obtain confidence intervals (CI). Results Four groups of BCSCs (ALDH1A3, CD44+/CD24−, integrin alpha 6 (ITGA6), and protein C receptor (PROCR)) were identified as associated with relapse-free survival (RFS). The correlated biomarkers were integrated as a prognostic panel to calculate a relapse risk score (RRS) and to classify the patients into different risk groups (high-risk or low-risk). According to RRS, 67.81 and 32.19% of patients were categorized into low-risk and high-risk groups respectively. The relapse rate at 5 years in the low-risk group (2.67, 95% CI: 0.72–4.63%) by Kaplan-Meier method was significantly lower than that of the high-risk group (19.30, 95% CI: 12.34–26.27%) (p < 0.001). In the multiple Cox model, the RRS was proven to be a powerful classifier independent of age at diagnosis or tumour size (p < 0.001). In addition, we found that high RRS score ER-positive patients do not benefit from hormonal therapy treatment (RFS, p = 0.860). Conclusion The RRS model can be applied to predict the relapse risk in early stage breast cancer. As such, high RRS score ER-positive patients do not benefit from hormonal therapy treatment. Electronic supplementary material The online version of this article (10.1186/s12885-019-5941-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Qiu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, China.,Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Liya Wang
- Big Data Research Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaorong Zhong
- Laboratory of Molecular Diagnosis of Cancer & Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Chen
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Xiao
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Fangyu Liu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Bo Fu
- Big Data Research Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Zheng
- Laboratory of Molecular Diagnosis of Cancer & Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Ye
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China. .,Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, China. .,Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China.
| | - Hong Bu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, China.,Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Endothelial Protein C Receptor (EPCR), Protease Activated Receptor-1 (PAR-1) and Their Interplay in Cancer Growth and Metastatic Dissemination. Cancers (Basel) 2019; 11:cancers11010051. [PMID: 30626007 PMCID: PMC6356956 DOI: 10.3390/cancers11010051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 12/20/2022] Open
Abstract
Endothelial protein C receptor (EPCR) and protease activated receptor 1 (PAR-1) by themselves play important role in cancer growth and dissemination. Moreover, interactions between the two receptors are essential for tumor progression. EPCR is a cell surface transmembrane glycoprotein localized predominantly on endothelial cells (ECs). It is a vital component of the activated protein C (APC)—mediated anticoagulant and cytoprotective signaling cascade. PAR-1, which belongs to a family of G protein–coupled cell surface receptors, is also widely distributed on endothelial and blood cells, where it plays a critical role in hemostasis. Both EPCR and PAR-1, generally considered coagulation-related receptors, are implicated in carcinogenesis and dissemination of diverse tumor types, and their expression correlates with clinical outcome of cancer patients. Existing data explain some mechanisms by which EPCR/PAR-1 affects cancer growth and metastasis; however, the exact molecular basis of cancer invasion associated with the signaling is still obscure. Here, we discuss the role of EPCR and PAR-1 reciprocal interactions in cancer progression as well as potential therapeutic options targeted specifically to interact with EPCR/PAR-1-induced signaling in cancer patients.
Collapse
|
11
|
Wang D, Liu C, Wang J, Jia Y, Hu X, Jiang H, Shao ZM, Zeng YA. Protein C receptor stimulates multiple signaling pathways in breast cancer cells. J Biol Chem 2017; 293:1413-1424. [PMID: 29217770 DOI: 10.1074/jbc.m117.814046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/30/2017] [Indexed: 11/06/2022] Open
Abstract
The protein C receptor (PROCR) has emerged as a stem cell marker in several normal tissues and has also been implicated in tumor progression. However, the functional role of PROCR and the signaling mechanisms downstream of PROCR remain poorly understood. Here, we dissected the PROCR signaling pathways in breast cancer cells. Combining protein array, knockdown, and overexpression methods, we found that PROCR concomitantly activates multiple pathways. We also noted that PROCR-dependent ERK and PI3k-Akt-mTOR signaling pathways proceed through Src kinase and transactivation of insulin-like growth factor 1 receptor (IGF-1R). These pathway activities led to the accumulation of c-Myc and cyclin D1. On the other hand, PROCR-dependent RhoA-ROCK-p38 signaling relied on coagulation factor II thrombin receptor (F2R). We confirmed these findings in primary cells isolated from triple-negative breast cancer-derived xenografts (PDX) that have high expression of PROCR. To the best our knowledge, this is the first comprehensive study of PROCR signaling in breast cancer cells, and its findings also shed light on the molecular mechanisms of PROCR in stem cells in normal tissue.
Collapse
Affiliation(s)
- Daisong Wang
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chunye Liu
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingqiang Wang
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yingying Jia
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Hu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China, and
| | - Hai Jiang
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China, and
| | - Yi Arial Zeng
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China,
| |
Collapse
|
12
|
Wan L, Skoko J, Yu J, Ozdoganlar OB, LeDuc PR, Neumann CA. Mimicking Embedded Vasculature Structure for 3D Cancer on a Chip Approaches through Micromilling. Sci Rep 2017; 7:16724. [PMID: 29196753 PMCID: PMC5711800 DOI: 10.1038/s41598-017-16458-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/13/2017] [Indexed: 01/17/2023] Open
Abstract
The ability for cells to sense and respond to microenvironmental signals is influenced by their three dimensional (3D) surroundings, which includes the extracellular matrix (ECM). In the 3D environment, vascular structures supply cells with nutrients and oxygen thus affecting cell responses such as motility. Interpretation of cell motility studies though is often restricted by the applied approaches such as 2D conventional soft lithography methods that have rectangular channel cross-sectional morphology. To better simulate cell responses to vascular supply in 3D, we developed a cell on a chip system with microfluidic channels with curved cross-sections embedded within a 3D collagen matrix that emulates anatomical vasculature more closely than inorganic polymers, thus to mimic a more physiologically relevant 3D cellular environment. To accomplish this, we constructed perfusable microfluidic channels by embedding sacrificial circular gelatin vascular templates in collagen, which were removed through temperature control. Motile breast cancer cells were pre-seeded into the collagen matrix and when presented with a controlled chemical stimulation from the artificial vasculature, they migrated towards the vasculature structure. We believe this innovative vascular 3D ECM system can be used to provide novel insights into cellular dynamics during multidirectional chemokineses and chemotaxis that exist in cancer and other diseases.
Collapse
Affiliation(s)
- L Wan
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, 15213, United States
| | - J Skoko
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Magee Womens Research Institute, Pittsburgh, 15261, United States
| | - J Yu
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, 15213, United States
| | - O B Ozdoganlar
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, 15213, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, 15213, United States
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, 15213, United States
| | - P R LeDuc
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, 15213, United States.
| | - C A Neumann
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Magee Womens Research Institute, Pittsburgh, 15261, United States.
| |
Collapse
|
13
|
Lal N, Willcox CR, Beggs A, Taniere P, Shikotra A, Bradding P, Adams R, Fisher D, Middleton G, Tselepis C, Willcox BE. Endothelial protein C receptor is overexpressed in colorectal cancer as a result of amplification and hypomethylation of chromosome 20q. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2017; 3:155-170. [PMID: 28770100 PMCID: PMC5527318 DOI: 10.1002/cjp2.70] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/12/2017] [Indexed: 01/22/2023]
Abstract
Endothelial Protein C Receptor (EPCR) is a Major Histocompatibility Complex homologue, with established roles downregulating coagulation and in endothelial protection. Expressed predominantly on endothelium, EPCR affects inflammatory, apoptotic and cell proliferation pathways by binding to activated protein C (APC). However, EPCR can also be expressed on cancer cells, although the underlying reasons are unclear. Moreover, although EPCR has been linked with chemosensitivity in lung cancer, its clinical significance in many tumours is unknown. Here, we explored its significance in colorectal cancer (CRC). Bioinformatic methods revealed EPCR overexpression in many epithelial cancers, which was confirmed on CRC epithelial tumour cells by immunohistochemistry. EPCR upregulation resulted from gene amplification and DNA hypomethylation, and occurred in concert with a cohort of neighbouring genes on chromosome 20q, a region previously implicated in chemoresistance. As in endothelial cells, EPCR reproducibly mediated ERK pathway activation in a model CRC cell line following APC treatment. However, EPCR knockdown studies failed to highlight compelling EPCR‐intrinsic impact on CRC cell phenotype, with limited effects on chemosensitivity and no effect on invasion observed, while EPCR appeared to decrease CRC cell migration. Consistent with these observations, differential EPCR expression did not influence response to chemotherapy in a human CRC cohort. Our results provide a compelling explanation for how EPCR is upregulated in diverse epithelial malignancies. They indicate that the clinical significance of EPCR varies across different tumour types. Furthermore, they raise the possibility that the prognostic significance of EPCR in certain tumours relates significantly to co‐upregulation of neighbouring genes on chromosome 20q. Therefore, efforts to exploit EPCR as a prognostic marker should be focussed on specific tumours, and in such scenarios EPCR‐co‐dysregulated genes may represent potential axes for therapeutic intervention.
