1
|
Kose S, Ogawa Y, Imamoto N. Thermal Stress and Nuclear Transport. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:61-78. [PMID: 39289274 DOI: 10.1007/978-981-97-4584-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nuclear transport is the basis for the biological reaction of eukaryotic cells, as it is essential to coordinate nuclear and cytoplasmic events separated by nuclear envelope. Although we currently understand the basic molecular mechanisms of nuclear transport in detail, many unexplored areas remain. For example, it is believed that the regulations and biological functions of the nuclear transport receptors (NTRs) highlights the significance of the transport pathways in physiological contexts. However, physiological significance of multiple parallel transport pathways consisting of more than 20 NTRs is still poorly understood, because our knowledge of each pathway, regarding their substrate information or how they are differently regulated, is still limited. In this report, we describe studies showing how nuclear transport systems in general are affected by temperature rises, namely, thermal stress or heat stress. We will then focus on Importin α family members and unique transport factor Hikeshi, because these two NTRs are affected in heat stress. Our present review will provide an additional view to point out the importance of diversity of the nuclear transport pathways in eukaryotic cells.
Collapse
Affiliation(s)
- Shingo Kose
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
| | - Yutaka Ogawa
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
| |
Collapse
|
2
|
Lee A, Park HJ, Jo SH, Jung H, Kim HS, Lee HJ, Kim YS, Jung C, Cho HS. The spliceophilin CYP18-2 is mainly involved in the splicing of retained introns under heat stress in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1113-1133. [PMID: 36636802 DOI: 10.1111/jipb.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/12/2023] [Indexed: 05/13/2023]
Abstract
Peptidyl-prolyl isomerase-like 1 (PPIL1) is associated with the human spliceosome complex. However, its function in pre-mRNA splicing remains unclear. In this study, we show that Arabidopsis thaliana CYCLOPHILIN 18-2 (AtCYP18-2), a PPIL1 homolog, plays an essential role in heat tolerance by regulating pre-mRNA splicing. Under heat stress conditions, AtCYP18-2 expression was upregulated in mature plants and GFP-tagged AtCYP18-2 redistributed to nuclear and cytoplasmic puncta. We determined that AtCYP18-2 interacts with several spliceosome complex BACT components in nuclear puncta and is primarily associated with the small nuclear RNAs U5 and U6 in response to heat stress. The AtCYP18-2 loss-of-function allele cyp18-2 engineered by CRISPR/Cas9-mediated gene editing exhibited a hypersensitive phenotype to heat stress relative to the wild type. Moreover, global transcriptome profiling showed that the cyp18-2 mutation affects alternative splicing of heat stress-responsive genes under heat stress conditions, particularly intron retention (IR). The abundance of most intron-containing transcripts of a subset of genes essential for thermotolerance decreased in cyp18-2 compared to the wild type. Furthermore, the intron-containing transcripts of two heat stress-related genes, HEAT SHOCK PROTEIN 101 (HSP101) and HEAT SHOCK FACTOR A2 (HSFA2), produced functional proteins. HSP101-IR-GFP localization was responsive to heat stress, and HSFA2-III-IR interacted with HSF1 and HSP90.1 in plant cells. Our findings reveal that CYP18-2 functions as a splicing factor within the BACT spliceosome complex and is crucial for ensuring the production of adequate levels of alternatively spliced transcripts to enhance thermotolerance.
Collapse
Affiliation(s)
- Areum Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Hyun Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Seung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, UST, Daejeon, 34113, Korea
| | - Youn-Sung Kim
- Department of Biotechnology, NongWoo Bio, Anseong, 17558, Korea
| | - Choonkyun Jung
- Department of International Agricultural Technology and Crop Biotechnology Institute/Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Korea
- Department of Agriculture, Forestry, and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34141, Korea
| |
Collapse
|
3
|
Cabrera Y, Bernardo-Seisdedos G, Dublang L, Albesa-Jové D, Orozco N, Rosa Viguera A, Millet O, Muga A, Moro F. Fine-tuning of the Hsc70-based human protein disaggregase machinery by the distinctive C-terminal extension of Apg2. J Mol Biol 2022; 434:167841. [PMID: 36167183 DOI: 10.1016/j.jmb.2022.167841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 10/31/2022]
Abstract
Apg2, one of the three cytosolic Hsp110 chaperones in humans, supports reactivation of unordered and ordered protein aggregates by Hsc70 (HspA8). Together with DnaJB1, Apg2 serves to nucleate Hsc70 molecules into sites where productive entropic pulling forces can be developed. During aggregate reactivation, Apg2 performs as a specialized nucleotide exchange factor, but the origin of its specialization is poorly defined. Here we report on the role of the distinctive C-terminal extension present in Apg2 and other metazoan homologs. We found that the first part of this Apg2 subdomain with propensity to adopt α-helical structure interacts with the nucleotide binding domain of Hsc70 in a nucleotide-dependent manner, contributing significantly to the stability of the Hsc70:Apg2 complex. Moreover, the second intrinsically disordered segment of Apg2 C-terminal extension plays an important role as a downregulator of nucleotide exchange. An NMR analysis showed that the interaction with Hsc70 nucleotide binding domain modifies the chemical environment of residues located in important functional sites such as the interface between lobe I and II and the nucleotide binding site. Our data indicate that Apg2 C-terminal extension is a fine-tuner of human Hsc70 activity that optimizes the substrate remodeling ability of the chaperone system.
