1
|
Singam A, Bhattacharya C, Park S. Aging-related changes in the mechanical properties of single cells. Heliyon 2024; 10:e32974. [PMID: 38994100 PMCID: PMC11238009 DOI: 10.1016/j.heliyon.2024.e32974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Mechanical properties, along with biochemical and molecular properties, play crucial roles in governing cellular function and homeostasis. Cellular mechanics are influenced by various factors, including physiological and pathological states, making them potential biomarkers for diseases and aging. While several methods such as AFM, particle-tracking microrheology, optical tweezers/stretching, magnetic tweezers/twisting cytometry, microfluidics, and micropipette aspiration have been widely utilized to measure the mechanical properties of single cells, our understanding of how aging affects these properties remains limited. To fill this knowledge gap, we provide a brief overview of the commonly used methods to measure single-cell mechanical properties. We then delve into the effects of aging on the mechanical properties of different cell types. Finally, we discuss the importance of studying cellular viscous and viscoelastic properties as well as aging induced by different stressors to gain a deeper understanding of the aging process and aging-related diseases.
Collapse
Affiliation(s)
- Amarnath Singam
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Chandrabali Bhattacharya
- Department of Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
- Interdisciplinary Biomedical Engineering Program, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Seungman Park
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
- Interdisciplinary Biomedical Engineering Program, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| |
Collapse
|
2
|
Wan L, Song Z, Wang Z, Dong J, Chen Y, Hu J. Repair effect of Centella asiatica (L.) extract on damaged HaCaT cells studied by atomic force microscopy. J Microsc 2023; 292:148-157. [PMID: 37855555 DOI: 10.1111/jmi.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/01/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
People's choice of cosmetics is no longer just 'Follow the trend', but pays more attention to the ingredients of cosmetics, whether the ingredients of cosmetics are beneficial to people's skin health; therefore, more and more skin-healthy ingredients have been discovered and used in cosmetics. In this work, atomic force microscope (AFM) is used to provide physical information about biomolecules and living cells; it brings us a new method of high-precision physical measurement. Centella asiatica (L.) extract has the ability to promote skin wound healing, but its healing effect on damaged HaCaT cells needs to be investigated, which plays a key role in judging the effectiveness of skincare ingredients. The objective of this study was to explore the impact of Centella asiatica (L.) extract on ethanol-damaged human immortalised epidermal HaCaT cells based on AFM. We established a model of cellular damage and evaluated cell viability using the MTT assay. The physical changes of cell height, roughness, adhesion and Young's modulus were measured by AFM. The findings indicated that the Centella asiatica (L.) extract had a good repair effect on injured HaCaT cells, and the optimal concentration was 75 μg/mL.
Collapse
Affiliation(s)
- Linlin Wan
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Zhengxun Song
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- JR3CN & IRAC, University of Bedfordshire, Luton, UK
| | - Jianjun Dong
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Yujuan Chen
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- School of Life Sciences, Changchun University of Science and Technology, Changchun, China
| | - Jing Hu
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
3
|
Li RL, Wang LY, Duan HX, Qian D, Zhang Q, He LS, Li XP. Natural flavonoids derived from herbal medicines are potential anti-atherogenic agents by inhibiting oxidative stress in endothelial cells. Front Pharmacol 2023; 14:1141180. [PMID: 36909175 PMCID: PMC10001913 DOI: 10.3389/fphar.2023.1141180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
As the common pathological basis of various cardiovascular diseases, the morbidity and mortality of atherosclerosis (AS) have increased in recent years. Unfortunately, there are still many problems in the treatment of AS, and the prevention and treatment of the disease is not ideal. Up to now, the occurrence and development of AS can roughly include endothelial cell dysfunction, vascular smooth muscle cell proliferation, inflammation, foam cell production, and neoangiogenesis. Among them, endothelial dysfunction, as an early event of AS, plays a particularly important role in promoting the development of AS. In addition, oxidative stress occurs throughout the causes of endothelial dysfunction. Some previous studies have shown that flavonoids derived from herbal medicines are typical secondary metabolites. Due to its structural presence of multiple active hydroxyl groups, it is able to exert antioxidant activity in diseases. Therefore, in this review, we will search PubMed, Web of Science, Elesvier, Wliey, Springer for relevant literature, focusing on flavonoids extracted from herbal medicines, and summarizing how they can prevent endothelial dysfunction by inhibiting oxidative stress. Meanwhile, in our study, we found that flavonoid represented by quercetin and naringenin showed superior protective effects both in vivo and in vitro, suggesting the potential of flavonoid compounds in the treatment of AS.
Collapse
Affiliation(s)
- Ruo-Lan Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling-Yu Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hu-Xinyue Duan
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Die Qian
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Sha He
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xue-Ping Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
He Y, Qin C, Sun Z, Liu Z, Chen Y, Meng K. Atomic force microscopy application to study of the biomechanical properties of the aortic intima in the context of early atherosclerosis. Microsc Res Tech 2022; 85:3411-3417. [PMID: 35804436 DOI: 10.1002/jemt.24196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/11/2022]
Abstract
Atherosclerosis is characterized by the infiltration of macrophages, accumulation of lipids, activation of endothelial cells and synthesis of extracellular matrix by vascular smooth muscle cells. However, there have been few atomic force microscopy (AFM) studies of the aortic intima in situ in the context of atherosclerosis. By employing a customized liquid cell for AFM, we investigated the aortic intima obtained from male C57BL/6 ApoE-deficient mice (ApoE-/- ) aged 14 weeks and male C57BL/6 ApoE-sufficient mice (ApoE+/+ ) aged between 18 and 26 weeks that were fed a high-fat and high-cholesterol diet for 4 weeks and performed force spectroscopy mapping of the biomechanical properties of the intima. In the aortas of ApoE-deficient mice, the intima became stiffer than that of ApoE-sufficient mice. In addition, the cytoskeleton of endothelial cells was enlarged, and extracellular matrix accumulated. The biomechanical properties of the aortic intima are altered in early atherogenesis, which may be induced by the enlargement of the endothelial cell cytoskeleton and the increased synthesis of extracellular matrix by activated smooth muscle cells.
Collapse
Affiliation(s)
- Yin He
- Emergency Department, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| | - Chuanyu Qin
- Department of Cardiology of Second Affiliated Hospital of Qiqihaer Medical Collage, Qiqihar, Heilongjiang, People's Republic of China
| | - Zhifu Sun
- Otolaryngology Head and Neck Surgery, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| | - Zesen Liu
- Department of Cardiology of Luhe Hospital, Capital Medical University, Beijing, China
| | - Yan Chen
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Kang Meng
- Department of Cardiology, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| |
Collapse
|
5
|
Targeting Reactive Oxygen Species in Atherosclerosis via Chinese Herbal Medicines. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1852330. [PMID: 35047104 PMCID: PMC8763505 DOI: 10.1155/2022/1852330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022]
Abstract
Cardio-cerebrovascular disease (CCVD) has become the leading cause of human mortality with the coming acceleration of global population aging. Atherosclerosis is among the most common pathological changes in CCVDs. It is also a multifactorial disorder; oxidative stress caused by excessive production of reactive oxygen species (ROS) has become an important mechanism of atherosclerosis. Chinese herbal medicine (CHM) is a major type of natural medicine that has made great contributions to human health. CHMs are increasingly used in the auxiliary clinical treatment of atherosclerosis. Although their mechanism of action is unclear, CHMs can exert a variety of antiatherosclerosis effects by regulating intracellular ROS. In this review, we discussed the mechanism of ROS regulation in atherosclerosis and analyzed the role of CHMs in the treatment of atherosclerosis via ROS.
Collapse
|
6
|
Couto NF, Rezende L, Fernandes-Braga W, Alves AP, Agero U, Alvarez-Leite J, Damasceno NRT, Castro-Gomes T, Andrade LO. OxLDL alterations in endothelial cell membrane dynamics leads to changes in vesicle trafficking and increases cell susceptibility to injury. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183139. [PMID: 31812625 DOI: 10.1016/j.bbamem.2019.183139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Plasma membrane repair (PMR) is an important process for cell homeostasis, especially for cells under constant physical stress. Repair involves a sequence of Ca2+-dependent events, including lysosomal exocytosis and subsequent compensatory endocytosis. Cholesterol sequestration from plasma membrane causes actin cytoskeleton reorganization and polymerization, increasing cell stiffness, which leads to exocytosis and reduction of a peripheral pool of lysosomes involved in PMR. These changes in mechanical properties are similar to those observed in cells exposed to oxidized Low Density Lipoprotein (oxLDL), a key molecule during atherosclerosis development. Using a human umbilical vein endothelial cell line (EAhY926) we evaluated the influence of mechanical modulation induced by oxLDL in PMR and its effect in endothelial fragility. Similar to MβCD (a drug capable of sequestering cholesterol) treatment, oxLDL exposure led to actin reorganization and de novo polymerization, as well as an increase in cell rigidity and lysosomal exocytosis. Additionally, for both MβCD and oxLDL treated cells, there was an initial increase in endocytic events, likely triggered by the peak of exocytosis induced by both treatments. However, no further endocytic events were observed, suggesting that constitutive endocytosis is blocked upon treatment and that the reorganized cytoskeleton function as a mechanical barrier to membrane traffic. Finally, the increase in cell rigidity renders cells more prone to mechanical injury. Together, these data show that mechanical modulation induced by oxLDL exposure not only alters membrane traffic in cells, but also makes them more susceptible to mechanical injury, which may likely contribute to the initial steps of atherosclerosis development.