Collapse
Affiliation(s)
- Neeraj Lal
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and ImmunotherapyUniversity of BirminghamEdgbaston, BirminghamUK
| | - Carrie R Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and ImmunotherapyUniversity of BirminghamEdgbaston, BirminghamUK
| | - Andrew Beggs
- Institute of Cancer and Genomic SciencesUniversity of BirminghamEdgbaston, BirminghamUK
| | - Philippe Taniere
- Department of HistopathologyQueen Elizabeth Hospital Birmingham, Mindelsohn WayEdgbaston, BirminghamUK
| | - Aarti Shikotra
- Department of Infection, Immunity and Inflammation, Institute for Lung HealthUniversity of LeicesterLeicesterUK
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung HealthUniversity of LeicesterLeicesterUK
| | - Richard Adams
- Institute of Cancer & GeneticsCardiff University School of Medicine, Velindre HospitalCardiffUK
| | - David Fisher
- MRC Clinical Trials UnitUniversity College LondonLondonUK
| | - Gary Middleton
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and ImmunotherapyUniversity of BirminghamEdgbaston, BirminghamUK
| | - Chris Tselepis
- Institute of Cancer and Genomic SciencesUniversity of BirminghamEdgbaston, BirminghamUK
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and ImmunotherapyUniversity of BirminghamEdgbaston, BirminghamUK
| |
Collapse
|
14
|
Yan Q, Xiaorong Z, Zhang Z, Bing W, Feng Y, Hong B. Prevalence of protein C receptor (PROCR) is associated with inferior clinical outcome in Breast invasive ductal carcinoma. Pathol Res Pract 2017; 213:1173-1179. [PMID: 28756987 DOI: 10.1016/j.prp.2017.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/23/2017] [Accepted: 06/24/2017] [Indexed: 02/05/2023]
Abstract
Recently, PROCR is reported to play an important role in cell growth, apoptosis, proliferation and tumor relapse. Some researchers thought that PROCR+ cells had cancer stem cell ability, which might contribute to progressive behavior in breast cancer. Our study was to assess the expression of PROCR in invasive ductal carcinoma tissues with their prognostic implications. We enrolled formalin fixed paraffin-embedded tumor tissues of 271 patients diagnosed as invasive ductal breast cancer with clinical stage II or III into our study. Immunohistochemistry staining was performed on all the tissue microarray slides, and result were interpreted by two pathologists with blinded method. We analyzed PROCR expression levels with the clinical characteristics as well as their prognostic values. PROCR expression detected in the cell was interpreted. Chi-square test showed us its positive expression had a close association with distant metastases (p=0.035). Univariate survival analysis indicated that prevalence of PROCR expression in the invasive ductal breast cancer was significantly related with decreased disease-free survival (pDFS=0.010) and overall survival (pOS=0.008). In multivariate survival by Cox proportional hazard model, positive expression group for PROCR was found to have shorter DFS [pDFS=0.028, hazard ratio (95% CI): 1.183(1.069-3.140)]. Our findings suggested that breast cancer patients with expression of PROCR is more prone to suffer from distant metastasis and bad clinical outcomes.
Collapse
Affiliation(s)
- Qiu Yan
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhong Xiaorong
- Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Molecular Diagnosis of Cancer, State Key Laboratory of Biotherapy, National Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhang Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wei Bing
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ye Feng
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, PR China
| | - Bu Hong
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, PR China; Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
15
|
Wilts I, Hutten B, Meijers J, Spek C, Büller H, Kamphuisen P. Association between protein C levels and mortality in patients with advanced prostate, lung and pancreatic cancer. Thromb Res 2017; 154:1-6. [DOI: 10.1016/j.thromres.2017.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/08/2017] [Accepted: 03/06/2017] [Indexed: 12/21/2022]
|
16
|
Versteeg HH, Rodger M. Proliferation. Thromb Res 2017; 154:106. [DOI: 10.1016/j.thromres.2017.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Perurena N, Zandueta C, Martínez-Canarias S, Moreno H, Vicent S, Almeida AS, Guruceaga E, Gomis RR, Santisteban M, Egeblad M, Hermida J, Lecanda F. EPCR promotes breast cancer progression by altering SPOCK1/testican 1-mediated 3D growth. J Hematol Oncol 2017; 10:23. [PMID: 28103946 PMCID: PMC5248526 DOI: 10.1186/s13045-017-0399-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/13/2017] [Indexed: 01/29/2023] Open
Abstract
Background Activated protein C/endothelial protein C receptor (APC/EPCR) axis is physiologically involved in anticoagulant and cytoprotective activities in endothelial cells. Emerging evidence indicates that EPCR also plays a role in breast stemness and human tumorigenesis. Yet, its contribution to breast cancer progression and metastasis has not been elucidated. Methods Transcriptomic status of EPCR was examined in a cohort of 286 breast cancer patients. Cell growth kinetics was evaluated in control and EPCR and SPARC/osteonectin, Cwcv, and kazal-like domains proteoglycan (SPOCK1/testican 1) silenced breast cancer cells in 2D, 3D, and in co-culture conditions. Orthotopic tumor growth and lung and osseous metastases were evaluated in several human and murine xenograft breast cancer models. Tumor-stroma interactions were further studied in vivo by immunohistochemistry and flow cytometry. An EPCR-induced gene signature was identified by microarray analysis. Results Analysis of a cohort of breast cancer patients revealed an association of high EPCR levels with adverse clinical outcome. Interestingly, EPCR knockdown did not affect cell growth kinetics in 2D but significantly reduced cell growth in 3D cultures. Using several human and murine xenograft breast cancer models, we showed that EPCR silencing reduced primary tumor growth and secondary outgrowths at metastatic sites, including the skeleton and the lungs. Interestingly, these effects were independent of APC ligand stimulation in vitro and in vivo. Transcriptomic analysis of EPCR-silenced tumors unveiled an effect mediated by matricellular secreted proteoglycan SPOCK1/testican 1. Interestingly, SPOCK1 silencing suppressed in vitro 3D growth. Moreover, SPOCK1 ablation severely decreased orthotopic tumor growth and reduced bone metastatic osteolytic tumors. High SPOCK1 levels were also associated with poor clinical outcome in a subset breast cancer patients. Our results suggest that EPCR through SPOCK1 confers a cell growth advantage in 3D promoting breast tumorigenesis and metastasis. Conclusions EPCR represents a clinically relevant factor associated with poor outcome and a novel vulnerability to develop combination therapies for breast cancer patients. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0399-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naiara Perurena
- Adhesion and Metastasis Laboratory, Program Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Carolina Zandueta
- Adhesion and Metastasis Laboratory, Program Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Susana Martínez-Canarias
- Adhesion and Metastasis Laboratory, Program Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Haritz Moreno
- Adhesion and Metastasis Laboratory, Program Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Silvestre Vicent
- Adhesion and Metastasis Laboratory, Program Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Department of Histology and Pathology, University of Navarra, Pamplona, Spain
| | - Ana S Almeida
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Roger R Gomis
- Oncology Program, Institute for Research in Biomedicine, Barcelona, Spain
| | - Marta Santisteban
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - José Hermida
- Cardiovascular Sciences Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Fernando Lecanda
- Adhesion and Metastasis Laboratory, Program Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain. .,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. .,Department of Histology and Pathology, University of Navarra, Pamplona, Spain.