Collapse
Affiliation(s)
- Yovana Cabrera
- Instituto Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, 48490 Leioa, Spain; Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 41390 Gothenburg, Sweden
| | | | - Leire Dublang
- Instituto Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, 48490 Leioa, Spain
| | - David Albesa-Jové
- Instituto Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, 48490 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Natalia Orozco
- Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Spain
| | - Ana Rosa Viguera
- Instituto Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, 48490 Leioa, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Arturo Muga
- Instituto Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, 48490 Leioa, Spain
| | - Fernando Moro
- Instituto Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, 48490 Leioa, Spain.
| |
Collapse
|
4
|
Teshima H, Watanabe H, Yasutake R, Ikeda Y, Yonezu Y, Okamoto N, Kakihana A, Yuki R, Nakayama Y, Saito Y. Functional differences between Hsp105/110 family proteins in cell proliferation, cell division, and drug sensitivity. J Cell Biochem 2021; 122:1958-1967. [PMID: 34617313 DOI: 10.1002/jcb.30158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 11/07/2022]
Abstract
The mammalian HSP105/110 family consists of four members, including Hsp105 and Apg-1, which function as molecular chaperones. Recently, we reported that Hsp105 knockdown increases sensitivity to the DNA-damaging agent Adriamycin but decreases sensitivity to the microtubule-targeting agent paclitaxel. However, whether the other Hsp105/110 family proteins have the same functional property is unknown. Here, we show that Apg-1 has different roles from Hsp105 in cell proliferation, cell division, and drug sensitivity. We generated the Apg-1-knockdown HeLa S3 cells by lentiviral expression of Apg-1-targeting short hairpin RNA. Knockdown of Apg-1 but not Hsp105 decreased cell proliferation. Apg-1 knockdown increased cell death upon Adriamycin treatment without affecting paclitaxel sensitivity. The cell synchronization experiment suggests that Apg-1 functions in mitotic progression at a different mitotic subphase from Hsp105, which cause difference in paclitaxel sensitivity. Since Apg-1 is overexpressed in certain types of tumors, Apg-1 may become a potential therapeutic target for cancer treatment without causing resistance to the microtubule-targeting agents.
Collapse
Affiliation(s)
- Hiroko Teshima
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroko Watanabe
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ryuji Yasutake
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuki Ikeda
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yukiko Yonezu
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Namiko Okamoto
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ayana Kakihana
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ryuzaburo Yuki
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuji Nakayama
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Youhei Saito
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
5
|
Cafe SL, Nixon B, Dun MD, Roman SD, Bernstein IR, Bromfield EG. Oxidative Stress Dysregulates Protein Homeostasis Within the Male Germ Line. Antioxid Redox Signal 2020; 32:487-503. [PMID: 31830800 DOI: 10.1089/ars.2019.7832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aims: Oxidative stress is causally linked to male reproductive pathologies, driven primarily by lipid peroxidation and an attendant production of highly reactive lipid aldehydes, such as 4-hydroxynonenal (4HNE) within the male germ line. In somatic cells, 4HNE dysregulates proteostasis via targeting of vulnerable proteins for adduction, causing protein misfolding and eventually aggregation. The aims of this study were to explore whether oxidative stress precipitates an equivalent response in the male germ line and determine the protective mechanisms used by germ cells to prevent this cascade of protein damage. Results: We reveal a causative role for oxidative stress in the accumulation of protein deposits in male germ cells. Specifically, 4HNE treatment resulted in a significant increase in cytosolic protein aggregation within pre- and post-meiotic germ cells as measured by the aggregate-detecting fluorophores ProteoStat and Thioflavin T, and the amyloid-specific anti-A11 and anti-OC antibodies. Our data implicate nucleocytoplasmic transport machinery and molecular chaperones as potential mechanisms for the subcellular compartmentalization and/or suppression of aggregating proteins. Thus, the inhibition of karyopherin transport proteins and molecular chaperones resulted in a significant increase in the accumulation of aggregated cellular protein. Innovation: These data establish the novel paradigm that lipid peroxidation is a key contributor to a decline in proteostasis in developing germ cells. These findings will inform the development of novel strategies to protect germ cells from oxidative stress. Conclusion: Together, these results shed light on proteostasis mechanisms that may assist in the management of misfolded proteins in the male germ line under conditions of acute oxidative stress.
Collapse
Affiliation(s)
- Shenae Louise Cafe
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, Australia
| | - Matthew D Dun
- Cancer Signaling Research Group, School of Biomedical Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia.,Priority Research Centre for Cancer Research Innovation and Translation, Hunter Medical Research Institute, Lambton, Australia
| | - Shaun Daryl Roman
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, Australia.,Priority Research Centre for Drug Development, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, Australia
| | - Ilana Ruth Bernstein
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, Australia
| | - Elizabeth Grace Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, Australia.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
6
|
Yamane T, Saito Y, Teshima H, Hagino M, Kakihana A, Sato S, Shimada M, Kato Y, Kuga T, Yamagishi N, Nakayama Y. Hsp105α suppresses Adriamycin-induced cell death via nuclear localization signal-dependent nuclear accumulation. J Cell Biochem 2019; 120:17951-17962. [PMID: 31173393 DOI: 10.1002/jcb.29062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 01/09/2023]
Abstract
Heat shock protein 105 (Hsp105) is a molecular chaperone, and the isoforms Hsp105α and Hsp105β exhibit distinct functions with different subcellular localizations. Hsp105β localizes in the nucleus and induces the expression of the major heat shock protein Hsp70, whereas cytoplasmic Hsp105α is less effective in inducing Hsp70 expression. Hsp105 shuttles between the cytoplasm and the nucleus; the subcellular localization is governed by the relative activities of the nuclear localization signal (NLS) and nuclear export signal (NES). Here, we show that nuclear accumulation of Hsp105α but not Hsp105β is involved in Adriamycin (ADR) sensitivity. Knockdown of Hsp105α induces cell death at low ADR concentration, at which ADR is less effective in inducing cell death in the presence of Hsp105α. Of note, Hsp105 is localized in the nucleus under these conditions, even though Hsp105β is not expressed, indicating that Hsp105α accumulates in the nucleus in response to ADR treatment. The exogenously expressed Hsp105α but not its NLS mutant localizes in the nucleus of ADR-treated cells. In addition, the expression level of the nuclear export protein chromosomal maintenance 1 (CRM1) was decreased by ADR treatment of cells, and CRM1 knockdown caused nuclear accumulation of Hsp105α both in the presence and absence of ADR. These results indicating that Hsp105α accumulates in the nucleus in a manner dependent on the NLS activity via the suppression of nuclear export. Our findings suggest a role of nuclear Hsp105α in the sensitivity against DNA-damaging agents in tumor cells.