Collapse
Affiliation(s)
- Natália Fernanda Couto
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luisa Rezende
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula Alves
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ubirajara Agero
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacqueline Alvarez-Leite
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Thiago Castro-Gomes
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana O Andrade
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
7
|
Nanomechanical insights: Amyloid beta oligomer-induced senescent brain endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183061. [PMID: 31513781 DOI: 10.1016/j.bbamem.2019.183061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022]
Abstract
Senescent cells accumulate in various peripheral tissues during aging and have been shown to exacerbate age-related inflammatory responses. We recently showed that exposure to neurotoxic amyloid β (Aβ1-42) oligomers can readily induce a senescence phenotype in human brain microvascular endothelial cells (HBMECs). In the present work, we used atomic force microscopy (AFM) to further characterize the morphological properties such as cell membrane roughness and cell height and nanomechanical properties such as Young's modulus of the membrane (membrane stiffness) and adhesion resulting from the interaction between AFM tip and cell membrane in Aβ1-42 oligomer-induced senescent human brain microvascular endothelial cells. Morphological imaging studies showed a flatter and spread-out nucleus in the senescent HBMECs, both characteristic features of a senescent phenotype. Furthermore, the mean cell body roughness and mean cell height were lower in senescent HBMECs compared to untreated normal HBMECs. We also observed increased stiffness and alterations in the adhesion properties in Aβ1-42 oligomer-induced senescent endothelial cells compared to the untreated normal HBMECs suggesting dynamic reorganization of cell membrane. We then show that vascular endothelial growth factor receptor 1 (VEGFR-1) knockdown or overexpression of Rho GTPase Rac 1 in the endothelial cells inhibited senescence and reversed these nanomechanical alterations, confirming a direct role of these pathways in the senescent brain endothelial cells. These results illustrate that nanoindentation and topographic analysis of live senescent brain endothelial cells can provide insights into cerebrovascular dysfunction in neurodegenerative diseases such as Alzheimer's disease.
Collapse
|
8
|
Takeda S, Mukasa K, Hui SP, Chiba H. Interaction between LDL-mimetic liposomes and acid-treated carbon nanotube electrode during Cu 2+-mediated oxidation. Biochem Biophys Res Commun 2019; 513:275-279. [PMID: 30954226 DOI: 10.1016/j.bbrc.2019.03.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/17/2019] [Indexed: 11/16/2022]
Abstract
Oxidation of low-density lipoproteins (LDL) causes atherosclerosis. Detection of oxidation of LDL-mimetic liposomes using an electrode might serve as a convenient tool in the search of antioxidants for the prevention of atherosclerosis. This report proposes a reaction mechanism between LDL-mimetic liposomes and an acid-treated carbon nanotube (CNT) electrode. Oxidation of the liposomes, mediated by Cu2+, was monitored by the change in electrode potential, and the fluorescence intensity generated by diphenyl-1-pyrenylphosphine (DPPP) as control. The electrode potential and fluorescence intensity increased concomitantly during oxidation, followed by a gradual decrease. Although the electrical potential peaked faster than the fluorescence intensity, addition of CNT to the DPPP reaction accelerated the latter, suggesting the role of CNT as an accelerator of liposome oxidation. Atomic force microscopy showed increased binding of liposomes to CNT along with liposomal deformation. Further, binding of Cu2+ to the liposome-bound CNT surface was observed by quartz crystal microbalance. In conclusion, the interaction of liposomes with Cu2+ and CNT surface explains the rapid response of the electrode in liposome oxidation.
Collapse
Affiliation(s)
- Seiji Takeda
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | | | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Sapporo, 007-0894, Japan
| |
Collapse
|
9
|
Zhang W, Xu Y, Chen G, Wang K, Shan W, Chen Y. Dynamic single-vesicle tracking of cell-bound membrane vesicles on resting, activated, and cytoskeleton-disrupted cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:26-33. [PMID: 30393161 DOI: 10.1016/j.bbamem.2018.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022]
Abstract
The composition, structure, production, motion, fate, and functions of cell-bound membrane vesicles pre-existing in the plasma membrane of cells are poorly understood. Here, single-vesicle tracking of individual cell-bound membrane vesicles in the plasma membrane of endothelial cells treated with or without various reagents was performed to investigate the motion of cell-bound membrane vesicles. The efficacy of each of these reagents was confirmed prior to single-vesicle tracking. Via single-vesicle tracking, we found that oxLDL, TNF-α, and VEGFα significantly increased the average number of cell-bound membrane vesicles per cell, implying that cell activation by oxLDL, TNF-α, and VEGFα could trigger the production of cell-bound membrane vesicles. It was also found that oxLDL, TNF-α, VEGFα, LPS, and MβCD but not LDL could significantly affect the motion speed of cell-bound membrane whereas none of them could significantly influence the displacement (moving range) of cell-bound membrane vesicles. The single-vesicle tracking further revealed that the average number of cell-bound membrane vesicles per cell and the mean speed/displacement of individual cell-bound membrane vesicles could be dramatically altered by the cytoskeleton-disrupting reagents (cytochalasin D and nocodazole). The data imply that the production and movement of cell-bound membrane vesicles are probably controlled by intracellular cytoskeletons and capable of being affected by multiple conditions e.g. cell activation, membrane fluidity alteration, and others.
Collapse
Affiliation(s)
- Wendiao Zhang
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, PR China; School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, PR China
| | - Ye Xu
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, PR China
| | - Guo Chen
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, PR China
| | - Kun Wang
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, PR China
| | - Wenzhe Shan
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, PR China.
| | - Yong Chen
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, PR China; School of Materials Science and Engineering, Nanchang University, Jiangxi 330031, PR China.
| |
Collapse
|
10
|
Effects of enzymes on elastic modulus of low-density lipoproteins were investigated using atomic force microscopy. Biochem Biophys Res Commun 2018; 501:607-611. [PMID: 29709480 DOI: 10.1016/j.bbrc.2018.04.211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 04/26/2018] [Indexed: 11/23/2022]
Abstract
Oxidation of low-density lipoproteins (LDLs) induces development of cardiovascular disease. Recently, reports of studies using atomic force microscopy (AFM) have described that the elastic modulus of metal-induced oxidized LDLs is lower than the modulus before oxidation. However, the mechanisms of change of the elastic modulus have not been well investigated. We postulated that disorder of the LDL structure might decrease the elastic modulus. This study measured the elastic modulus of LDLs before and after enzyme treatment with V8 protease, α-chymotrypsin, and phospholipase A2. After LDLs were obtained from serum by ultracentrifugation, LDLs or enzyme-treated LDLs were physically absorbed. They were crowded on a mica surface. Although V8 protease and α-chymotrypsin did not induce the elastic modulus change, treatment with PLA2 decreased the elastic modulus. The LDL particle size did not change during the enzyme treatment. Results suggest that disordering of the lipid structure of the LDL might contribute to the elastic modulus change. Results show that AFM might be a useful tool to evaluate disorders of complex nanoscale particle structures from lipids and proteins such as lipoproteins.
Collapse
|
11
|
Karki P, Birukova AA. Substrate stiffness-dependent exacerbation of endothelial permeability and inflammation: mechanisms and potential implications in ALI and PH (2017 Grover Conference Series). Pulm Circ 2018; 8:2045894018773044. [PMID: 29714090 PMCID: PMC5987909 DOI: 10.1177/2045894018773044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The maintenance of endothelial barrier integrity is absolutely essential to prevent the vascular leak associated with pneumonia, pulmonary edema resulting from inhalation of toxins, acute elevation to high altitude, traumatic and septic lung injury, acute lung injury (ALI), and its life-threatening complication, acute respiratory distress syndrome (ARDS). In addition to the long-known edemagenic and inflammatory agonists, emerging evidences suggest that factors of endothelial cell (EC) mechanical microenvironment such as blood flow, mechanical strain of the vessel, or extracellular matrix stiffness also play an essential role in the control of endothelial permeability and inflammation. Recent studies from our group and others have demonstrated that substrate stiffening causes endothelial barrier disruption and renders EC more susceptible to agonist-induced cytoskeletal rearrangement and inflammation. Further in vivo studies have provided direct evidence that proinflammatory stimuli increase lung microvascular stiffness which in turn exacerbates endothelial permeability and inflammation and perpetuates a vicious circle of lung inflammation. Accumulating evidence suggests a key role for RhoA GTPases signaling in stiffness-dependent mechanotransduction mechanisms defining EC permeability and inflammatory responses. Vascular stiffening is also known to be a key contributor to other cardiovascular diseases such as arterial pulmonary hypertension (PH), although the precise role of stiffness in the development and progression of PH remains to be elucidated. This review summarizes the current understanding of stiffness-dependent regulation of pulmonary EC permeability and inflammation, and discusses potential implication of pulmonary vascular stiffness alterations at macro- and microscale in development and modulation of ALI and PH.