| |
Collapse
|
18
|
Mousa SA, Muralidharan-Chari V, Davis PJ. Interface between Thrombosis, Inflammation, and Angiogenesis in Cancer Progression. ANTI-ANGIOGENESIS STRATEGIES IN CANCER THERAPEUTICS 2017:51-68. [DOI: 10.1016/b978-0-12-802576-5.00004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
19
|
Endothelial cell protein C receptor promotes MGC803 gastric cancer cells proliferation and migration by activating ERK1/2. Med Oncol 2015; 32:162. [PMID: 25895599 DOI: 10.1007/s12032-015-0614-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 01/15/2023]
Abstract
The endothelial cell protein C receptor (EPCR) has been reported to be involved in the development of several human cancers. However, the role of EPCR in gastric cancer progression has not been clarified. In this study, we show for the first time that EPCR is related to gastric cancer. Our results indicate that EPCR is highly expressed in clinical gastric cancer tissue. Knockdown of EPCR by small interference RNA suppressed the proliferation and migration of MGC803 gastric cancer cells dominantly. Blocking antibodies to protease-activated receptor-1(PAR1) also suppressed the proliferation and migration of MGC803 cells. Knockdown EPCR and blocking PAR1 inhibit activation of extracellular signaling-regulated kinases 1 and 2 (ERK1/2). Taken together, these results indicate that EPCR contributes to the proliferation and migration of MGC803 gastric cancer cells by activating ERK1/2, and this effect of EPCR may be dependent on PAR1. Therefore, EPCR may be act as a novel therapeutic target for inhibiting cell growth in gastric cancer.
Collapse
|
20
|
Abstract
The hemostatic system plays pleiotropic roles in cancer progression by shaping the tumor microenvironment and metastatic niches through thrombin-dependent fibrin deposition and platelet activation. Expanding experimental evidence implicates coagulation protease receptors expressed by tumor cells as additional players that directly influence tumor biology. Pro-angiogenic G protein-coupled signaling of TF through protease activated receptor 2 and regulation of tumor cell and vascular integrins through ligation by alternative spliced TF are established pathways driving tumor progression. Our recent work shows that the endothelial protein C receptor (EPCR), a stem cell marker in hematopoietic, neuronal and epithelial cells, is also crucial for breast cancer growth in the orthotopic microenvironment of the mammary gland. In aggressive triple-negative breast cancer cells, EPCR expression is a characteristic of cancer stem cell-like populations that have tumor initiating properties in vivo. Blocking antibodies to EPCR attenuate in vivo tumor growth and proliferation specifically of EPCR(+) cells on defined integrin matrices in vitro. We also showed that tumor-associated macrophages are a source for upstream coagulation proteases that can activate TF- and EPCR-dependent cellular responses, suggesting that tumor cells utilize the tumor microenvironment for tumor promoting coagulation protease signaling.
Collapse
|
21
|
Burleigh A, McKinney S, Brimhall J, Yap D, Eirew P, Poon S, Ng V, Wan A, Prentice L, Annab L, Barrett JC, Caldas C, Eaves C, Aparicio S. A co-culture genome-wide RNAi screen with mammary epithelial cells reveals transmembrane signals required for growth and differentiation. Breast Cancer Res 2015; 17:4. [PMID: 25572802 PMCID: PMC4322558 DOI: 10.1186/s13058-014-0510-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/18/2014] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION The extracellular signals regulating mammary epithelial cell growth are of relevance to understanding the pathophysiology of mammary epithelia, yet they remain poorly characterized. In this study, we applied an unbiased approach to understanding the functional role of signalling molecules in several models of normal physiological growth and translated these results to the biological understanding of breast cancer subtypes. METHODS We developed and utilized a cytogenetically normal clonal line of hTERT immortalized human mammary epithelial cells in a fibroblast-enhanced co-culture assay to conduct a genome-wide small interfering RNA (siRNA) screen for evaluation of the functional effect of silencing each gene. Our selected endpoint was inhibition of growth. In rigorous postscreen validation processes, including quantitative RT-PCR, to ensure on-target silencing, deconvolution of pooled siRNAs and independent confirmation of effects with lentiviral short-hairpin RNA constructs, we identified a subset of genes required for mammary epithelial cell growth. Using three-dimensional Matrigel growth and differentiation assays and primary human mammary epithelial cell colony assays, we confirmed that these growth effects were not limited to the 184-hTERT cell line. We utilized the METABRIC dataset of 1,998 breast cancer patients to evaluate both the differential expression of these genes across breast cancer subtypes and their prognostic significance. RESULTS We identified 47 genes that are critically important for fibroblast-enhanced mammary epithelial cell growth. This group was enriched for several axonal guidance molecules and G protein-coupled receptors, as well as for the endothelin receptor PROCR. The majority of genes (43 of 47) identified in two dimensions were also required for three-dimensional growth, with HSD17B2, SNN and PROCR showing greater than tenfold reductions in acinar formation. Several genes, including PROCR and the neuronal pathfinding molecules EFNA4 and NTN1, were also required for proper differentiation and polarization in three-dimensional cultures. The 47 genes identified showed a significant nonrandom enrichment for differential expression among 10 molecular subtypes of breast cancer sampled from 1,998 patients. CD79A, SERPINH1, KCNJ5 and TMEM14C exhibited breast cancer subtype-independent overall survival differences. CONCLUSION Diverse transmembrane signals are required for mammary epithelial cell growth in two-dimensional and three-dimensional conditions. Strikingly, we define novel roles for axonal pathfinding receptors and ligands and the endothelin receptor in both growth and differentiation.
Collapse
Affiliation(s)
- Angela Burleigh
- Department of Pathology and Laboratory Medicine, University of British Columbia, and BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| | - Steven McKinney
- Department of Pathology and Laboratory Medicine, University of British Columbia, and BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| | - Jazmine Brimhall
- Department of Pathology and Laboratory Medicine, University of British Columbia, and BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| | - Damian Yap
- Department of Pathology and Laboratory Medicine, University of British Columbia, and BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| | - Peter Eirew
- Department of Pathology and Laboratory Medicine, University of British Columbia, and BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| | - Steven Poon
- Department of Pathology and Laboratory Medicine, University of British Columbia, and BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| | - Viola Ng
- Department of Pathology and Laboratory Medicine, University of British Columbia, and BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| | - Adrian Wan
- Department of Pathology and Laboratory Medicine, University of British Columbia, and BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| | - Leah Prentice
- Department of Pathology and Laboratory Medicine, University of British Columbia, and BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
- Centre for Translational and Applied Genomics, BC Cancer Agency, 600 West 10th Avenue, Vancouver, BC, V5Z 4E6, Canada.
| | - Lois Annab
- Chromatin and Gene Expression Section, Research Triangle Park, Durham, NC, 27709, USA.
| | - J Carl Barrett
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA.
| | - Carlos Caldas
- Cancer Research UK Cambridge Research Institute and Department of Oncology, University of Cambridge, Li Ka Shin Centre, Cambridge, CB2 0RE, UK.
| | - Connie Eaves
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada.
| | - Samuel Aparicio
- Department of Pathology and Laboratory Medicine, University of British Columbia, and BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| |
Collapse
|
22
|
Identification of multipotent mammary stem cells by protein C receptor expression. Nature 2014; 517:81-4. [PMID: 25327250 DOI: 10.1038/nature13851] [Citation(s) in RCA: 270] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 09/09/2014] [Indexed: 01/16/2023]
Abstract
The mammary gland is composed of multiple types of epithelial cells, which are generated by mammary stem cells (MaSCs) residing at the top of the hierarchy. However, the existence of these multipotent MaSCs remains controversial and the nature of such cells is unknown. Here we demonstrate that protein C receptor (Procr), a novel Wnt target in the mammary gland, marks a unique population of multipotent mouse MaSCs. Procr-positive cells localize to the basal layer, exhibit epithelial-to-mesenchymal transition characteristics, and express low levels of basal keratins. Procr-expressing cells have a high regenerative capacity in transplantation assays and differentiate into all lineages of the mammary epithelium by lineage tracing. These results define a novel multipotent mammary stem cell population that could be important in the initiation of breast cancer.