Collapse
Affiliation(s)
- Teppei Yamane
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Youhei Saito
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroko Teshima
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Mari Hagino
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ayana Kakihana
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Saki Sato
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Masashi Shimada
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yoshiho Kato
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Takahisa Kuga
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Nobuyuki Yamagishi
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
7
|
Velasco L, Dublang L, Moro F, Muga A. The Complex Phosphorylation Patterns that Regulate the Activity of Hsp70 and Its Cochaperones. Int J Mol Sci 2019; 20:ijms20174122. [PMID: 31450862 PMCID: PMC6747476 DOI: 10.3390/ijms20174122] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022] Open
Abstract
Proteins must fold into their native structure and maintain it during their lifespan to display the desired activity. To ensure proper folding and stability, and avoid generation of misfolded conformations that can be potentially cytotoxic, cells synthesize a wide variety of molecular chaperones that assist folding of other proteins and avoid their aggregation, which unfortunately is unavoidable under acute stress conditions. A protein machinery in metazoa, composed of representatives of the Hsp70, Hsp40, and Hsp110 chaperone families, can reactivate protein aggregates. We revised herein the phosphorylation sites found so far in members of these chaperone families and the functional consequences associated with some of them. We also discuss how phosphorylation might regulate the chaperone activity and the interaction of human Hsp70 with its accessory and client proteins. Finally, we present the information that would be necessary to decrypt the effect that post-translational modifications, and especially phosphorylation, could have on the biological activity of the Hsp70 system, known as the “chaperone code”.
Collapse
Affiliation(s)
- Lorea Velasco
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Leire Dublang
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Fernando Moro
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.
| | - Arturo Muga
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.
| |
Collapse
|
8
|
Matozaki M, Saito Y, Yasutake R, Munira S, Kaibori Y, Yukawa A, Tada M, Nakayama Y. Involvement of Stat3 phosphorylation in mild heat shock-induced thermotolerance. Exp Cell Res 2019; 377:67-74. [PMID: 30776355 DOI: 10.1016/j.yexcr.2019.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/24/2019] [Accepted: 02/14/2019] [Indexed: 01/05/2023]
Abstract
Thermotolerance is a phenomenon in which cells become resistant to stress by prior exposure to heat shock, and its development is associated with the induction of heat shock proteins (Hsps), including Hsp70. We previously showed that the expression of Hsp70 is regulated by the cytokine signaling transcription factor Stat3, but the role of Stat3 in thermotolerance is not known. In this study, we examined the possible involvement of Stat3 in the acquisition of thermotolerance. We found that severe heat shock-induced morphological changes and decreases in cell viability, which were suppressed by exposure to non-lethal mild heat shock prior to severe heat shock. This thermotolerance development was accompanied by Stat3 phosphorylation and the induction of Hsps such as Hsp105, Hsp70, and Hsp27. Stat3 phosphorylation and Hsp induction were inhibited by AG490, an inhibitor of JAK tyrosine kinase. Consistent with this, we found that mild heat shock-induced thermotolerance was partially suppressed by AG490 or knockdown of Hsp105. We also found that the Stat3 inhibitor Stattic suppresses the acquisition of thermotolerance by inhibiting the mild heat shock-induced Stat3 phosphorylation and Hsp105 expression. These results suggest that the mild heat shock-dependent stimulation of the JAK-Stat signaling pathway contributes to the development of thermotolerance via the induction of Hsps including Hsp105. This signaling pathway may be a useful target for hyperthermia cancer therapy.
Collapse
Affiliation(s)
- Masashi Matozaki
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Youhei Saito
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Ryuji Yasutake
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Sirajam Munira
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yuichiro Kaibori
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Akihisa Yukawa
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Madoka Tada
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| |
Collapse
|
9
|
Causse SZ, Marcion G, Chanteloup G, Uyanik B, Boudesco C, Grigorash BB, Douhard R, Dias AMM, Dumetier B, Dondaine L, Gozzi GJ, Moussay E, Paggetti J, Mirjolet C, de Thonel A, Dubrez L, Demidov ON, Gobbo J, Garrido C. HSP110 translocates to the nucleus upon genotoxic chemotherapy and promotes DNA repair in colorectal cancer cells. Oncogene 2018; 38:2767-2777. [PMID: 30542121 DOI: 10.1038/s41388-018-0616-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/30/2018] [Accepted: 11/17/2018] [Indexed: 12/29/2022]
Abstract
A multicenter clinical study demonstrated the presence of a loss-of-function HSP110 mutation in about 15% of colorectal cancers, which resulted from an alternative splicing and was produced at the detriment of wild-type HSP110. Patients expressing low levels of wild-type HSP110 had excellent outcomes (i.e. response to an oxaliplatin-based chemotherapy). Here, we show in vitro, in vivo, and in patients' biopsies that HSP110 co-localizes with DNA damage (γ-H2AX). In colorectal cancer cells, HSP110 translocates into the nucleus upon treatment with genotoxic chemotherapy such as oxaliplatin. Furthermore, we show that HSP110 interacts with the Ku70/Ku80 heterodimer, an essential element of the non-homologous end joining (NHEJ) repair machinery. We also demonstrate by evaluating the resolved 53BP1 foci that depletion in HSP110 impairs repair steps of the NHEJ pathway, which is associated with an increase in DNA double-strand breaks and in the cells' sensitivity to oxaliplatin. HSP110-depleted cells sensitization to oxaliplatin-induced DNA damage is abolished upon re-expression of HSP110. Confirming a role for HSP110 in DNA non-homologous repair, SCR7 and NU7026, two inhibitors of the NHEJ pathway, circumvents HSP110-induced resistance to chemotherapy. In conclusion, HSP110 through its interaction with the Ku70/80 heterodimer may participate in DNA repair, thereby inducing a protection against genotoxic therapy.