Collapse
Affiliation(s)
- Pratap Karki
- 12264 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA
| | - Anna A Birukova
- 12264 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Okamoto T, Kawamoto E, Takagi Y, Akita N, Hayashi T, Park EJ, Suzuki K, Shimaoka M. Gap junction-mediated regulation of endothelial cellular stiffness. Sci Rep 2017; 7:6134. [PMID: 28733642 PMCID: PMC5522438 DOI: 10.1038/s41598-017-06463-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/14/2017] [Indexed: 12/21/2022] Open
Abstract
Endothelial monolayers have shown the ability to signal each other through gap junctions. Gap junction-mediated cell-cell interactions have been implicated in the modulation of endothelial cell functions during vascular inflammation. Inflammatory mediators alter the mechanical properties of endothelial cells, although the exact role of gap junctions in this process remains unclear. Here, we sought to study the role of gap junctions in the regulation of endothelial stiffness, an important physical feature that is associated with many vascular pathologies. The endothelial cellular stiffness of living endothelial cells was determined by using atomic force microscopy. We found that tumor necrosis factor-α transiently increased endothelial cellular stiffness, which is regulated by cytoskeletal rearrangement and cell-cell interactions. We explored the role of gap junctions in endothelial cellular stiffening by utilizing gap junction blockers, carbenoxolone, inhibitory anti-connexin 32 antibody or anti-connexin 43 antibody. Blockade of gap junctions induced the cellular stiffening associated with focal adhesion formation and cytoskeletal rearrangement, and prolonged tumor necrosis factor-α-induced endothelial cellular stiffening. These results suggest that gap junction-mediated cell-cell interactions play an important role in the regulation of endothelial cellular stiffness.
Collapse
Affiliation(s)
- Takayuki Okamoto
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane, 693-8501, Japan. .,Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan.
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan.,Emergency and Critical Care Center, Mie University Hospital, 2-174 Edobashi, Tsu-city, 514-8507, Japan
| | - Yoshimi Takagi
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Nobuyuki Akita
- Faculty of Medical Engineering, Suzuka University of Medical Science, 1001-1, Kishioka-cho, Suzuka-city, Mie, 510-0293, Japan
| | - Tatsuya Hayashi
- Department of Biochemistry, Mie Prefectural College of Nursing, 1-1-1 Yumegaoka, Tsu-city, Mie, 514-0116, Japan
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Koji Suzuki
- Faculty of Pharmaceutical Science, Suzuka University of Medical Science, 3500-3, Minamitamagaki-cho, Suzuka-city, Mie, 513-8679, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan.
| |
Collapse
|
13
|
Nieto JA, Jaime L, Arranz E, Reglero G, Santoyo S. Winemaking by-products as anti-inflammatory food ingredients. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1350832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- J. A. Nieto
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), Universidad Autónoma de Madrid, Madrid, Spain
| | - L. Jaime
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), Universidad Autónoma de Madrid, Madrid, Spain
| | - E. Arranz
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), Universidad Autónoma de Madrid, Madrid, Spain
| | - G. Reglero
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), Universidad Autónoma de Madrid, Madrid, Spain
- Imdea-Food Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - S. Santoyo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
14
|
Hayashi K, Higaki M. Stiffness of Intact Endothelial Cells From Fresh Aortic Bifurcations of Atherosclerotic Rabbits-Atomic Force Microscopic Study. J Cell Physiol 2016; 232:7-13. [PMID: 26991605 DOI: 10.1002/jcp.25379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
Abstract
Stiffness of intact endothelial cells (ECs) in the abdominal aorta (AA) and in the medial and lateral wall of the common iliac artery (CIA(Medial) and CIA(Lateral), respectively), which were freshly obtained from cholesterol-fed rabbits, were measured with an atomic force microscopic indentation method. In the areas away from atherosclerotic plaques (Off-plaque), ECs were significantly stiffer in CIA(Medial) than in the other two locations; this result was similar to that from normal diet-fed animals. On the other hand, there were no significant differences in the stiffness of ECs located on atherosclerotic plaques (On-plaque) among the three sites; the stiffness was equal to those in "Off-plaque" wall of CIA(Lateral) and AA. Moreover, the stiffness of ECs covering plaques decreased with the progression of atherosclerosis. The precise quantification of the stiffness of vascular ECs would provide a better understanding of cellular remodeling and adaptation in atherosclerosis. J. Cell. Physiol. 232: 7-13, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kozaburo Hayashi
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan. .,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| | - Michitaka Higaki
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
15
|
ox-LDL induces endothelial dysfunction by promoting Arp2/3 complex expression. Biochem Biophys Res Commun 2016; 475:182-8. [DOI: 10.1016/j.bbrc.2016.05.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 01/27/2023]
|
16
|
Delgado-Roche L, Brito V, Acosta E, Pérez A, Fernández JR, Hernández-Matos Y, Griñán T, Soto Y, León OS, Marleau S, Vázquez AM. Arresting progressive atherosclerosis by immunization with an anti-glycosaminoglycan monoclonal antibody in apolipoprotein E-deficient mice. Free Radic Biol Med 2015; 89:557-66. [PMID: 26454078 DOI: 10.1016/j.freeradbiomed.2015.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/28/2015] [Accepted: 08/10/2015] [Indexed: 12/01/2022]
Abstract
Atherogenesis is associated with the early retention of low-density lipoproteins (LDL) in the arterial intima by interaction with glycosaminoglycan (GAG)-side chains of proteoglycans. Retained LDL undergo reactive oxygen species-mediated oxidation. Oxidized LDL trigger oxidative stress (OS) and inflammation, contributing to atherosclerosis development. Recently, we reported the preventive anti-atherogenic properties of the chimeric mouse/human monoclonal antibody (mAb) chP3R99-LALA, which were related to the induction of anti-chondroitin sulfate antibody response able to inhibit chondroitin sulfate dependent LDL-enhanced oxidation. In the present work, we aimed at further investigating the impact of chP3R99-LALA mAb vaccination on progressive atherosclerosis in apolipoprotein E-deficient mice (apoE(-/-)) fed with a high-fat high-cholesterol diet receiving 5 doses (50 µg) of the antibody subcutaneously, when ~5% of the aortic area was covered by lesions. Therapeutic immunization with chP3R99-LALA mAb halted atherosclerotic lesions progression. In addition, aortic OS was modulated, as shown by a significant (p<0.05) reduction of lipid and protein oxidation, preservation of antioxidant enzymes activity and reduced glutathione, together with a decrease of nitric oxide levels. chP3R99-LALA mAb immunization also regulated aortic NF-κB activation, diminishing the proinflammatory IL1-β and TNF-α gene expression as well as the infiltration of macrophages into the arterial wall. The therapeutic immunization of apoE(-/-) with progressive atheromas and persistent hypercholesterolemia using chP3R99-LALA mAb arrested further development of lesions, accompanied by a decrease of aortic OS and NF-κB-regulated pro-inflammatory cytokine gene expression. These results contribute to broaden the potential use of this anti-GAG antibody-based immunotherapy as a novel approach to target atherosclerosis at different phases of progression.