Collapse
|
23
|
Mohan Rao LV, Esmon CT, Pendurthi UR. Endothelial cell protein C receptor: a multiliganded and multifunctional receptor. Blood 2014; 124:1553-62. [PMID: 25049281 PMCID: PMC4155268 DOI: 10.1182/blood-2014-05-578328] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/08/2014] [Indexed: 01/10/2023] Open
Abstract
Endothelial cell protein C receptor (EPCR) was first identified and isolated as a cellular receptor for protein C on endothelial cells. EPCR plays a crucial role in the protein C anticoagulant pathway by promoting protein C activation. In the last decade, EPCR has received wide attention after it was discovered to play a key role in mediating activated protein C (APC)-induced cytoprotective effects, including antiapoptotic, anti-inflammatory, and barrier stabilization. APC elicits cytoprotective signaling through activation of protease activated receptor-1 (PAR1). Understanding how EPCR-APC induces cytoprotective effects through activation of PAR1, whose activation by thrombin is known to induce a proinflammatory response, has become a major research focus in the field. Recent studies also discovered additional ligands for EPCR, which include factor VIIa, Plasmodium falciparum erythrocyte membrane protein, and a specific variant of the T-cell receptor. These observations open unsuspected new roles for EPCR in hemostasis, malaria pathogenesis, innate immunity, and cancer. Future research on these new discoveries will undoubtedly expand our understanding of the role of EPCR in normal physiology and disease, as well as provide novel insights into mechanisms for EPCR multifunctionality. Comprehensive understanding of EPCR may lead to development of novel therapeutic modalities in treating hemophilia, inflammation, cerebral malaria, and cancer.
Collapse
Affiliation(s)
- L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center, Tyler, TX; and
| | - Charles T Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center, Tyler, TX; and
| |
Collapse
|
24
|
Goodman M, Liu Z, Zhu P, Li J. AMPK Activators as a Drug for Diabetes, Cancer and Cardiovascular Disease. PHARMACEUTICAL REGULATORY AFFAIRS : OPEN ACCESS 2014; 3:118. [PMID: 27478687 PMCID: PMC4966671 DOI: 10.4172/2167-7689.1000118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cellular mechanisms of AMP-Activated Protein Kinase (AMPK) activators in the treatment and prevention of diabetes, cancer, and cardiovascular disease.
Collapse
Affiliation(s)
- Mark Goodman
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Zhenling Liu
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Ping Zhu
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Ji Li
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
25
|
Keshava S, Kothari H, Rao LVM, Pendurthi UR. Influence of endothelial cell protein C receptor on breast cancer development. J Thromb Haemost 2013; 11:2062-5. [PMID: 24024878 PMCID: PMC3845670 DOI: 10.1111/jth.12402] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Indexed: 12/15/2022]
Affiliation(s)
- S Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | | | | | | |
Collapse
|
26
|
Azzazene D, Al Thawadi H, Al Farsi H, Besbes S, Geyl C, Mirshahi S, Pardo J, Faussat AM, Jeannette S, Therwath A, Pujade-Lauraine E, Mirshahi M. Plasma endothelial protein C receptor influences innate immune response in ovarian cancer by decreasing the population of natural killer and TH17 helper cells. Int J Oncol 2013; 43:1011-8. [PMID: 23877403 PMCID: PMC3829768 DOI: 10.3892/ijo.2013.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/13/2013] [Indexed: 01/07/2023] Open
Abstract
In spite of the growing importance of endothelial protein C receptor/active protein C (EPCR/aPC) in tumor biology, their impact on immunological homeostasis remains largely unexplored. The objective of this study was to assess whether soluble plasma endothelial protein C receptor (sEPCR), which is a regulator of circulating aPC, is involved in innate immune response in cancer patients. In the Ovcar-3 ovarian cancer line, the role of aPC in secretion of cytokines was analyzed. In parallel, in 33 patients, with a diagnosis of ovarian epithelial cancer, sEPCR was quantified, blood immune cell phenotypes were determined by flow cytometry and plasma cytokines were evaluated using a protein array. Spearman’s rank correlation coefficients (r) and coefficient significance was determined by a statistical hypothesis test (α=0.05). Our results show that i) aPC induced the secretion of several cytokines in Ovcar-3 cells; ii) 61% of patients exhibited a concentration of plasma sEPCR well above the baseline (normal plasma level, 100±28 ng/ml); iii) comparing immune cell phenotypes in patients having a normal level of sEPCR with those having a high level of sEPCR, it was found that sEPCR levels were correlated with high intensity of cells expressing CD45ra, CD3, CD8, CD25 and low intensity of cells expressing CD56 (NK cells), CD294 (TH2 cells), IL-2, IL-10, IL-17a (TH17 cells), IL-21 (TH21 cells) and CD29 markers (r ≥0.60); and iv) high levels of sEPCR correlate with high levels of plasma bioactive proteins such as insulin-like growth factor-2 (IGFII), IL-13rα, macrophage inflammatory protein (MIP1α) and matrix metalloproteinase-7 (MMP-7) that have already been proposed as biomarkers for ovarian cancer and particularly those with poor prognosis. In conclusion, sEPCR produced by ovarian cancer cells, by modulating circulating aPC, influences the secretory behavior of tumor cells (cytokines and interleukins). Consequently, sEPCR in turn acts on the innate immune response by decreasing effector cells such as natural killer and T helper cells (TH2, TH17 and TH21).
Collapse
Affiliation(s)
- Dalel Azzazene
- National Institut for Medical Research (INSERM), Cordeliers Research Center (UMRS 872), University of Pierre and Marie Curie and University of Paris Descartes, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bouwens EAM, Stavenuiter F, Mosnier LO. Mechanisms of anticoagulant and cytoprotective actions of the protein C pathway. J Thromb Haemost 2013; 11 Suppl 1:242-53. [PMID: 23809128 PMCID: PMC3713536 DOI: 10.1111/jth.12247] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The protein C pathway provides multiple important functions to maintain a regulated balance between hemostasis and host defense systems in response to vascular and inflammatory injury. The anticoagulant protein C pathway is designed to regulate coagulation, maintain the fluidity of blood within the vasculature, and prevent thrombosis, whereas the cytoprotective protein C pathway prevents vascular damage and stress. The cytoprotective activities of activated protein C (APC) include anti-apoptotic activity, anti-inflammatory activity, beneficial alterations of gene expression profiles, and endothelial barrier stabilization. These cytoprotective activities of APC, which require the endothelial protein C receptor (EPCR) and protease-activated receptor-1 (PAR1), have been a major research focus. Recent insights, such as non-canonical activation of PAR1 at Arg46 by APC and biased PAR1 signaling, provided better understanding of the molecular mechanisms by which APC elicits cytoprotective signaling through cleavage of PAR1. The discovery and development of anticoagulant-selective and cytoprotective-selective APC mutants provided unique opportunities for preclinical research that has been and may continue to be translated to clinical research. New mechanisms for the regulation of EPCR functionality, such as modulation of EPCR-bound lipids that affect APC's cytoprotective activities, may provide new research directions to improve the efficacy of APC to convey its cytoprotective activities to cells. Moreover, emerging novel functions for EPCR expand the roles of EPCR beyond mediating protein C activation and APC-induced PAR1 cleavage. These discoveries increasingly develop our understanding of the protein C pathway, which will conceivably expand its physiological implications to many areas in the future.
Collapse
Affiliation(s)
- E A M Bouwens
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
28
|
Abstract
The hemostatic system is involved in multiple interactions with transformed cells that progress from a dormant, non-vascularized tumor to highly metastatic phenotypes. Oncogenic transformations up regulate not only the initiator of the coagulation cascade, tissue factor (TF), but also induce other molecules that are required for TF's direct cell signaling activity, including the protease activated receptor (PAR) 2 and factor VIIa. TF-dependent signaling is a major driver for primary tumor progression, whereas TF-initiated coagulation and other components of the hemostatic system support metastasis. Basic research continues to identify pivotal molecular interactions in these processes and provides potential leads for targeting specific tumor promoting pathways associated with hemostasis and thrombosis.