Collapse
Affiliation(s)
- Sebastien Z Causse
- INSERM UMR 1231, «Equipe labellisée» Ligue National contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne-Franche Comté, Dijon, France
| | - Guillaume Marcion
- INSERM UMR 1231, «Equipe labellisée» Ligue National contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne-Franche Comté, Dijon, France
| | - Gaëtan Chanteloup
- INSERM UMR 1231, «Equipe labellisée» Ligue National contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne-Franche Comté, Dijon, France
| | - Burhan Uyanik
- INSERM UMR 1231, «Equipe labellisée» Ligue National contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne-Franche Comté, Dijon, France
| | - Christophe Boudesco
- INSERM UMR 1231, «Equipe labellisée» Ligue National contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne-Franche Comté, Dijon, France
| | - Bogdan B Grigorash
- INSERM UMR 1231, «Equipe labellisée» Ligue National contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne-Franche Comté, Dijon, France
| | - Romain Douhard
- INSERM UMR 1231, «Equipe labellisée» Ligue National contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne-Franche Comté, Dijon, France
| | - Alexandre M M Dias
- INSERM UMR 1231, «Equipe labellisée» Ligue National contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne-Franche Comté, Dijon, France
| | - Baptiste Dumetier
- INSERM UMR 1231, «Equipe labellisée» Ligue National contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne-Franche Comté, Dijon, France
| | - Lucile Dondaine
- INSERM UMR 1231, «Equipe labellisée» Ligue National contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne-Franche Comté, Dijon, France
| | - Gustavo J Gozzi
- INSERM UMR 1231, «Equipe labellisée» Ligue National contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne-Franche Comté, Dijon, France
| | - Etienne Moussay
- Luxembourg Institute of Health, 84, Val Fleuri, L-1526, Luxembourg, Luxembourg
| | - Jérôme Paggetti
- Luxembourg Institute of Health, 84, Val Fleuri, L-1526, Luxembourg, Luxembourg
| | - Céline Mirjolet
- Anticancer Center Georges François Leclerc-Unicancer, Dijon Cedex, France
| | - Aurélie de Thonel
- Unité « Epigénétique et Destin cellulaire», Université Paris Diderot, Paris, France
| | - Laurence Dubrez
- INSERM UMR 1231, «Equipe labellisée» Ligue National contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne-Franche Comté, Dijon, France
| | - Oleg N Demidov
- INSERM UMR 1231, «Equipe labellisée» Ligue National contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne-Franche Comté, Dijon, France
| | - Jessica Gobbo
- INSERM UMR 1231, «Equipe labellisée» Ligue National contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne-Franche Comté, Dijon, France.,Anticancer Center Georges François Leclerc-Unicancer, Dijon Cedex, France
| | - Carmen Garrido
- INSERM UMR 1231, «Equipe labellisée» Ligue National contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France. .,Université de Bourgogne-Franche Comté, Dijon, France. .,Anticancer Center Georges François Leclerc-Unicancer, Dijon Cedex, France.
| |
Collapse
|
10
|
Regulation of Human Hsc70 ATPase and Chaperone Activities by Apg2: Role of the Acidic Subdomain. J Mol Biol 2018; 431:444-461. [PMID: 30521813 DOI: 10.1016/j.jmb.2018.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/30/2018] [Accepted: 11/26/2018] [Indexed: 12/28/2022]
Abstract
Protein aggregate reactivation in metazoans is accomplished by the combined activity of Hsp70, Hsp40 and Hsp110 chaperones. Hsp110s support the refolding of aggregated polypeptides acting as specialized nucleotide exchange factors of Hsp70. We have studied how Apg2, one of the three human Hsp110s, regulates the activity of Hsc70 (HspA8), the constitutive Hsp70 in our cells. Apg2 shows a biphasic behavior: at low concentration, it stimulates the ATPase cycle of Hsc70, binding of the chaperone to protein aggregates and the refolding activity of the system, while it inhibits these three processes at high concentration. When the acidic subdomain of Apg2, a characteristic sequence present in the substrate binding domain of all Hsp110s, is deleted, the detrimental effects occur at lower concentration and are more pronounced, which concurs with an increase in the affinity of the Apg2 mutant for Hsc70. Our data support a mechanism in which Apg2 arrests the chaperone cycle through an interaction with Hsc70(ATP) that might lead to premature ATP dissociation before hydrolysis. In this line, the acidic subdomain might serve as a conformational switch to support dissociation of the Hsc70:Apg2 complex.
Collapse
|
11
|
Miller DJ, Fort PE. Heat Shock Proteins Regulatory Role in Neurodevelopment. Front Neurosci 2018; 12:821. [PMID: 30483047 PMCID: PMC6244093 DOI: 10.3389/fnins.2018.00821] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/22/2018] [Indexed: 01/20/2023] Open
Abstract
Heat shock proteins (Hsps) are a large family of molecular chaperones that are well-known for their roles in protein maturation, re-folding and degradation. While some Hsps are constitutively expressed in certain regions, others are rapidly upregulated in the presence of stressful stimuli. Numerous stressors, including hyperthermia and hypoxia, can induce the expression of Hsps, which, in turn, interact with client proteins and co-chaperones to regulate cell growth and survival. Such interactions must be tightly regulated, especially at critical points during embryonic and postnatal development. Hsps exhibit specific patterns of expression consistent with a spatio-temporally regulated role in neurodevelopment. There is also growing evidence that Hsps may promote or inhibit neurodevelopment through specific pathways regulating cell differentiation, neurite outgrowth, cell migration, or angiogenesis. This review will examine the regulatory role that these individual chaperones may play in neurodevelopment, and will focus specifically on the signaling pathways involved in the maturation of neuronal and glial cells as well as the underlying vascular network.