Collapse
Affiliation(s)
- Livan Delgado-Roche
- Department of Pharmacology, Center of Marine Bioproducts, Havana 10600, Cuba
| | - Víctor Brito
- Division of Immunobiology, Center of Molecular Immunology, Havana 11600, Cuba
| | - Emilio Acosta
- Center of Advanced Studies of Cuba, La Lisa, Havana 13600, Cuba
| | - Arlenis Pérez
- Division of Immunobiology, Center of Molecular Immunology, Havana 11600, Cuba
| | - Julio R Fernández
- Department of Genomic, Center for Genetic Engineering and Biotechnology, Havana 11600, Cuba
| | - Yanet Hernández-Matos
- Department of Pharmacology and Toxicology, Pharmacy and Food Sciences Institute, University of Havana, Havana 13600, Cuba
| | - Tania Griñán
- Division of Immunobiology, Center of Molecular Immunology, Havana 11600, Cuba
| | - Yosdel Soto
- Division of Immunobiology, Center of Molecular Immunology, Havana 11600, Cuba
| | - Olga S León
- Department of Pharmacology and Toxicology, Pharmacy and Food Sciences Institute, University of Havana, Havana 13600, Cuba
| | - Sylvie Marleau
- Faculty de of Pharmacy Université de Montréal, Montréal, Québec, Canada
| | - Ana M Vázquez
- Innovation Managing Direction, Center of Molecular Immunology, Havana 11600, Cuba.
| |
Collapse
|
17
|
Czapla Z, McPhail SM. Electrophoretic mobility of cell nuclei (EMN index) as a biomarker of the biological aging process: Considering the association between EMN index and age. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2015; 66:549-60. [PMID: 26433343 DOI: 10.1016/j.jchb.2015.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
The present study examined whether a specific property of cell microstructures may be useful as a biomarker of aging. Specifically, the association between age and changes of cellular structures reflected in electrophoretic mobility of cell nuclei index (EMN index) values across the adult lifespan was examined. This report considers findings from cross sections of females (n=1273) aged 18-98 years, and males (n=506) aged 19-93 years. A Biotest apparatus was used to perform intracellular microelectrophoresis on buccal epithelial cells collected from each individual. EMN index was calculated on the basis of the number of epithelial cells with mobile nuclei in reference to the cells with immobile nuclei per 100cells. Regression analyses indicated a significant negative association between EMN index value and age for men (r=-0.71, p<0.001) and women (r=-0.60, p<0.001); demonstrating a key requirement that must be met by a biomarker of aging. The strength of association observed between EMN index and age for both men and women was encouraging and supports the potential use of EMN index for determining a biological age of an individual (or a group). In this study, a new attempt of complex explanation of cellular mechanisms contributing to age related changes of the EMN index was made. In this study, a new attempt of complex explanation of cellular mechanisms contributing to age related changes of the EMN index was made. EMN index has demonstrated potential to meet criteria proposed for biomarkers of aging and further investigations are necessary.
Collapse
Affiliation(s)
- Z Czapla
- Department of Human Developmental Biology, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University, Poznań 61-614, Poland.
| | - S M McPhail
- Institute of Health and Biomedical Innovation and School of Public Health & Social Work, Queensland University of Technology, Victoria Park Road, Kelvin Grove, Brisbane, Queensland 4059, Australia; Centre for Functioning and Health Research, Metro South Health, Cnr of Ipswich Road and Cornwall Street, Buranda, Brisbane, Queensland 4102, Australia
| |
Collapse
|
18
|
Endothelial transcriptomic changes induced by oxidized low density lipoprotein disclose an up-regulation of Jak–Stat pathway. Vascul Pharmacol 2015; 73:104-14. [DOI: 10.1016/j.vph.2015.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/17/2015] [Accepted: 05/24/2015] [Indexed: 01/23/2023]
|
19
|
Park YM. Oxidized LDL induces phosphorylation of non-muscle myosin IIA heavy chain in macrophages. BMB Rep 2015; 48:48-53. [PMID: 25322953 PMCID: PMC4345642 DOI: 10.5483/bmbrep.2015.48.1.186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/23/2014] [Accepted: 10/16/2014] [Indexed: 11/20/2022] Open
Abstract
Oxidized LDL (oxLDL) performs critical roles in atherosclerosis by inducing macrophage foam cell formation and promoting inflammation. There have been reports showing that oxLDL modulates macrophage cytoskeletal functions for oxLDL uptake and trapping, however, the precise mechanism has not been clearly elucidated. Our study examined the effect of oxLDL on non-muscle myosin heavy chain IIA (MHC-IIA) in macrophages. We demonstrated that oxLDL induces phosphorylation of MHC-IIA (Ser1917) in peritoneal macrophages from wild-type mice and THP-1, a human monocytic cell line, but not in macrophages deficient for CD36, a scavenger receptor for oxLDL. Protein kinase C (PKC) inhibitor-treated macrophages did not undergo the oxLDL-induced MHC-IIA phosphorylation. Our immunoprecipitation revealed that oxLDL increased physical association between PKC and MHC-IIA, supporting the role of PKC in this process. We conclude that oxLDL via CD36 induces PKC-mediated MHC-IIA (Ser1917) phosphorylation and this may affect oxLDL-induced functions of macrophages involved in atherosclerosis.
Collapse
Affiliation(s)
- Young Mi Park
- Department of Molecular Medicine, Ewha Womans University School of Medicine; Global Top 5 Research Program, Ewha Womans University, Seoul 158-710, Korea
| |
Collapse
|
20
|
Takeda S, Subagyo A, Hui SP, Fuda H, Shrestha R, Sueoka K, Chiba H. Elastic modulus of low-density lipoprotein as potential indicator of its oxidation. Ann Clin Biochem 2015; 52:647-53. [PMID: 25887969 DOI: 10.1177/0004563215584958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Evaluation of low-density lipoprotein oxidation is important in the risk assessment of cardiovascular disease. Atomic force microscope is widely used to evaluate the physical properties including stiffness on a single-particle scale. In this study, the effect of low-density lipoprotein oxidation on the low-density lipoprotein stiffness was investigated using an atomic force microscope. METHODS Isolated low-density lipoprotein particles with or without oxidation were densely bound to an Au substrate on mica, and then pressed and deformed by the atomic force microscope tip. The stiffness of each low-density lipoprotein particle was estimated as the elastic modulus obtained by the force curve analysis. Biochemical change of low-density lipoprotein due to oxidation was studied by electrophoresis. RESULTS AND CONCLUSION The elastic modulus of low-density lipoprotein particles ranged between 0.1 and 2 MPa. The oxidation of low-density lipoprotein increased the number of low-density lipoprotein particles with smaller elastic moduli, indicating the decrease in low-density lipoprotein stiffness. The elastic modulus of low-density lipoprotein might be potentially useful to evaluate low-density lipoprotein oxidation.
Collapse
Affiliation(s)
- Seiji Takeda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Agus Subagyo
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hirotoshi Fuda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Rojeet Shrestha
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Kazuhisa Sueoka
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Hitoshi Chiba
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
21
|
Gan C, Ao M, Liu Z, Chen Y. Imaging and force measurement of LDL and HDL by AFM in air and liquid. FEBS Open Bio 2015; 5:276-82. [PMID: 25893163 PMCID: PMC4398754 DOI: 10.1016/j.fob.2015.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/31/2015] [Accepted: 03/31/2015] [Indexed: 11/26/2022] Open
Abstract
The size and biomechanical properties of lipoproteins are tightly correlated with their structures/functions. While atomic force microscopy (AFM) has been used to image lipoproteins the force measurement of these nano-sized particles is missing. We detected that the sizes of LDL and HDL in liquid are close to the commonly known values. The Young's modulus of LDL or HDL is ∼0.4 GPa which is similar to that of some viral capsids or nanovesicles but greatly larger than that of various liposomes. The adhesive force of LDL or HDL is small (∼200 pN). The comparison of AFM detection in air and liquid was also performed which is currently lacking. Our data may provide useful information for better understanding and AFM detection of lipoproteins.
Collapse
Affiliation(s)
- Chaoye Gan
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, China ; College of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Meiying Ao
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, China ; Department of Pharmacy, Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330025, China
| | - Zhanghua Liu
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, China ; College of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yong Chen
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, China ; College of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
22
|
Lim YC, Cooling MT, Long DS. Computational models of the primary cilium and endothelial mechanotransmission. Biomech Model Mechanobiol 2014; 14:665-78. [PMID: 25366114 DOI: 10.1007/s10237-014-0629-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/20/2014] [Indexed: 12/31/2022]
Abstract
In endothelial cells (ECs), the mechanotransduction of fluid shear stress is partially dependent on the transmission of force from the fluid into the cell (mechanotransmission). The role of the primary cilium in EC mechanotransmission is not yet known. To motivate a framework towards quantifying cilia contribution to EC mechanotransmission, we have reviewed mechanical models of both (1) the primary cilium (three-dimensional and lower-dimensional) and (2) whole ECs (finite element, non-finite element, and tensegrity). Both the primary cilia and whole EC models typically incorporate fluid-induced wall shear stress and spatial geometry based on experimentally acquired images of cells. This paper presents future modelling directions as well as the major goals towards integrating primary cilium models into a multi-component EC mechanical model. Finally, we outline how an integrated cilium-EC model can be used to better understand mechanotransduction in the endothelium.
Collapse
Affiliation(s)
- Yi Chung Lim
- Auckland Bioengineering Institute, University of Auckland, 70 Symonds St, Auckland, 1010, New Zealand
| | | | | |
Collapse
|
23
|
Vargas-Pinto R, Gong H, Vahabikashi A, Johnson M. The effect of the endothelial cell cortex on atomic force microscopy measurements. Biophys J 2014; 105:300-9. [PMID: 23870251 DOI: 10.1016/j.bpj.2013.05.034] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 04/24/2013] [Accepted: 05/13/2013] [Indexed: 10/26/2022] Open
Abstract
We examined whether the presence of the cell cortex might explain, in part, why previous studies using atomic force microscopy (AFM) to measure cell modulus (E) gave higher values with sharp tips than for larger spherical tips. We confirmed these AFM findings in human umbilical vein endothelial cells (HUVEC) and Schlemm's canal (SC) endothelial cells with AFM indentation ≤ 400 nm, two cell types with prominent cortices (312 ± 65 nm in HUVEC and 371 ± 91 nm in SC cells). With spherical tips, E (kPa) was 0.71 ± 0.16 in HUVEC and 0.94 ± 0.06 in SC cells. Much higher values of E were measured using sharp tips: 3.23 ± 0.54 in HUVEC and 6.67 ± 1.07 in SC cells. Previous explanations for this difference such as strain hardening or a substrate effect were shown to be inconsistent with our measurements. Finite element modeling studies showed that a stiff cell cortex could explain the results. In both cell types, Latrunculin-A greatly reduced E for sharp and rounded tips, and also reduced the ratio of the values measured with a sharp tip as compared to a rounded tip. Our results suggest that the cell cortex increases the apparent endothelial cell modulus considerably when measured using a sharp AFM tip.