Collapse
|
29
|
Schaffner F, Yokota N, Carneiro-Lobo T, Kitano M, Schaffer M, Anderson GM, Mueller BM, Esmon CT, Ruf W. Endothelial protein C receptor function in murine and human breast cancer development. PLoS One 2013; 8:e61071. [PMID: 23593394 PMCID: PMC3621887 DOI: 10.1371/journal.pone.0061071] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/05/2013] [Indexed: 01/07/2023] Open
Abstract
Several markers identify cancer stem cell-like populations, but little is known about the functional roles of stem cell surface receptors in tumor progression. Here, we show that the endothelial protein C receptor (EPCR), a stem cell marker in hematopoietic, neuronal and epithelial cells, is crucial for breast cancer growth in the orthotopic microenvironment of the mammary gland. Mice with a hypomorphic allele of EPCR show reduced tumor growth in the PyMT-model of spontaneous breast cancer development and deletion of EPCR in established PyMT tumor cells significantly attenuates transplanted tumor take and growth. We find expansion of EPCR+ cancer stem cell-like populations in aggressive, mammary fat pad-enhanced human triple negative breast cancer cells. In this model, EPCR-expressing cells have markedly increased mammosphere- and tumor-cell initiating activity compared to another stable progenitor-like subpopulation present at comparable frequency. We show that receptor blocking antibodies to EPCR specifically attenuate in vivo tumor growth initiated by either EPCR+ cells or the heterogenous mixture of EPCR+ and EPCR- cells. Furthermore, we have identified tumor associated macrophages as a major source for recognized ligands of EPCR, suggesting a novel mechanism by which cancer stem cell-like populations are regulated by innate immune cells in the tumor microenvironment.
Collapse
MESH Headings
- Adipose Tissue/metabolism
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cluster Analysis
- Disease Models, Animal
- Endothelial Protein C Receptor
- Female
- Gene Expression Profiling
- Glycoproteins/antagonists & inhibitors
- Glycoproteins/genetics
- Glycoproteins/metabolism
- Humans
- Macrophages/metabolism
- Macrophages/pathology
- Mammary Glands, Animal/metabolism
- Mice
- Neoplastic Stem Cells/metabolism
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Transplantation, Heterologous
- Tumor Burden/genetics
Collapse
Affiliation(s)
- Florence Schaffner
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Naho Yokota
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tatiana Carneiro-Lobo
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Maki Kitano
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Michael Schaffer
- Biologics Research, Janssen Research and Development, Radnor, Pennsylvania, United States of America
| | - G. Mark Anderson
- Biologics Research, Janssen Research and Development, Radnor, Pennsylvania, United States of America
| | - Barbara M. Mueller
- Cancer Research, Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Charles T. Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation and Howard Hughes Medical Institute, Oklahoma City, Oklahoma, United States of America
| | - Wolfram Ruf
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Sarig G, Meir A, Wollner M, Brenner B, Haim N. Soluble endothelial protein C receptor and coagulation parameters as prognostic factors in non-small cell lung carcinoma. J Thromb Haemost 2013; 11:768-71. [PMID: 23323811 DOI: 10.1111/jth.12134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/09/2013] [Indexed: 11/29/2022]
|
31
|
Keshava S, Sahoo S, Tucker TA, Idell S, Rao LVM, Pendurthi UR. Endothelial cell protein C receptor opposes mesothelioma growth driven by tissue factor. Cancer Res 2013; 73:3963-73. [PMID: 23539451 DOI: 10.1158/0008-5472.can-12-1690] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The procoagulant protein tissue factor (F3) is a powerful growth promoter in many tumors, but its mechanism of action is not well understood. More generally, it is unknown whether hemostatic factors expressed on tumor cells influence tissue factor-mediated effects on cancer progression. In this study, we investigated the influence of tissue factor, endothelial cell protein C receptor (EPCR, PROCR), and protease activated receptor-1 (PAR1, F2R) on the growth of malignant pleural mesothelioma (MPM), using human MPM cells that lack or express tissue factor, EPCR or PAR1, and an orthotopic nude mouse model of MPM. Intrapleural administration of MPM cells expressing tissue factor and PAR1 but lacking EPCR and PAR2 (F2RL1) generated large tumors in the pleural cavity. Suppression of tissue factor or PAR1 expression in these cells markedly reduced tumor growth. In contrast, tissue factor overexpression in nonaggressive MPM cells that expressed EPCR and PAR1 with minimal levels of tissue factor did not increase their limited tumorigenicity. More importantly, ectopic expression of EPCR in aggressive MPM cells attenuated their growth potential, whereas EPCR silencing in nonaggressive MPM cells engineered to overexpress tissue factor increased their tumorigenicity. Immunohistochemical analyses revealed that EPCR expression in tumor cells reduced tumor cell proliferation and enhanced apoptosis. Overall, our results enlighten the mechanism by which tissue factor promotes tumor growth through PAR1, and they show how EPCR can attenuate the growth of tissue factor-expressing tumor cells.
Collapse
Affiliation(s)
- Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA
| | | | | | | | | | | |
Collapse
|
32
|
Schaffner F, Yokota N, Ruf W. Tissue factor proangiogenic signaling in cancer progression. Thromb Res 2012; 129 Suppl 1:S127-31. [PMID: 22682123 DOI: 10.1016/s0049-3848(12)70032-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cancer progression from a dormant, non-vascularized benign tumor to metastatic disease is a multiple steps process that critically depends on contributions from the hemostatic system. Tissue factor (TF), protease activated receptors (PARs), factor VIIa, and the endothelial protein C receptor (EPCR) are expressed by tumor cells as well as the host compartment. These components of the hemostatic system regulate tumor growth, angiogenesis and metastasis. Here we review the evidence that TF-dependent signaling is the major driver of primary tumor growth, whereas TF-initiated coagulation and interactions of procoagulant tumor cells with the host compartments initiate multiple pathways that support and regulate the efficiency of metastatic tumor dissemination.
Collapse
Affiliation(s)
- Florence Schaffner
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
33
|
Abstract
Cancer is frequently associated with activation of blood coagulation, which in turn has been suggested to promote tumor growth and metastasis. Indeed, low molecular weight heparin treatment significantly prolongs the survival of a wide variety of patients with cancer. Based on this notion that anticoagulant treatment seems to benefit cancer patients, recent experiments aimed to elucidate the importance of the natural anticoagulant protein C pathways in cancer progression. Interestingly, these experiments showed that the repeated administration of exogenous activated protein C limits cancer cell extravasation in experimental animal models. In line, reducing endogenous activated protein C activity dramatically increased the number of experimental metastasis. These data thus strongly suggest that exogenous activated protein C administration may be a novel therapeutic avenue to limit cancer metastasis thereby prolonging overall survival of cancer patients. The current review provides an overview of recent data on the role of the protein C pathway in cancer metastasis. It discusses the potential of activated protein C as a novel target to reduce cancer progression, it points to several limitations of activated protein C administration in the setting of cancer cell metastasis and it suggest zymogen protein C as an attractive alternative.
Collapse
Affiliation(s)
- C Arnold Spek
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| | | |
Collapse
|
34
|
Finigan JH, Kern JA. Lung cancer: new therapeutic targets, new definitions. Am J Respir Crit Care Med 2012; 186:7-8. [PMID: 22753683 DOI: 10.1164/rccm.201205-0811ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
35
|
Ducros E, Mirshahi S, Azzazene D, Camilleri-Broët S, Mery E, Al Farsi H, Althawadi H, Besbess S, Chidiac J, Pujade-Lauraine E, Therwath A, Soria J, Mirshahi M. Endothelial protein C receptor expressed by ovarian cancer cells as a possible biomarker of cancer onset. Int J Oncol 2012; 41:433-40. [PMID: 22614534 PMCID: PMC3582880 DOI: 10.3892/ijo.2012.1492] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 03/09/2012] [Indexed: 12/28/2022] Open
Abstract
Coagulation disorders often accompany cancer onset and evolution, which, if not properly managed, could have grave consequences. Endothelial protein C is an important regulator of homeostasis and acts through its high affinity binding to its transmembrane receptor (EPCR). Soluble (sEPCR) which results from the proteolytic cleavage of the membrane bound form can trap activated endothelial protein C and deprive it of its anti-coagulant function. In this study, the expression of EPCR and its soluble form (sEPCR) released into plasma as a result of proteolytic cleavage were investigated in ovarian, breast, lung and colorectal cancer biopsies, as well as in ascitic cell clusters and peritoneal fluid from ovarian cancer samples. In parallel, breast, ovarian, lung and colorectal cancer cell lines were investigated for the expression of EPCR. The integrity of the EPCR gene sequence as well gene haplotypes were ascertained in the established cancer cell lines in order to understand their eventual regulatory functions. The results from the present study indicate that in cancer patients, the levels of sEPCR are significantly higher than the normal range compared to healthy volunteers. The increase in the levels of sEPCR parallels the increase in CA125, showing a close correlation. Therefore, the detection of sEPCR in cancer and during the post-treatment period could be taken into account as an additional marker that could re-inforce the one obtained using CA125 alone as a marker of cancer cell mass.