Collapse
Affiliation(s)
- David J Miller
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Patrice E Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
12
|
Kimura A, Ogata K, Altan B, Yokobori T, Ide M, Mochiki E, Toyomasu Y, Kogure N, Yanoma T, Suzuki M, Bai T, Oyama T, Kuwano H. Nuclear heat shock protein 110 expression is associated with poor prognosis and chemotherapy resistance in gastric cancer. Oncotarget 2017; 7:18415-23. [PMID: 26943774 PMCID: PMC4951298 DOI: 10.18632/oncotarget.7821] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/23/2016] [Indexed: 01/16/2023] Open
Abstract
Heat shock protein (HSP) expression is induced by the exposure to stress, such as fever, oxidative stress, chemical exposure, and irradiation. In cancer, HSP promotes the survival of malignant cells by inhibiting the induction of apoptosis. In colorectal cancer, a loss-of-function mutation of HSP110 (HSP110ΔE9) has been identified. HSP110ΔE9 inhibits the nuclear translocation of wild-type HSP110, which is important for its chaperone activity and anti-apoptotic effects. The patients carrying HSP110ΔE9 mutation exhibit high sensitivity to anticancer agents, such as oxaliplatin and 5-fluorouracil. There is still insufficient information about HSP110 localization, the clinicopathological significance of HSP110 expression, and its association with chemotherapy resistance in gastric cancer. Here, we found that high nuclear expression of HSP110 in gastric cancer tissues is associated with cancer progression, poor prognosis, and recurrence after adjuvant chemotherapy. In vitro results showed that HSP110 suppression increases the sensitivity to 5-fluorouracil and cisplatin of human gastric cancer cell lines. Our results suggest that nuclear HSP110 may be a new drug sensitivity marker for gastric cancer and a potential molecular therapeutic target for the treatment of gastric cancer patients with acquired anticancer drug resistance.
Collapse
Affiliation(s)
- Akiharu Kimura
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kyoichi Ogata
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Bolag Altan
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Takehiko Yokobori
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Munenori Ide
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Erito Mochiki
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Yoshitaka Toyomasu
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Norimichi Kogure
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Toru Yanoma
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masaki Suzuki
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tuya Bai
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
13
|
Mikami H, Saito Y, Okamoto N, Kakihana A, Kuga T, Nakayama Y. Requirement of Hsp105 in CoCl 2-induced HIF-1α accumulation and transcriptional activation. Exp Cell Res 2017; 352:225-233. [PMID: 28185835 DOI: 10.1016/j.yexcr.2017.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/29/2017] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
Abstract
The mammalian stress protein Hsp105α protects cells from stress conditions. Several studies have indicated that Hsp105α is overexpressed in many types of solid tumors, which contain hypoxic microenvironments. However, the role of Hsp105α in hypoxic tumors remains largely unknown. We herein demonstrated the involvement of Hsp105α in HIF-1 functions induced by the hypoxia-mimetic agent CoCl2. While Hsp105α is mainly localized in the cytoplasm under normal conditions, a treatment with CoCl2 induces the nuclear localization of Hsp105α, which correlated with HIF-1α expression levels. The overexpression of degradation-resistant HIF-1α enhances the nuclear localization of Hsp105α without the CoCl2 treatment. The CoCl2-dependent transcriptional activation of HIF-1, which is measured using a reporter gene containing a HIF-responsive element, is reduced by the knockdown of Hsp105α. Furthermore, the CoCl2-induced accumulation of HIF-1α is enhanced by heat shock, which results in the nuclear localization of Hsp105, and is suppressed by the knockdown of Hsp105. Hsp105 associates with HIF-1α in CoCl2-treated cells. These results suggest that Hsp105α plays an important role in the functions of HIF-1 under hypoxic conditions, in which Hsp105α enhances the accumulation and transcriptional activity of HIF-1 through the HIF-1α-mediated nuclear localization of Hsp105α.
Collapse
Affiliation(s)
- Hiroki Mikami
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Youhei Saito
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Namiko Okamoto
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Ayana Kakihana
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Takahisa Kuga
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yuji Nakayama
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
14
|
Yamamoto K, Furukawa MT, Fukumura K, Kawamura A, Yamada T, Suzuki H, Hirose T, Sakamoto H, Inoue K. Control of the heat stress-induced alternative splicing of a subset of genes by hnRNP K. Genes Cells 2016; 21:1006-14. [DOI: 10.1111/gtc.12400] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 07/06/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Koichi Yamamoto
- Bio Process Research and Development Laboratories; Kyowa Hakko Kirin Co. Ltd; 100-1 Hagiwara-machi Takasaki Gunma 370-0013 Japan
- Department of Biology; Graduate School of Science; Kobe University; Kobe 657-8501 Japan
| | - Mari T. Furukawa
- Department of Biology; Graduate School of Science; Kobe University; Kobe 657-8501 Japan
| | - Kazuhiro Fukumura
- Department of Biology; Graduate School of Science; Kobe University; Kobe 657-8501 Japan
- Institute for Comprehensive Medical Science (ICMS); Fujita Health University; Toyoake Aichi 470-1192 Japan
| | - Arisa Kawamura
- Department of Biology; Graduate School of Science; Kobe University; Kobe 657-8501 Japan
| | - Tomoko Yamada
- Department of Biology; Graduate School of Science; Kobe University; Kobe 657-8501 Japan
| | - Hitoshi Suzuki
- Japan Advanced Institute of Science and Technology; Nomi Ishikawa 923-1292 Japan
| | - Tetsuro Hirose
- Institute for Genetic Medicine; Hokkaido University; Sapporo 060-0815 Japan
| | - Hiroshi Sakamoto
- Department of Biology; Graduate School of Science; Kobe University; Kobe 657-8501 Japan