Collapse
Affiliation(s)
- R Vargas-Pinto
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois, USA
| | | | | | | |
Collapse
|
24
|
Pillet F, Chopinet L, Formosa C, Dague E. Atomic Force Microscopy and pharmacology: from microbiology to cancerology. Biochim Biophys Acta Gen Subj 2013; 1840:1028-50. [PMID: 24291690 DOI: 10.1016/j.bbagen.2013.11.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Atomic Force Microscopy (AFM) has been extensively used to study biological samples. Researchers take advantage of its ability to image living samples to increase our fundamental knowledge (biophysical properties/biochemical behavior) on living cell surface properties, at the nano-scale. SCOPE OF REVIEW AFM, in the imaging modes, can probe cells morphological modifications induced by drugs. In the force spectroscopy mode, it is possible to follow the nanomechanical properties of a cell and to probe the mechanical modifications induced by drugs. AFM can be used to map single molecule distribution at the cell surface. We will focus on a collection of results aiming at evaluating the nano-scale effects of drugs, by AFM. Studies on yeast, bacteria and mammal cells will illustrate our discussion. Especially, we will show how AFM can help in getting a better understanding of drug mechanism of action. MAJOR CONCLUSIONS This review demonstrates that AFM is a versatile tool, useful in pharmacology. In microbiology, it has been used to study the drugs fighting Candida albicans or Pseudomonas aeruginosa. The major conclusions are a better understanding of the microbes' cell wall and of the drugs mechanism of action. In cancerology, AFM has been used to explore the effects of cytotoxic drugs or as an innovative diagnostic technology. AFM has provided original results on cultured cells, cells extracted from patient and directly on patient biopsies. GENERAL SIGNIFICANCE This review enhances the interest of AFM technologies for pharmacology. The applications reviewed range from microbiology to cancerology.
Collapse
Affiliation(s)
- Flavien Pillet
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France
| | - Louise Chopinet
- CNRS, IPBS-UMR 5089, BP64182, 205 route de Narbonne, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France
| | - Cécile Formosa
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France; CNRS, UMR 7565, SRSMC, Vandoeuvre-lès-Nancy, France; Université de Lorraine, UMR 7565, Faculté de Pharmacie, Nancy, France
| | - Etienne Dague
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France; CNRS; ITAV-USR 3505; F31106 Toulouse, France.
| |
Collapse
|
25
|
Sakurai T, Takeda S, Takahashi JY, Takahashi Y, Wada N, Trirongjitmoah S, Namita T, Jin S, Ikuta A, Furumaki H, Hui SP, Fuda H, Fujikawa M, Shimizu K, Chiba H. Measurement of single low-density lipoprotein particles by atomic force microscopy. Ann Clin Biochem 2013; 50:564-70. [DOI: 10.1177/0004563213481586] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background The size of lipoprotein particles is relevant to the risk of coronary artery disease (CAD). Methods We investigated the feasibility of atomic force microscopy (AFM) for evaluating the size of large low-density lipoprotein (LDL) and small dense LDL (sd-LDL) separated by ultracentrifugation. The measurements by AFM in tapping mode were compared to those by electron microscopy (EM). Results There was a significant difference in particle sizes determined by AFM between large LDL (20.6 ± 1.9 nm, mean ± SD) and sd-LDL (16.2 ± 1.4 nm) obtained from six healthy volunteers ( P < 0.05). The particle sizes determined by EM for the same samples were 23.2 ± 1.4 nm for large LDL and 20.4 ± 1.4 nm for sd-LDL. The difference between large LDL and sd-LDL detected by EM was also statistically significant ( P < 0.05). In addition, the particle sizes of each lipoprotein fraction were significantly different between AFM and EM: P < 0.05 for large LDL and P < 0.05 for sd-LDL. Conclusions AFM can differentiate between sd-LDL and large LDL particles by their size, and might be useful for evaluating risk for CAD.
Collapse
Affiliation(s)
| | - Seiji Takeda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | | | - Yuji Takahashi
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Departments of Internal Medicine and Clinical Laboratory, Sapporo City General Hospital, Sapporo, Japan
| | - Norio Wada
- Departments of Internal Medicine and Clinical Laboratory, Sapporo City General Hospital, Sapporo, Japan
| | - Suchin Trirongjitmoah
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Takeshi Namita
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Shigeki Jin
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Akiko Ikuta
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | | | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hirotoshi Fuda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Masato Fujikawa
- Departments of Internal Medicine and Clinical Laboratory, Sapporo City General Hospital, Sapporo, Japan
| | - Koichi Shimizu
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Hitoshi Chiba
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
26
|
Wang X, Khaidakov M, Ding Z, Dai Y, Mercanti F, Mehta JL. LOX-1 in the maintenance of cytoskeleton and proliferation in senescent cardiac fibroblasts. J Mol Cell Cardiol 2013; 60:184-90. [PMID: 23648807 DOI: 10.1016/j.yjmcc.2013.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 04/20/2013] [Indexed: 01/07/2023]
Abstract
Lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) is one of the most important receptors for binding and uptake of ox-LDL in endothelial cells, vascular smooth muscle cells and cardiomyocytes. In this study in cultured mice heart fibroblasts, we describe a decrease in LOX-1 expression as these cells go through successive passages. Further, fibroblast aging is associated with significant changes in morphology and proliferation ability. The same phenomena were observed in primary cardiac fibroblasts isolated from the aged mice (130-week). We also noted that the senescent fibroblasts have increased susceptibility to apoptosis and have a disorganized cytoskeleton. To ascertain the contribution of LOX-1 in the decline in proliferative ability and morphological changes in the aged cells, senescent fibroblasts were transfected with h-LOX-1. Transfection with h-LOX-1 resulted in cytoskeleton reorganization and partial restoration of the expression of related proteins, CDC42 and p70 S6 kinase. Upregulation of LOX-1 also significantly enhanced their proliferation potential and restored the expression of related genes Mdm2 and phos-Akt, and modestly reduced the expression of aging markers 4-HNE and β-catenin. These findings suggest that LOX-1 contributes, at least in part, to the process of fibroblast senescence and may be viewed as a new aging maker.
Collapse
Affiliation(s)
- Xianwei Wang
- Division of Cardiology, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR 72212, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Effects of IKKɛ on Oxidised Low-density Lipoprotein-induced Injury in Vascular Endothelial Cells. Heart Lung Circ 2013; 22:366-72. [DOI: 10.1016/j.hlc.2012.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/11/2012] [Accepted: 11/19/2012] [Indexed: 12/11/2022]
|
28
|
Chen X, Feng L, Jin H. Constant or fluctuating hyperglycemias increases cytomembrane stiffness of human umbilical vein endothelial cells in culture: roles of cytoskeletal rearrangement and nitric oxide synthesis. BMC Cell Biol 2013; 14:22. [PMID: 23601245 PMCID: PMC3651398 DOI: 10.1186/1471-2121-14-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 04/16/2013] [Indexed: 02/01/2023] Open
Abstract
Background Previous studies have implicated continuous or intermittent hyperglycemia in altered endothelium-derived nitric oxide (NO) synthesis. NO can regulate both the F-actin cytoskeleton and endothelial cell membrane stiffness. Atomic force microscopy (AFM) is a powerful tool that can be used to study plasma membrane deformability at the single cell level. As membrane stiffness is partially dependent on filamentous F-actin, the interdependence of these parameters can be studied through the combined approaches of AFM and laser scanning confocal microscopy (LSCM). In the present study, we evaluated the effects of constant or fluctuating hyperglycemia on endothelial-derived NO synthesis, the cytoskeletal contribution and endothelial cell membrane stiffness. Results Compared to control cells cultured in low glucose (5 mM), constant (25 mM) or fluctuating (25/5 mM) high glucose significantly decreased NO release along with stiffening of endothelial cell membranes and F-actin rearrangement. The non-selective nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME) exerted similar effects on endothelial cells. Increasing concentrations of L-NAME (from 0.1 to 1 mM) exacerbated these effects in a concentration-dependent manner. Conclusions Result from the present study suggest that stiffening endothelial cell membranes are associated with decreased NO synthesis, which was established through the F-actin cytoskeletal redistribution. The precise mechanisms of hyperglycemia-induced endothelial dysfunction require further investigation.