Collapse
Affiliation(s)
- Elodie Ducros
- National Institute for Medical Research, University of Pierre and Marie Curie, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Antón I, Molina E, Luis-Ravelo D, Zandueta C, Valencia K, Ormazabal C, Martínez-Canarias S, Perurena N, Pajares MJ, Agorreta J, Montuenga LM, Segura V, Wistuba II, De Las Rivas J, Hermida J, Lecanda F. Receptor of activated protein C promotes metastasis and correlates with clinical outcome in lung adenocarcinoma. Am J Respir Crit Care Med 2012; 186:96-105. [PMID: 22461368 DOI: 10.1164/rccm.201110-1826oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
RATIONALE Efficient metastasis requires survival and adaptation of tumor cells to stringent conditions imposed by the extracellular milieu. Identification of critical survival signaling pathways in tumor cells might unveil novel targets relevant in disease progression. OBJECTIVES To investigate the contribution of activated protein C (APC) and its receptor (endothelial protein C receptor [EPCR]) in animal models of lung cancer metastasis and in patients with lung adenocarcinoma. METHODS Signaling pathway triggered by APC/EPCR and its relevance in apoptosis was studied in vitro. Functional significance was assessed by silencing and blocking antibodies in several in vivo models of lung cancer metastasis in athymic nude Foxn1(nu) mice. We examined EPCR levels using a microarray dataset of 107 patients. Immunohistochemical analysis was performed in an independent cohort of 295 patients with lung adenocarcinoma. MEASUREMENTS AND MAIN RESULTS The effects of APC binding to EPCR rapidly triggered Akt and extracellular signal-regulated kinase signaling pathways, leading to attenuated in vitro apoptosis. In vivo, silencing of EPCR expression or blocking APC/EPCR interaction reduced infiltration in the target organ, resulting in impaired prometastatic activity. Moreover, overexpression of EPCR induced an increased metastatic activity to target organs. Analysis of clinical samples showed a robust association between high EPCR levels and poor prognosis, particularly in stage I patients. CONCLUSIONS EPCR and its ligand APC promote cell survival that contributes to tumor cell endurance to stress favoring prometastatic activity of lung adenocarcinoma. EPCR/APC is a novel target of relevance in the clinical outcome of early-stage lung cancer.
Collapse
Affiliation(s)
- Iker Antón
- Division of Oncology, Adhesion and Metastasis Laboratory, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gleeson EM, O’Donnell JS, Preston RJS. The endothelial cell protein C receptor: cell surface conductor of cytoprotective coagulation factor signaling. Cell Mol Life Sci 2012; 69:717-26. [PMID: 21968919 PMCID: PMC11115159 DOI: 10.1007/s00018-011-0825-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/09/2011] [Accepted: 09/12/2011] [Indexed: 12/27/2022]
Abstract
Increasing evidence links blood coagulation proteins with the regulation of acute and chronic inflammatory disease. Of particular interest are vitamin K-dependent proteases, which are generated as a hemostatic response to vascular injury, but can also initiate signal transduction via interactions with vascular receptors. The endothelial cell protein C receptor (EPCR) is a multi-ligand vitamin K-dependent protein receptor for zymogen and activated forms of plasma protein C and factor VII. Although the physiological role of the EPCR-FVII(a) interaction is not well-understood, protein C binding to EPCR facilitates rapid generation of APC in response to excessive thrombin generation, and is a central requirement for the multiple signal-transduction cascades initiated by APC on both vascular endothelial and innate immune cells. Exciting recent studies have highlighted the emerging role of EPCR in modulating the cytoprotective properties of APC in a number of diverse inflammatory disorders. In this review, we describe the structure-function relationships, signal transduction pathways, and cellular interactions that enable EPCR to modulate the anticoagulant and anti-inflammatory properties of its vitamin K-dependent protein ligands, and examine the relevance of EPCR to both thrombotic and inflammation-associated disease.
Collapse
Affiliation(s)
- Eimear M. Gleeson
- Haemostasis Research Group, Department of Haematology, Institute of Molecular Medicine, St James Hospital Campus, Trinity College Dublin, Dublin, Ireland
| | - James S. O’Donnell
- Haemostasis Research Group, Department of Haematology, Institute of Molecular Medicine, St James Hospital Campus, Trinity College Dublin, Dublin, Ireland
| | - Roger J. S. Preston
- Haemostasis Research Group, Department of Haematology, Institute of Molecular Medicine, St James Hospital Campus, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
38
|
Sierko E, Wojtukiewicz MZ, Zimnoch L, Tokajuk P, Ostrowska-Cichocka K, Kisiel W. Co-localization of Protein Z, Protein Z-Dependent protease inhibitor and coagulation factor X in human colon cancer tissue: implications for coagulation regulation on tumor cells. Thromb Res 2011; 129:e112-8. [PMID: 22424030 DOI: 10.1016/j.thromres.2011.10.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/19/2011] [Accepted: 10/25/2011] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Several hemostatic system components, including factor X (FX), contribute to cancer progression. The Protein Z (PZ)/protein Z-dependent protease inhibitor (ZPI) complex directly inhibits factor Xa proteolytic activity. The aim of this study was to determine the antigenic distribution of ZPI and PZ, in relation to FX, as well as indicators of blood coagulation activation (F1+2 and fibrin) in human colon cancer tissue. MATERIALS & METHODS Studies were performed on human colon cancer fragments. Immunohistochemical (IHC) ABC procedures and double staining method employed polyclonal antibodies against PZ, FX, F1+2 and monoclonal antibodies against ZPI and fibrin. In-situ hybridization (ISH) methods employed biotin-labeled 25-nucleotide single-stranded DNA probes directed to either FX, PZ or ZPI mRNAs. RESULTS Expression of FX, PZ and ZPI in association with colon cancer cells was observed by IHC. Moreover, the presence of both F1+2 and fibrin in association with colon cancer cells was found, which indicates that blood coagulation activation proceeds extravascularly at the tumor site. Furthermore, expression of FX and PZ was visualized in association with endothelial cells. In turn, colon cancer-associated macrophages were characterized by FX , PZ and ZPI presence. The double staining studies revealed strong FX/PZ, FX/ZPI, as well as PZ/ZPI co-localization on colon cancer cells. ISH studies revealed the presence of FX mRNA, PZ mRNA and ZPI mRNA in colon cancer cells indicating induced synthesis of these proteins. CONCLUSIONS The localization of PZ/ZPI and FX in colon cancer cells indicates that PZ/ZPI may contribute to anticoagulant events at the tumor site. Strong co-localization of PZ/ZPI and FX in cancer cells, and the presence of the mRNAs encoding the proteins, suggests their role in the tumor's biology. However, the presence of F1+2 and fibrin at the colon cancer site also suggests that the regulation of FXa by the PZ/ZPI complex at this site is incomplete.
Collapse
Affiliation(s)
- Ewa Sierko
- Department of Oncology, Medical University, Bialystok, Poland
| | | | | | | | | | | |
Collapse
|
39
|
Ruf W, Disse J, Carneiro-Lobo TC, Yokota N, Schaffner F. Tissue factor and cell signalling in cancer progression and thrombosis. J Thromb Haemost 2011; 9 Suppl 1:306-15. [PMID: 21781267 PMCID: PMC3151023 DOI: 10.1111/j.1538-7836.2011.04318.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The close link between coagulation activation and clinical cancer is well established and recent progress has defined underlying molecular pathways by which tumour cells interact with the haemostatic system to promote cancer progression. Tumour type-specific oncogenic transformations cause constitutive and hypoxia-dependent upregulation of tissue factor (TF) in cancer cells, but TF expressed by vascular, stromal and inflammatory cells also contributes to the procoagulant character of the tumour microenvironment. A growing body of genetic and pharmacological evidence implicates signalling by protease activated receptors (PARs) and specifically by tumour cell-expressed TF-VIIa-PAR2 in the induction of an array of proangiogenic and immune modulating cytokines, chemokines and growth factors. Specific inhibition of this pathway results in attenuated tumour growth and angiogenesis. PARs are increasingly recognised as targets for proteases outside the coagulation system and emerging evidence indicates that alternative protease signalling pathways synergise with the coagulation system to promote tumour growth, angiogenesis and metastasis. The elucidation of new therapeutic targets in tumour-promoting protease signalling pathways requires new diagnostic approaches to identify patients that will benefit from tailored therapy targeting procoagulant or signalling aspects of the TF pathway.