| | - Kunio Inoue
- Department of Biology; Graduate School of Science; Kobe University; Kobe 657-8501 Japan
| |
Collapse
|
15
|
Saito Y, Nakagawa T, Kakihana A, Nakamura Y, Nabika T, Kasai M, Takamori M, Yamagishi N, Kuga T, Hatayama T, Nakayama Y. Yeast Two-Hybrid and One-Hybrid Screenings Identify Regulators ofhsp70Gene Expression. J Cell Biochem 2016; 117:2109-17. [DOI: 10.1002/jcb.25517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 02/10/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Youhei Saito
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Takanobu Nakagawa
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Ayana Kakihana
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Yoshia Nakamura
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Tomomi Nabika
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Michihiro Kasai
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Mai Takamori
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Nobuyuki Yamagishi
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Takahisa Kuga
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Takumi Hatayama
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Yuji Nakayama
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| |
Collapse
|
16
|
Nillegoda NB, Bukau B. Metazoan Hsp70-based protein disaggregases: emergence and mechanisms. Front Mol Biosci 2015; 2:57. [PMID: 26501065 PMCID: PMC4598581 DOI: 10.3389/fmolb.2015.00057] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/22/2015] [Indexed: 11/13/2022] Open
Abstract
Proteotoxic stresses and aging cause breakdown of cellular protein homeostasis, allowing misfolded proteins to form aggregates, which dedicated molecular machines have evolved to solubilize. In bacteria, fungi, protozoa and plants protein disaggregation involves an Hsp70•J-protein chaperone system, which loads and activates a powerful AAA+ ATPase (Hsp100) disaggregase onto protein aggregate substrates. Metazoans lack cytosolic and nuclear Hsp100 disaggregases but still eliminate protein aggregates. This longstanding puzzle of protein quality control is now resolved. Robust protein disaggregation activity recently shown for the metazoan Hsp70-based disaggregases relies instead on a crucial cooperation between two J-protein classes and interaction with the Hsp110 co-chaperone. An expanding multiplicity of Hsp70 and J-protein family members in metazoan cells facilitates different configurations of this Hsp70-based disaggregase allowing unprecedented versatility and specificity in protein disaggregation. Here we review the architecture, operation, and adaptability of the emerging metazoan disaggregation system and discuss how this evolved.
Collapse
Affiliation(s)
- Nadinath B Nillegoda
- Center for Molecular Biology (ZMBH) of the University of Heidelberg and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology (ZMBH) of the University of Heidelberg and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance Heidelberg, Germany
| |
Collapse
|
17
|
Nillegoda NB, Bukau B. Metazoan Hsp70-based protein disaggregases: emergence and mechanisms. Front Mol Biosci 2015; 2:57. [PMID: 26501065 DOI: 10.3389/fmolb.2015.00057/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/22/2015] [Indexed: 05/25/2023] Open
Abstract
Proteotoxic stresses and aging cause breakdown of cellular protein homeostasis, allowing misfolded proteins to form aggregates, which dedicated molecular machines have evolved to solubilize. In bacteria, fungi, protozoa and plants protein disaggregation involves an Hsp70•J-protein chaperone system, which loads and activates a powerful AAA+ ATPase (Hsp100) disaggregase onto protein aggregate substrates. Metazoans lack cytosolic and nuclear Hsp100 disaggregases but still eliminate protein aggregates. This longstanding puzzle of protein quality control is now resolved. Robust protein disaggregation activity recently shown for the metazoan Hsp70-based disaggregases relies instead on a crucial cooperation between two J-protein classes and interaction with the Hsp110 co-chaperone. An expanding multiplicity of Hsp70 and J-protein family members in metazoan cells facilitates different configurations of this Hsp70-based disaggregase allowing unprecedented versatility and specificity in protein disaggregation. Here we review the architecture, operation, and adaptability of the emerging metazoan disaggregation system and discuss how this evolved.
Collapse
Affiliation(s)
- Nadinath B Nillegoda
- Center for Molecular Biology (ZMBH) of the University of Heidelberg and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology (ZMBH) of the University of Heidelberg and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance Heidelberg, Germany
| |
Collapse
|
18
|
Okada S, Furuya M, Takenaka S, Fukui A, Matsubayashi M, Tani H, Sasai K. Localization of heat shock protein 110 in canine mammary gland tumors. Vet Immunol Immunopathol 2015; 167:139-46. [DOI: 10.1016/j.vetimm.2015.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 12/31/2022]
|
19
|
HSPH1 inhibition downregulates Bcl-6 and c-Myc and hampers the growth of human aggressive B-cell non-Hodgkin lymphoma. Blood 2015; 125:1768-71. [PMID: 25573990 DOI: 10.1182/blood-2014-07-590034] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have shown that human B-cell non-Hodgkin lymphomas (B-NHLs) express heat shock protein (HSP)H1/105 in function of their aggressiveness. Here, we now clarify its role as a functional B-NHL target by testing the hypothesis that it promotes the stabilization of key lymphoma oncoproteins. HSPH1 silencing in 4 models of aggressive B-NHLs was paralleled by Bcl-6 and c-Myc downregulation. In vitro and in vivo analysis of HSPH1-silenced Namalwa cells showed that this effect was associated with a significant growth delay and the loss of tumorigenicity when 10(4) cells were injected into mice. Interestingly, we found that HSPH1 physically interacts with c-Myc and Bcl-6 in both Namalwa cells and primary aggressive B-NHLs. Accordingly, expression of HSPH1 and either c-Myc or Bcl-6 positively correlated in these diseases. Our study indicates that HSPH1 concurrently favors the expression of 2 key lymphoma oncoproteins, thus confirming its candidacy as a valuable therapeutic target of aggressive B-NHLs.