Collapse
Affiliation(s)
- Xianxian Chen
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | | | | |
Collapse
|
29
|
Shao W, Jin H, Huang J, Qiu B, Xia R, Deng Z, Cai J, Chen Y. AFM investigation on Ox-LDL-induced changes in cell spreading and cell-surface adhesion property of endothelial cells. SCANNING 2013; 35:119-126. [PMID: 22833475 DOI: 10.1002/sca.21040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/16/2012] [Indexed: 06/01/2023]
Abstract
The integrity and adhesion properties of endothelium play vital roles during atherosclerosis. It is well known that oxidized low-density lipoprotein (Ox-LDL) influences many physiological activities or mechanical properties of endothelial cells. However, the effects of Ox-LDL on the integrity and nonspecific adhesion properties of endothelial cells are still unclear. In this study, using the topographical imaging and force measurement functions of atomic force microscopy (AFM), we found that Ox-LDL can transiently weaken the integrity of endothelium by impairing cell spreading of endothelial cells and decrease the attachment of irrelevant blood cells to endothelium by impairing the nonspecific adhesion property of endothelial cells. The AFM-based data provide important information for understanding the effects of Ox-LDL on endothelial cells or during atherogenesis.
Collapse
Affiliation(s)
- Wenxiang Shao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Eligini S, Songia P, Cavalca V, Crisci M, Tremoli E, Colli S. Cytoskeletal architecture regulates cyclooxygenase-2 in human endothelial cells: autocrine modulation by prostacyclin. J Cell Physiol 2012; 227:3847-56. [PMID: 22495438 DOI: 10.1002/jcp.24097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelium is a highly dynamic tissue that controls vascular homeostasis. This requires constant rearrangements of the shape or function of endothelial cells that cannot set aside the role of the cytoskeleton. The aim of this study was to determine the mechanisms by means of which cytoskeletal alterations induce cyclooxygenase-2 (Cox-2) expression in human endothelial cells using compounds that interfere with microtubule or actin architecture. Microtubule disruption by nocodazole markedly increased Cox-2 expression and activity, and provoked paracellular gap formation, a cardinal feature of endothelial barrier dysfunction. The Cox-2 metabolite prostacyclin down-regulated Cox-2 through an autocrine receptor-mediated mechanism, and partially prevented the disassembly of endothelial monolayers. There was also an interaction between microtubules and actin filaments in nocodazole-induced Cox-2 expression. Nocodazole provoked the dissolution of the F-actin cortical ring and stress fiber formation, increased actin glutathionylation, and concomitantly lowered intracellular levels of reduced glutathione. The restoration of glutathione levels by N-acetylcysteine opposed Cox-2 expression and preserved the integrity of endothelial monolayers. Among the signaling pathways connecting microtubule disruption with Cox-2 up-regulation, crucial roles are played by Src family kinase activation, serine/threonine phosphatase 2A inhibition, and the phosphorylation of mitogen activated protein kinase p38. Our findings provide a mechanistic insight into the observation that Cox-2 is induced in endothelial cells under cytoskeleton-perturbing conditions such as those occurring in the presence of atherogenic/inflammatory stimuli and oxidative stress. In this scenario, Cox-2 up-regulation by endothelia exposed to noxious conditions can be considered protective of the vasodilatory and anti-thrombotic properties of the vessel wall.
Collapse
|
31
|
Stroka KM, Levitan I, Aranda-Espinoza H. OxLDL and substrate stiffness promote neutrophil transmigration by enhanced endothelial cell contractility and ICAM-1. J Biomech 2012; 45:1828-34. [PMID: 22560286 DOI: 10.1016/j.jbiomech.2012.04.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 03/05/2012] [Accepted: 04/09/2012] [Indexed: 01/28/2023]
Abstract
Elevated levels of oxLDL in the bloodstream and increased vasculature stiffness are both associated with cardiovascular disease in patients. However, it is not known how oxLDL and subendothelial matrix stiffness together regulate an immune response. Here, we used an in vitro model of the vascular endothelium to explore the combined effects of oxLDL and subendothelial matrix stiffening on neutrophil transmigration. We prepared fibronectin-coated polyacrylamide gels of varying stiffness and plated human umbilical vein endothelial cells (ECs) onto the gels. We observed that oxLDL treatment of the endothelium promoted neutrophil transmigration (from <1% to 26% on soft 0.87kPa substrates), with stiffer substrates further promoting transmigration (54% on 5kPa and 41% on 280kPa). OxLDL exposure enhanced intercellular adhesion molecule-1 (ICAM-1) expression on the endothelium, which was likely responsible for the oxLDL-induced transmigration. Importantly, inhibition of MLCK-mediated EC contraction reduced transmigration to ∼9% on all substrates and eliminated the effects of subendothelial matrix stiffness. In addition, large holes, thousands of square microns in size, formed in monolayers on stiff substrates following transmigration, indicating that oxLDL treatment and subsequent neutrophil transmigration caused serious damage to the endothelium. Our results reveal that an interplay between ICAM-1 and MLCK-dependent contractile forces mediates neutrophil transmigration through oxLDL-treated endothelium. Thus, microvasculature stiffness, which likely varies depending on tissue location and health, is an important regulator of the transmigration step of the immune response in the presence of oxLDL.
Collapse
Affiliation(s)
- Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
32
|
Heu C, Berquand A, Elie-Caille C, Nicod L. Glyphosate-induced stiffening of HaCaT keratinocytes, a Peak Force Tapping study on living cells. J Struct Biol 2012; 178:1-7. [PMID: 22369932 DOI: 10.1016/j.jsb.2012.02.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 01/27/2012] [Accepted: 02/08/2012] [Indexed: 12/29/2022]
Abstract
The skin is the first physiological barrier, with a complex constitution, that provides defensive functions against multiple physical and chemical aggressions. Glyphosate is an extensively used herbicide that has been shown to increase the risk of cancer. Moreover there is increasing evidence suggesting that the mechanical phenotype plays an important role in malignant transformation. Atomic force microscopy (AFM) has emerged within the last decade as a powerful tool for providing a nanometer-scale resolution imaging of biological samples. Peak Force Tapping (PFT) is a newly released AFM-based investigation technique allowing extraction of chemical and mechanical properties from a wide range of samples at a relatively high speed and a high resolution. The present work uses the PFT technology to investigate HaCaT keratinocytes, a human epidermal cell line, and offers an original approach to study chemically-induced changes in the cellular mechanical properties under near-physiological conditions. These experiments indicate glyphosate induces cell membrane stiffening, and the appearance of cytoskeleton structures at a subcellular level, for low cytotoxic concentrations whereas cells exposed to IC50 (inhibitory concentration 50%) treatment exhibit control-like mechanical behavior despite obvious membrane damages. Quercetin, a well-known antioxidant, reverses the glyphosate-induced mechanical phenotype.
Collapse
Affiliation(s)
- Celine Heu
- University of Franche-Comte, Laboratoire de Biologie Cellulaire, EA4268, FED4234, UFR des Sciences Medicales & Pharmaceutiques, 19 rue Ambroise Pare, 25030 Besancon cedex, France.
| | | | | | | |
Collapse
|
33
|
Guo Q, Xia Y, Sandig M, Yang J. Characterization of cell elasticity correlated with cell morphology by atomic force microscope. J Biomech 2011; 45:304-9. [PMID: 22115064 DOI: 10.1016/j.jbiomech.2011.10.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/13/2011] [Indexed: 02/05/2023]
Abstract
Biomechanical properties of cells have been identified as an important factor in a broad range of biological processes. Based on measurements of mechanical properties by atomic force microscopy (AFM) particularly cell elasticity has been linked with human diseases, such as cancer. AFM has been widely used as a nanomechanical tool to probe the elasticity of living cells, however, standard methods for characterizing cell elasticity are still lacking. The local elasticity of a cell is conventionally used to represent the mechanical property of the cell. However, since cells have highly heterogeneous regions, elasticity mapping over the entire cell, rather than at a few points of measurement, is required. Using human aortic endothelial cells (HAECs) as a model, we have developed in this study a new method to evaluate cell elasticity more quantitatively. Based on the height information of the cell, a new characterization method was proposed to evaluate the elasticity of a cell. Using this method, elasticities of cells on different substrates were compared. Results showed that the elasticity of HAECs on softer substrate also has higher value compared to those on harder substrate given a certain height where the statistical distribution analysis confirmed that higher actin filaments density was located. Thus, the elasticity of small portions of a cell could not represent the entire cell property and may lead to invalid characterization. In order to gain a more comprehensive and detailed understanding of biomechanical properties for future clinical use, elasticity and cell morphology should therefore be correlated with discussion.