Collapse
Affiliation(s)
- W Ruf
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
40
|
Expression and shedding of endothelial protein C receptor in prostate cancer cells. Cancer Cell Int 2011; 11:4. [PMID: 21320357 PMCID: PMC3045874 DOI: 10.1186/1475-2867-11-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 02/15/2011] [Indexed: 11/20/2022] Open
Abstract
Background Increasing evidences show that beyond its role in coagulation, endothelial protein C receptor (EPCR) interferes with carcinogenesis. Pro-carcinogenic effects of EPCR were linked with a raised generation of activated protein C (aPC) and anti-apoptotic signalling. This study was carried out to analyze the expression, cell surface exposition, and shedding of EPCR in normal and malignant prostate cell lines. Results EPCR expression is up-regulated both at the mRNA and protein levels in invasive prostate DU-145 and PC-3 cells in comparison to normal prostate epithelial cells (PrEC) and less-invasive LNCaP cells. Release of soluble EPCR (sEPCR) is induced by 12-myristate 13-acetate, ionomycin, H2O2, and disruptor of lipid rafts in PrEC, DU-145, and PC-3 cells. Furthermore, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), but not interleukin-6 or interferon-γ increase sEPCR release. In LNCaP cells, neither pharmacological agents nor IL-1β or TNF-α result in a significant increase of sEPCR release. The effects of IL-1β and TNF-α on EPCR shedding in DU-145 cells are mediated by MEK/ERK 1/2, JNK, and p38 MAPK signalling cascades. In PC-3 cells, however, the MEK/ERK 1/2 pathway is down-regulated and incubation with cytokines did not elevate the phosphorylated ERK-1/2 fraction as in the case of DU-145 cells. Treatment with 4-aminophenylmercuric acetate (APMA), an activator of metalloproteases, causes a disproportionately large increase of sEPCR release in DU-145 and PC-3 cells, compared to PrEC and LNCaP cells. Finally, an increased release of sEPCR mediated by APMA treatment is shown to be connected with reduced generation of activated protein C indicating the functionality of EPCR in these cells. Conclusions The study demonstrates a number of substantial differences in expression and shedding of EPCR in prostate cancer cell lines in comparison with normal cells that may be relevant for understanding the role of this receptor in carcinogenesis.
Collapse
|
41
|
van Sluis GL, Büller HR, Spek CA. The role of activated protein C in cancer progression. Thromb Res 2010; 125 Suppl 2:S138-42. [PMID: 20433994 DOI: 10.1016/s0049-3848(10)70032-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activated protein C (APC) is best known as a natural anticoagulant that also has direct cell signaling properties which (among others) enhance vascular barrier function. We recently established the relevance of APC-induced barrier enhancement by showing that endogenous APC limits cancer cell extravasation. In line with this concept, repeated administration of exogenous APC reduced the number of experimental metastasis. It is thus tempting to speculate that exogenous APC administration would be a novel therapeutic avenue to fight cancer metastasis. The current review summarizes recent data on the role of the protein C pathway in cancer metastasis. It discusses the APC pathway as a potential novel target to influence cancer progression, but it also points to several limitations of APC administration in the setting of cancer cell metastasis.
Collapse
Affiliation(s)
- Geerte L van Sluis
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands.
| | | | | |
Collapse
|
42
|
Abstract
The directed motility of cells toward the source of a soluble chemical (chemotaxis) plays a role in events ranging from immune function to cancer progression. Numerous chemotaxis assays are commonly employed, yet none provides an optimal combination of the relevant parameters. The ideal chemotaxis assay for use in the analysis of cells crawling across a planar surface should be cost-effective, simple to perform, and suitable for high-throughput multiplexing, as well as permit alteration of experimental conditions during cell motility. Here we describe a novel chemotaxis assay based upon the invasion of cells into agarose spots into which chemoattractants are suspended. Our studies demonstrate that this system assays chemotaxis and not chemokinesis, and provide proof-of-principle for drug screening studies as well as analysis through high-resolution cellular imaging.
Collapse
|
43
|
Expression of proteinase-activated receptor 1-4 (PAR 1-4) in human cancer. J Mol Histol 2010; 41:89-99. [PMID: 20563836 DOI: 10.1007/s10735-010-9274-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/02/2010] [Indexed: 01/13/2023]
Abstract
Proteinase activated receptors (PAR 1-4) are membrane receptors with a unique way of activation by proteinases like thrombin, trypsin and matrix metalloproteinases which lead to a specific cellular response. To evaluate the significance of expression and co-expression of PAR in cancer we performed a survey on published data. A Pubmed literature search on "PAR, thrombin, cancer" was performed and 46 publications were selected for systematic review based on the availability of information on tumor type, material type, detection method and specification of positive cases. PAR-1 was found in 77.3% of malignant samples (n = 678), PAR-2 in 79.5% (n = 592), PAR-3 in 12.6% (n = 87) and PAR-4 in 54.9% (n = 153). PAR-1 and -2 were present in adenocarcinomas, melanomas, osteosarcomas, glioblastomas, meningiomas, leukaemias and squamous cell carcinomas. Presence of PAR-3 was limited to kidney and liver cancer. The data on PAR-4 expression was inconclusive. Those studies analysing PAR-1 and PAR-2 reported coexpression of the two receptors. PAR-1 and -2 are widely expressed in human tumors suggesting an important role in tumorigenesis and providing potential targets for therapy. PAR-3 and PAR-4 are less frequently detectable, their expression and potential role in tumorigenesis require further investigation.
Collapse
|
44
|
Sierko E, Wojtukiewicz MZ, Zawadzki R, Zimnoch L, Kisiel W. Expression of protein C (PC), protein S (PS) and thrombomodulin (TM) in human colorectal cancer. Thromb Res 2010; 125:e71-5. [PMID: 19818470 DOI: 10.1016/j.thromres.2009.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/07/2009] [Accepted: 09/21/2009] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is often complicated by thromboembolic episodes. It has been recognized that blood coagulation proteins play a role in cancer progression. An important inhibitory mechanism is provided by the protein C (PC) system consisting of PC, protein S (PS) and thrombomodulin (TM). Recently, novel biological activities have been ascribed to the PC system that do not relate to their hemostatic functions, eg. in angiogenesis, apoptosis and inflammation. OBJECTIVES The purpose of the study was to elucidate the solid phase interactions between CRC tissue and components of the PC system that may contribute to tumor progression. MATERIAL AND METHODS CRC tissues were obtained at surgical resection during treatment of 66 patients. Immunohistochemical studies were performed using polyclonal antibodies against PC, PS and TM. A semiquantitative analysis of the protein expression was also performed. RESULTS Weak expression of PC was observed in cancer cells of two-thirds of the specimens examined, while in 3/66 cases there was no staining for PC in cancer cells. One fourth of CRCs exhibited strong expression of PC. The presence of PS was demonstrated in 64/66 cases of CRC. However, its expression was irregular in terms of intensity of staining and percentage of cancer cells exhibiting protein expression. Weak expression of TM was demonstrated in two thirds of the cases examined, while a strong TM staining was revealed in one third of colon cancers. CONCLUSION Heterogeneous expression of the PC system components in CRC tissue may point to their biological activity modulating tumor growth.