Collapse
|
20
|
Nmi interacts with Hsp105β and enhances the Hsp105β-mediated Hsp70 expression. Exp Cell Res 2014; 327:163-70. [DOI: 10.1016/j.yexcr.2014.07.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/26/2014] [Accepted: 07/23/2014] [Indexed: 11/20/2022]
|
21
|
Nucleocytoplasmic transport under stress conditions and its role in HSP70 chaperone systems. Biochim Biophys Acta Gen Subj 2014; 1840:2953-60. [DOI: 10.1016/j.bbagen.2014.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/11/2014] [Accepted: 04/28/2014] [Indexed: 11/20/2022]
|
22
|
De novo assembly and characterization of the global transcriptome for Rhyacionia leptotubula using Illumina paired-end sequencing. PLoS One 2013; 8:e81096. [PMID: 24278383 PMCID: PMC3837686 DOI: 10.1371/journal.pone.0081096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 10/09/2013] [Indexed: 12/21/2022] Open
Abstract
Background The pine tip moth, Rhyacionia leptotubula (Lepidoptera: Tortricidae) is one of the most destructive forestry pests in Yunnan Province, China. Despite its importance, less is known regarding all aspects of this pest. Understanding the genetic information of it is essential for exploring the specific traits at the molecular level. Thus, we here sequenced the transcriptome of R. leptotubula with high-throughput Illumina sequencing. Methodology/Principal Findings In a single run, more than 60 million sequencing reads were generated. De novo assembling was performed to generate a collection of 46,910 unigenes with mean length of 642 bp. Based on Blastx search with an E-value cut-off of 10−5, 22,581 unigenes showed significant similarities to known proteins from National Center for Biotechnology Information (NCBI) non-redundant (Nr) protein database. Of these annotated unigenes, 10,360, 6,937 and 13,894 were assigned to Gene Ontology (GO), Clusters of Orthologous Group (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively. A total of 5,926 unigenes were annotated with domain similarity derived functional information, of which 55 and 39 unigenes respectively encoding the insecticide resistance related enzymes, cytochrome P450 and carboxylesterase. Using the transcriptome data, 47 unigenes belonging to the typical “stress” genes of heat shock protein (Hsp) family were retrieved. Furthermore, 1,450 simple sequence repeats (SSRs) were detected; 3.09% of the unigenes contained SSRs. Large numbers of SSR primer pairs were designed and out of randomly verified primer pairs 80% were successfully yielded amplicons. Conclusions/Significance A large of putative R. leptotubula transcript sequences has been obtained from the deep sequencing, which extensively increases the comprehensive and integrated genomic resources of this pest. This large-scale transcriptome dataset will be an important information platform for promoting our investigation of the molecular mechanisms from various aspects in this species.
Collapse
|
23
|
Abstract
Abstract
We reported that the clinical efficacy of dendritic cell–based vaccination is strongly associated with immunologic responses in relapsed B-cell non-Hodgkin lymphoma (B-NHL) patients. We have now investigated whether postvaccination antibodies from responders recognize novel shared NHL-restricted antigens. Immunohistochemistry and flow cytometry showed that they cross-react with allogeneic B-NHLs at significantly higher levels than their matched prevaccination samples or nonresponders' antibodies. Western blot analysis of DOHH-2 lymphoma proteome revealed a sharp band migrating at approximately 100 to 110 kDa only with postvaccine repertoires from responders. Mass spectrometry identified heat shock protein-105 (HSP105) in that molecular weight interval. Flow cytometry and immunohistochemistry disclosed HSP105 on the cell membrane and in the cytoplasm of B-NHL cell lines and 97 diagnostic specimens. A direct correlation between HSP105 expression and lymphoma aggressiveness was also apparent. Treatment of aggressive human B-NHL cell lines with an anti-HSP105 antibody had no direct effects on cell cycle or apoptosis but significantly reduced the tumor burden in xenotransplanted immunodeficient mice. In vivo antilymphoma activity of HSP105 engagement was associated with a significant local increase of Granzyme B+ killer cells that very likely contributed to the tumor-restricted necrosis. Our study adds HSP105 to the list of nononcogenes that can be exploited as antilymphoma targets.
Collapse
|
24
|
Hsp105 reduces the protein aggregation and cytotoxicity by expanded-polyglutamine proteins through the induction of Hsp70. Exp Cell Res 2010; 316:2424-33. [DOI: 10.1016/j.yexcr.2010.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 06/03/2010] [Accepted: 06/06/2010] [Indexed: 11/20/2022]
|
25
|
Interaction of the Hsp110 Molecular Chaperones from S. cerevisiae with Substrate Protein. J Mol Biol 2010; 401:696-707. [DOI: 10.1016/j.jmb.2010.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 06/28/2010] [Accepted: 07/02/2010] [Indexed: 02/04/2023]
|
26
|
Loss of Hsp110 leads to age-dependent tau hyperphosphorylation and early accumulation of insoluble amyloid beta. Mol Cell Biol 2010; 30:4626-43. [PMID: 20679486 DOI: 10.1128/mcb.01493-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Accumulation of tau into neurofibrillary tangles is a pathological consequence of Alzheimer's disease and other tauopathies. Failures of the quality control mechanisms by the heat shock proteins (Hsps) positively correlate with the appearance of such neurodegenerative diseases. However, in vivo genetic evidence for the roles of Hsps in neurodegeneration remains elusive. Hsp110 is a nucleotide exchange factor for Hsp70, and direct substrate binding to Hsp110 may facilitate substrate folding. Hsp70 complexes have been implicated in tau phosphorylation state and amyloid precursor protein (APP) processing. To provide evidence for a role for Hsp110 in central nervous system homeostasis, we have generated hsp110(-)(/)(-) mice. Our results show that hsp110(-)(/)(-) mice exhibit accumulation of hyperphosphorylated-tau (p-tau) and neurodegeneration. We also demonstrate that Hsp110 is in complexes with tau, other molecular chaperones, and protein phosphatase 2A (PP2A). Surprisingly, high levels of PP2A remain bound to tau but with significantly reduced activity in brain extracts from aged hsp110(-)(/)(-) mice compared to brain extracts from wild-type mice. Mice deficient in the Hsp110 partner (Hsp70) also exhibit a phenotype comparable to that of hsp110(-)(/)(-) mice, confirming a critical role for Hsp110-Hsp70 in maintaining tau in its unphosphorylated form during aging. In addition, crossing hsp110(-)(/)(-) mice with mice overexpressing mutant APP (APPβsw) leads to selective appearance of insoluble amyloid β42 (Aβ42), suggesting an essential role for Hsp110 in APP processing and Aβ generation. Thus, our findings provide in vivo evidence that Hsp110 plays a critical function in tau phosphorylation state through maintenance of efficient PP2A activity, confirming its role in pathogenesis of Alzheimer's disease and other tauopathies.