Collapse
Affiliation(s)
- Qiuquan Guo
- Biomedical Engineering Program, The University of Western Ontario, London, ON, Canada
| | | | | | | |
Collapse
|
34
|
Reichenberg Y, Lanir Y. A flow bio-reactor for studying the effects of haemodynamic forces on the morphology and rheology of cylindrically cultured endothelial cells. J Med Eng Technol 2011; 35:231-8. [DOI: 10.3109/03091902.2011.571334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
35
|
Yu S, Wong SL, Lau CW, Huang Y, Yu CM. Oxidized LDL at low concentration promotes in-vitro angiogenesis and activates nitric oxide synthase through PI3K/Akt/eNOS pathway in human coronary artery endothelial cells. Biochem Biophys Res Commun 2011; 407:44-8. [PMID: 21352809 DOI: 10.1016/j.bbrc.2011.02.096] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 02/19/2011] [Indexed: 10/18/2022]
Abstract
It has long been considered that oxidized low-density lipoprotein (oxLDL) causes endothelial dysfunction and is remarkably related to the development of atherosclerosis. However, the effect of oxLDL at very low concentration (<10μg/ml) on the endothelial cells remains speculative. Nitric oxide (NO) has a crucial role in the endothelial cell function. In this study, we investigated the effect of oxLDL at low concentration on NO production and proliferation, migration, tube formation of the human coronary artery endothelial cells (HCAEC). Results showed that oxLDL at 5μg/ml enhanced HCAEC proliferation, migration and tube formation. These phenomena were accompanied by an increased intracellular NO production. l-NAME (a NOS inhibitor), LY294002 and wortmannin (PI3K inhibitors) could abolish oxLDL-induced angiogenic effects and prevent NO production in the HCAEC. The phosphorylation of Akt, PI3K and eNOS were up-regulated by oxLDL, which was attenuated by LY294002. Our results suggested that oxLDL at low concentration could promote in-vitro angiogenesis and activate nitric oxide synthesis through PI3K/Akt/eNOS pathway in HCAEC.
Collapse
Affiliation(s)
- Shan Yu
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | |
Collapse
|
36
|
Mechanical properties of cells and ageing. Ageing Res Rev 2011; 10:16-25. [PMID: 19897057 DOI: 10.1016/j.arr.2009.10.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/21/2009] [Accepted: 10/28/2009] [Indexed: 11/23/2022]
Abstract
Mechanical properties are fundamental properties of the cells and tissues of living organisms. The mechanical properties of a single cell as a biocomposite are determined by the interdependent combination of cellular components mechanical properties. Quantitative estimate of the cell mechanical properties depends on a cell state, method of measurement, and used theoretical model. Predominant tendency for the majority of cells with ageing is an increase of cell stiffness and a decrease of cell ability to undergo reversible large deformations. The mechanical signal transduction in old cells becomes less effective than that in young cells, and with ageing, the cells lose the ability of the rapid functional rearrangements of cellular skeleton. The article reviews the theoretical and experimental facts touching the age-related changes of the mechanical properties of cellular components and cells in the certain systems of an organism (the blood, the vascular system, the musculoskeletal system, the lens, and the epithelium). In fact, the cell mechanical parameters (including elastic modulii) can be useful as specific markers of cell ageing.
Collapse
|
37
|
Stroka KM, Aranda-Espinoza H. Effects of Morphology vs. Cell-Cell Interactions on Endothelial Cell Stiffness. Cell Mol Bioeng 2010; 4:9-27. [PMID: 21359128 DOI: 10.1007/s12195-010-0142-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biological processes such as atherogenesis, wound healing, cancer cell metastasis, and immune cell transmigration rely on a delicate balance between Cell-Cell and cell-substrate adhesion. Cell mechanics have been shown to depend on substrate factors such as stiffness and ligand presentation, while the effects of Cell-Cell interactions on the mechanical properties of cells has received little attention. Here, we use atomic force microscopy to measure the Young's modulus of live human umbilical vein endothelial cells (HUVECs). In varying the degree of Cell-Cell contact in HUVECs (single cells, groups, and monolayers), we observe that increased cell stiffness correlates with an increase in cell area. Further, we observe that HUVECs stiffen as they spread onto a glass substrate. When we weaken Cell-Cell junctions (i.e., through a low dose of cytochalasin B or treatment with a VE-cadherin antibody), we observe that cell-substrate adhesion increases, as measured by focal adhesion size and density, and the stiffness of cells within the monolayer approaches that of single cells. Our results suggest that while morphology can roughly be used to predict cell stiffness, Cell-Cell interactions may play a significant role in determining the mechanical properties of individual cells in tissues by careful maintenance of cell tension homeostasis.
Collapse
Affiliation(s)
- Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, 3138 Jeong H. Kim Engineering Building, College Park, MD 20742, USA
| | | |
Collapse
|
38
|
Zardi EM, Afeltra A. Endothelial dysfunction and vascular stiffness in systemic lupus erythematosus: Are they early markers of subclinical atherosclerosis? Autoimmun Rev 2010; 9:684-6. [DOI: 10.1016/j.autrev.2010.05.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 05/19/2010] [Indexed: 02/07/2023]
|
39
|
Shentu TP, Titushkin I, Singh DK, Gooch KJ, Subbaiah PV, Cho M, Levitan I. oxLDL-induced decrease in lipid order of membrane domains is inversely correlated with endothelial stiffness and network formation. Am J Physiol Cell Physiol 2010; 299:C218-29. [PMID: 20410437 DOI: 10.1152/ajpcell.00383.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oxidized low-density lipoprotein (oxLDL) is a major factor in development of atherosclerosis. Our earlier studies have shown that exposure of endothelial cells (EC) to oxLDL increases EC stiffness, facilitates the ability of the cells to generate force, and facilitates EC network formation in three-dimensional collagen gels. In this study, we show that oxLDL induces a decrease in lipid order of membrane domains and that this effect is inversely correlated with endothelial stiffness, contractility, and network formation. Local lipid packing of cell membrane domains was assessed by Laurdan two-photon imaging, endothelial stiffness was assessed by measuring cellular elastic modulus using atomic force microscopy, cell contractility was estimated by measuring the ability of the cells to contract collagen gels, and EC angiogenic potential was estimated by visualizing endothelial networks within the same gels. The impact of oxLDL on endothelial biomechanics and network formation is fully reversed by supplying the cells with a surplus of cholesterol. Furthermore, exposing the cells to 7-keto-cholesterol, a major oxysterol component of oxLDL, or to another cholesterol analog, androstenol, also results in disruption of lipid order of membrane domains and an increase in cell stiffness. On the basis of these observations, we suggest that disruption of lipid packing of cholesterol-rich membrane domains plays a key role in oxLDL-induced changes in endothelial biomechanics.
Collapse
Affiliation(s)
- Tzu Pin Shentu
- Pulmonary, Critical Care and Sleep Medicine, Dept. of Medicine, University of Illinois, Chicago, Illinois 60612-7323, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Ding Z, Fan Y, Deng X, Zhan F, Kang H. Effect of swirling flow on the uptakes of native and oxidized LDLs in a straight segment of the rabbit thoracic aorta. Exp Biol Med (Maywood) 2010; 235:506-13. [DOI: 10.1258/ebm.2009.009245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To elucidate the physiological significance of the spiral flow in the arterial system from the viewpoint of atherogenic lipid transport, an ex vivo experimental comparative study was designed to investigate the effect of swirling flow on the distribution of native 3,3′-dioctadecylindocarbocyanine-low-density lipoprotiens (DiI-LDL) and DiI-ox-LDL uptakes by segments of the rabbit thoracic aorta. The experimental results showed that when compared with the normal flow, the swirling flow generated in the test arteries significantly reduced the DiI-LDL and DiI-ox-LDL uptakes by the arterial walls. The results also showed that the values of DiI-ox-LDL uptake were higher than those of DiI-LDL uptake at the same sample position in both the normal flow group and the swirling flow group. Most interestingly, the experimental results found that the percentage increase in DiI-ox-LDL uptake was much larger than that in DiI-LDL uptake when the perfusion duration increased from 3 to 24 h. In conclusion, the present study substantiated the hypothesis that the spiral flow in the arterial system plays a beneficial role in protecting the arterial wall from atherogenesis. Meanwhile, it supported the concept that the receptor-mediated bindings of LDL uptake, the barrier function of the arterial endothelial linings and the mass transport phenomenon of LDL concentration polarization are all involved in the infiltration/accumulation of atherogenic lipids within the arterial wall.