Collapse
Affiliation(s)
- Ewa Sierko
- Department of Oncology, Medical University, Bialystok, Poland
| | | | | | | | | |
Collapse
|
45
|
Park SY, Lee HE, Li H, Shipitsin M, Gelman R, Polyak K. Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. Clin Cancer Res 2010; 16:876-87. [PMID: 20103682 DOI: 10.1158/1078-0432.ccr-09-1532] [Citation(s) in RCA: 311] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE To evaluate the expression of stem cell-related markers at the cellular level in human breast tumors of different subtypes and histologic stage. EXPERIMENTAL DESIGN We performed immunohistochemical analyses of 12 proteins [CD44, CD24, ALDH1, vimentin, osteonectin, EPCR, caveolin 1, connexin 43, cytokeratin 18 (CK18), MUC1, claudin 7, and GATA3] selected based on their differential expression in breast cancer cells with more differentiated and stem cell-like characteristics in 47 cases of invasive ductal carcinoma (IDC) only, 135 cases of IDC with ductal carcinoma in situ (DCIS), 35 cases of DCIS with microinvasion, and 58 cases of pure DCIS. We also analyzed 73 IDCs with adjacent DCIS to determine the differences in the expression of markers by histology within individual tumors. CD44+/CD24- and CD24-/CD24+ cells were detected using double immunohistochemistry. RESULTS CD44 and EPCR expression was different among the four histologic groups and was lower in invasive compared with in situ tumors, especially in luminal A subtype. The expression of vimentin, osteonectin, connexin 43, ALDH1, CK18, GATA3, and MUC1 differed by tumor subtype in some histologic groups. ALDH1-positive cells were more frequent in basal-like and HER2+ than in luminal tumors. CD44+/CD24- cells were detected in 69% of all tumors with 100% of the basal-like and 52% of HER2+ tumors having some of these cells. CONCLUSIONS Our findings suggest that in breast cancer, the frequency of tumor cells positive for stem cell-like and more differentiated cell markers varies according to tumor subtype and histologic stage.
Collapse
Affiliation(s)
- So Yeon Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
46
|
Gramling MW, Beaulieu LM, Church FC. Activated protein C enhances cell motility of endothelial cells and MDA-MB-231 breast cancer cells by intracellular signal transduction. Exp Cell Res 2009; 316:314-28. [PMID: 19891966 DOI: 10.1016/j.yexcr.2009.10.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/27/2009] [Accepted: 10/28/2009] [Indexed: 01/06/2023]
Abstract
Activated protein C (APC), an anticoagulant serine protease, has been shown to have non-hemostatic functions related to inflammation, cell survival, and cell migration. In this study we investigate the mechanism by which APC promotes angiogenesis and breast cancer invasion using ex vivo and in vitro methods. When proteolytically active, APC promotes cell motility/invasion and tube formation of endothelial cells. Ex vivo aortic ring assays verify the role of APC in promoting angiogenesis, which was determined to be dependent on EGFR and MMP activation. Given the capacity of APC to promote angiogenesis and the importance of this process in cancer pathology, we investigated whether the mechanisms by which APC promotes angiogenesis can also promote motility and invasion in the MDA-MB-231 breast cancer cell line. Our results indicate that, extracellularly, APC engages EPCR, PAR-1, and EGFR in order to increase the invasiveness of MDA-MB-231 cells. APC activation of matrix metalloprotease (MMP) -2 and/or -9 is necessary but not sufficient to increase invasion, and APC does not utilize the endogenous plasminogen activation system to increase invasion. Intracellularly, APC activates ERK, Akt, and NFkappaB, but not the JNK pathway to promote MDA-MB-231 cell motility. Similar to the hemostatic protease thrombin, APC has the ability to enhance both endothelial cell motility/angiogenesis and breast cancer cell migration.
Collapse
Affiliation(s)
- Mark W Gramling
- Departments of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7035, USA
| | | | | |
Collapse
|
47
|
Gorbacheva L, Davidova O, Sokolova E, Ishiwata S, Pinelis V, Strukova S, Reiser G. Endothelial protein C receptor is expressed in rat cortical and hippocampal neurons and is necessary for protective effect of activated protein C at glutamate excitotoxicity. J Neurochem 2009; 111:967-75. [PMID: 19780891 DOI: 10.1111/j.1471-4159.2009.06380.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Activated protein C (APC) is an anticoagulant and anti-inflammatory factor that acts via endothelial protein C receptor (EPCR). Interestingly, APC also exhibits neuroprotective activities. In the present study, we demonstrate for the first time expression of EPCR, the receptor for APC, in rat cortical and hippocampal neurons. Moreover, exposing the neurons to glutamate excitotoxicity we studied the functional consequence of the expression of EPCR. By cytotoxicity assay we showed that EPCR was necessary for the APC-mediated protective effect in both neuronal cell types in culture. The effect of APC was abrogated in the presence of blocking EPCR antibodies. Analysis of neuronal death by cell labelling with dyes which allow distinguishing living and dead cells confirmed that the anti-apoptotic effect of APC was dependent on both EPCR and protease-activated receptor-1. Thus, we suggest that binding of APC to EPCR on neurons and subsequent activation of protease-activated receptor-1 by the complex of APC-EPCR promotes survival mechanisms after exposure of neurons to damaging factors.
Collapse
Affiliation(s)
- Lyubov Gorbacheva
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
48
|
Endogenous activated protein C limits cancer cell extravasation through sphingosine-1-phosphate receptor 1-mediated vascular endothelial barrier enhancement. Blood 2009; 114:1968-73. [PMID: 19571314 DOI: 10.1182/blood-2009-04-217679] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activated protein C (APC) has both anticoagulant activity and direct cell-signaling properties. APC has been reported to promote cancer cell migration/invasion and to inhibit apoptosis and therefore may exacerbate metastasis. Opposing these activities, APC signaling protects the vascular endothelial barrier through sphingosine-1-phosphate receptor-1 (S(1)P(1))activation, which may counteract cancer cell extravasation. Here, we provide evidence that endogenous APC limits cancer cell extravasation, with in vivo use of monoclonal antibodies against APC. The protective effect of endogenous APC depends on its signaling properties. The MAPC1591 antibody that only blocks anticoagulant activity of APC does not affect cancer cell extravasation as opposed to MPC1609 that blocks anticoagulant and signaling properties of APC. Combined administration of anti-APC antibodies and S(1)P(1) agonist (SEW2871) resulted in a similar number of pulmonary foci in mice in presence and absence of APC, indicating that the protective effect of APC depends on the S(1)P(1) pathway. Moreover, endogenous APC prevents cancer cell-induced vascular leakage as assessed by the Evans Blue Dye assay, and SEW2871 treatment reversed MPC1609-dependent vascular leakage. Finally, we show that cancer cells combined with MPC1609 treatment diminished endothelial VE-cadherin expression. In conclusion, endogenous APC limits cancer cell extravasation because of S(1)P(1)-mediated VE-cadherin-dependent vascular barrier enhancement.
Collapse
|
49
|
Ducros E, Mirshahi S, Bermot C, Mirshahi M. Analysis of endothelial protein C receptor functionality on living cells'. Open Biochem J 2009; 3:49-54. [PMID: 19572027 PMCID: PMC2703289 DOI: 10.2174/1874091x00903010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/11/2009] [Accepted: 03/20/2009] [Indexed: 11/22/2022] Open
Abstract
Activated protein C (APC) is a major control system of blood coagulation. APC prevents coagulation pathway by degrading Va and VIIIa plasma's coagulation factors. Protein C activation requires its binding to specific endothelial cell receptor (EPCR). APC binding to EPCR also activates a wide range of defense mechanisms (anti-inflammatory, antiapoptosis...). EPCR expression by cells can be detected by various methods, including immunoanalysis and molecular biology. However, no assays evaluate its functionality. A method, inspired of a standard fibrinoformation time assay, was developed to estimate EPCR ability to bind APC on living cell surface in vitro. Endothelial cells were incubated with APC and fibrinoformation on cells was followed by spectrophotometry (plasma absorbance increases with fibrin polymerization). Membrane-bound EPCR retain APC, thus prolonging fibrinoformation time in a dose-dependent manner. Control was realized with EPCR-negative cells. This new method can be used on any cell type to study the expression of other coagulation receptors.
Collapse
Affiliation(s)
- E Ducros
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie - Paris 6, UMRS 872, equipe 18, Paris
| | | | | | | |
Collapse
|
50
|
|