Collapse
|
27
|
Stetler RA, Gan Y, Zhang W, Liou AK, Gao Y, Cao G, Chen J. Heat shock proteins: cellular and molecular mechanisms in the central nervous system. Prog Neurobiol 2010; 92:184-211. [PMID: 20685377 DOI: 10.1016/j.pneurobio.2010.05.002] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 05/23/2010] [Accepted: 05/27/2010] [Indexed: 12/30/2022]
Abstract
Emerging evidence indicates that heat shock proteins (HSPs) are critical regulators in normal neural physiological function as well as in cell stress responses. The functions of HSPs represent an enormous and diverse range of cellular activities, far beyond the originally identified roles in protein folding and chaperoning. HSPs are now understood to be involved in processes such as synaptic transmission, autophagy, ER stress response, protein kinase and cell death signaling. In addition, manipulation of HSPs has robust effects on the fate of cells in neurological injury and disease states. The ongoing exploration of multiple HSP superfamilies has underscored the pluripotent nature of HSPs in the cellular context, and has demanded the recent revamping of the nomenclature referring to these families to reflect a re-organization based on structure and function. In keeping with this re-organization, we first discuss the HSP superfamilies in terms of protein structure, regulation, expression and distribution in the brain. We then explore major cellular functions of HSPs that are relevant to neural physiological states, and from there we discuss known and proposed HSP impacts on major neurological disease states. This review article presents a three-part discussion on the array of HSP families relevant to neuronal tissue, their cellular functions, and the exploration of therapeutic targets of these proteins in the context of neurological diseases.
Collapse
Affiliation(s)
- R Anne Stetler
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, United States.
| | | | | | | | | | | | | |
Collapse
|
28
|
Heikkila JJ. Heat shock protein gene expression and function in amphibian model systems. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:19-33. [DOI: 10.1016/j.cbpa.2010.01.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/26/2010] [Accepted: 01/29/2010] [Indexed: 12/22/2022]
|
29
|
Yamagishi N, Fujii H, Saito Y, Hatayama T. Hsp105beta upregulates hsp70 gene expression through signal transducer and activator of transcription-3. FEBS J 2009; 276:5870-80. [PMID: 19754877 DOI: 10.1111/j.1742-4658.2009.07311.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hsp105alpha and Hsp105beta are mammalian members of the Hsp105/110 family, a divergent subgroup of the Hsp70 family. Hsp105alpha is expressed constitutively and induced by various forms of stress, whereas Hsp105beta is an alternatively spliced form of Hsp105alpha that is expressed specifically during mild heat shock. In a report, it was shown that Hsp105alpha and Hsp105beta localize to the cytoplasm and of nucleus of cells, respectively, and that Hsp105beta, but not Hsp105alpha, induces the expression of Hsp70 in mammalian cells. Here, we examined the mechanism by which Hsp105beta induces the expression of Hsp70. Using a series of deletion mutants of Hsp105beta, it was revealed that the region between amino acids 642 and 662 of Hsp105beta is necessary for the activation of the hsp70 promoter by Hsp105beta. Furthermore, it was shown that signal transducer and activator of transcription (STAT)-3 bound to the sequence of the hsp70 promoter between -206 and -187 bp, and that mutations of this sequence abrogated the activation of the hsp70 promoter by Hsp105beta. In addition, overexpression of Hsp105beta stimulated the phosphorylation of STAT3 at Tyr705 and its translocation to the nucleus. Downregulation of STAT3 expression resulted in reduction of the activation of the hsp70 promoter by Hsp105beta. Furthermore, downregulation of Hsp105beta reduced the expression of Hsp70 in heat-shocked cells. On the basis of these findings, it is suggested that Hsp105beta induces Hsp70 expression markedly through the STAT3 pathway in heat-shocked cells. This may represent the mechanism that connects the heat shock protein and STAT families for cell defense against deleterious stress.
Collapse
Affiliation(s)
- Nobuyuki Yamagishi
- Department of Biochemistry & Molecular Biology, Division of Biological Sciences, Kyoto Pharmaceutical University, Japan
| | | | | | | |
Collapse
|
30
|
Saito Y, Yamagishi N, Hatayama T. Nuclear localization mechanism of Hsp105beta and its possible function in mammalian cells. J Biochem 2008; 145:185-91. [PMID: 19028714 DOI: 10.1093/jb/mvn155] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hsp105alpha and Hsp105beta are mammalian stress proteins of the Hsp105/110 family. We have shown that Hsp105beta localizes to the nucleus, whereas Hsp105alpha localizes to the cytoplasm of mammalian cells. Hsp105alpha localizes in the cytoplasm, as the nuclear export signal (NES) activity rather than nuclear localization signal (NLS) activity dominates in Hsp105alpha, due to suppression of the NLS activity. In this study, we determined the mechanisms behind the nuclear localization of Hsp105beta, and revealed that the NES was suppressed by the N-terminal (amino acids 3-10) or C-terminal (amino acids 699-756) region of Hsp105beta, and the NLS activity rather than NES activity seemed to dominate in Hsp105beta. Furthermore, as Hsp105beta which localizes in the nucleus, functioned as an inducer of Hsp70 in mammalian cells, Hsp105 family proteins may play an important role in the protection of cells against deleterious stressor together with Hsp70.
Collapse
Affiliation(s)
- Youhei Saito
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | | | | |
Collapse
|
31
|
Intracellular localization of the heat shock protein, HSP110, in Xenopus laevis A6 kidney epithelial cells. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:133-8. [DOI: 10.1016/j.cbpa.2008.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 06/10/2008] [Accepted: 06/12/2008] [Indexed: 11/20/2022]
|