Collapse
Affiliation(s)
- Zufeng Ding
- School of Biological Science and Medical Engineering, Beihang University, 37 Xue Yuan Road, Beijing 100191, China
| | - Yubo Fan
- School of Biological Science and Medical Engineering, Beihang University, 37 Xue Yuan Road, Beijing 100191, China
| | - Xiaoyan Deng
- School of Biological Science and Medical Engineering, Beihang University, 37 Xue Yuan Road, Beijing 100191, China
| | - Fan Zhan
- School of Biological Science and Medical Engineering, Beihang University, 37 Xue Yuan Road, Beijing 100191, China
| | - Hongyan Kang
- School of Biological Science and Medical Engineering, Beihang University, 37 Xue Yuan Road, Beijing 100191, China
| |
Collapse
|
41
|
|
42
|
Cai X, Yang X, Cai J, Wu S, Chen Q. Atomic Force Microscope-Related Study Membrane-Associated Cytotoxicity in Human Pterygium Fibroblasts Induced by Mitomycin C. J Phys Chem B 2010; 114:3833-9. [PMID: 20196562 DOI: 10.1021/jp910682q] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaofang Cai
- Department of Chemistry, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China,
| | - Xiaoxi Yang
- Department of Chemistry, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China,
| | - Jiye Cai
- Department of Chemistry, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China,
| | - Shixian Wu
- Department of Chemistry, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China,
| | - Qian Chen
- Department of Chemistry, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China,
| |
Collapse
|
43
|
Vermette P. Liposome characterization by quartz crystal microbalance measurements and atomic force microscopy. Methods Enzymol 2010; 465:43-73. [PMID: 19913161 DOI: 10.1016/s0076-6879(09)65003-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
This chapter reviews liposome characterization by quartz crystal microbalance (QCM) measurements and atomic force microscopy (AFM). In many studies, AFM imaging is simply used to image liposomes with resolution often that does not allow morphological analysis. Although liposome size can be obtained by processing AFM images, it is found that liposomes flatten upon surface adsorption or immobilization. Liposome stability and stiffness have been characterized by using AFM imaging or AFM force measurements, although the latter method, using a microsphere attached on the AFM cantilever, seems more appropriate to limit liposome damage and to obtain more quantitative analysis, such as the Young's modulus. Investigation of liposome layers by QCM revealed that liposomes can be detected from a combined analysis of frequency and bandwidth shifts. However, QCM by itself provides only limited information on liposomes. QCM can be used to assess the presence of a layer and also to discriminate between rigid and viscoelastic ones. Liposome properties have been derived from QCM curves, but often this requires making hypotheses that are difficult to assess. AFM and QCM analyses need to be combined with other techniques to provide complementary information.
Collapse
Affiliation(s)
- Patrick Vermette
- Laboratoire de Bioingénierie et de Biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
44
|
Stroka KM, Aranda-Espinoza H. A biophysical view of the interplay between mechanical forces and signaling pathways during transendothelial cell migration. FEBS J 2010; 277:1145-58. [PMID: 20121945 DOI: 10.1111/j.1742-4658.2009.07545.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The vascular endothelium is exposed to an array of physical forces, including shear stress via blood flow, contact with other cells such as neighboring endothelial cells and leukocytes, and contact with the basement membrane. Endothelial cell morphology, protein expression, stiffness and cytoskeletal arrangement are all influenced by these mechanochemical forces. There are many biophysical tools that are useful in studying how forces are transmitted in endothelial cells, and these tools are also beginning to be used to investigate biophysical aspects of leukocyte transmigration, which is a ubiquitous mechanosensitive process. In particular, the stiffness of the substrate has been shown to have a significant impact on cellular behavior, and this is true for both endothelial cells and leukocytes. Thus, the stiffness of the basement membrane as an endothelial substrate, as well as the stiffness of the endothelium as a leukocyte substrate, is relevant to the process of transmigration. In this review, we discuss recent work that has related the biophysical aspects of endothelial cell interactions and leukocyte transmigration to the biochemical pathways and molecular interactions that take place during this process. Further use of biophysical tools to investigate the biological process of leukocyte transmigration will have implications for tissue engineering, as well as atherosclerosis, stroke and immune system disease research.
Collapse
Affiliation(s)
- Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
45
|
Vergara D, Martignago R, Leporatti S, Bonsegna S, Maruccio G, De Nuccio F, Santino A, Cingolani R, Nicolardi G, Maffia M, Rinaldi R. Biomechanical and proteomic analysis of INF- beta-treated astrocytes. NANOTECHNOLOGY 2009; 20:455106. [PMID: 19834248 DOI: 10.1088/0957-4484/20/45/455106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Astrocytes have a key role in the pathogenesis of several diseases including multiple sclerosis and were proposed as the designed target for immunotherapy. In this study we used atomic force microscopy (AFM) and proteomics methods to analyse and correlate the modifications induced in the viscoleastic properties of astrocytes to the changes induced in protein expression after interferon- beta (IFN-beta) treatment. Our results indicated that IFN-beta treatment resulted in a significant decrease in the Young's modulus, a measure of cell elasticity, in comparison with control cells. The molecular mechanisms that trigger these changes were investigated by 2DE (two-dimensional electrophoresis) and confocal analyses and confirmed by western blotting. Altered proteins were found to be involved in cytoskeleton organization and other important physiological processes.
Collapse
Affiliation(s)
- Daniele Vergara
- National Nanotechnology Laboratory of CNR-INFM, ISUFI, University of Lecce, Italian Institute of Technology Research Unit, via Arnesano, Lecce I-73100, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cai X, Gao S, Cai J, Wu Y, Deng H. Artesunate induced morphological and mechanical changes of Jurkat cell studied by AFM. SCANNING 2009; 31:83-89. [PMID: 19343740 DOI: 10.1002/sca.20144] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this study, we have used atomic force microscopy (AFM) to study the morphology and mechanical property changes of Jurkat cells exposed to different concentrations of Artesunate (ART) for 24 h at single cellular level. Cell viability and proliferation assays were performed by using the Cell Counting Kit-8. The concentration of ART, which resulted in the inhibition rate >50% was selected. The AFM images revealed that the cell membrane changed and the ultrastructure also became complex. Mechanical properties of individual cell were tracked with AFM-based force spectroscopy. The force curves revealed that when a cell was exposed to the ART, the mechanical properties changed obviously. Treated cells had a lower adhesion force of 416.8+/-37.9 pN, whereas control group had a higher adhesion force of 1064.2+/-97.0 pN. The Young's modulus decreased to nearly one-third, from control group of 0.648+/-0.037 kPa to treated group of 0.254+/-0.035 kPa and the stiffness increased to nearly 1.5 times, from control group of 1.231+/-0.084 mN/m to treated group of 1.917+/-0.137 mN/m. These results suggest that ART can inhibit the proliferation of Jurkat and induce changes in the morphological structure and mechanical properties of Jurkat cells. The high resolution and high sensitivity of AFM can be used to detect morphological and mechanical properties of cells exposed to ART. The AFM may be developed to be a useful tool for detecting the cell death and evaluating the anti-carcinogen efficacy against tumor cell. SCANNING 31: 83-89, 2009. (c) 2009 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaofang Cai
- Department of Chemistry, Life Science and Technology College, Jinan University, Guangzhou, China
| | | | | | | | | |
Collapse
|
47
|
Oxidized LDL and C-reactive protein level in relation to carotid intima-media thickness in population with risk factors for atherosclerosis. SRP ARK CELOK LEK 2009; 137:140-5. [DOI: 10.2298/sarh0904140c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Introduction. Elevated levels of oxidized LDL cholesterol (OxLDL) are considered to be a key factor of initiating and accelerating atherosclerosis. It promotes atherosclerosis through inflammatory and immunologic mechanisms that lead to the formation of macrophage foam cells. Objective. To determine the relationship among OxLDL, C-reactive protein (CRP) level and carotid intima-media thickness (IMT) in population with risk factors for atherosclerosis. Methods. The study group consisted of 125 clinically healthy, hypercholesterolaemic subjects (49.3?5.7 years; 75 females and 50 males) compared with 100 age-matched population-based control subjects. The study group was divided into two subgroups: subgroup A (the levels of LDL cholesterol > 5 mmol/L) and subgroup B (the levels of LDL cholesterol <5 mmol/L). None of the subjects had history of cerebrovascular, ischaemic heart disease, hypertension or diabetes mellitus. Lipid profiles were measured by enzymatic methods. OxLDL was measured by using a specific monoclonal antibody, mAb4E6. CRP was measured using hemiluminescent methods (Immulite - DPC). The common carotid IMT was measured by the B-mode ultrasound. Results Compared to controls, the study group had higher levels of OxLDL (119.97?43.15 vs. 82.03?25.99 IU/L; p<0.01) and CRP (6.20?3.55 vs. 2.68?3.04 mg/ml; p<0.05). IMT was significantly higher in study subjects (1.14?0.38 vs. 0.72?0.24 mm; p<0.05). We also found that, in the whole study group, IMT significantly positively correlated with OxLDL (r=0.442; p<0.05). We found that in the study subgroup A, IMT positively correlated with CRP (r=0.792; p<0.01). In controls, we found a significantly positive association between IMT and OxLDL (r=0.781; p<0.01) and CRP (r=0.748; p<0.01). Conclusion. The elevated levels of OxLDL and CRP are associated with higher common carotid intima-media thickness in population with risk factors for atherosclerosis.
Collapse
|