1
|
Iribarren PA, Di Marzio LA, Berazategui MA, Saura A, Coria L, Cassataro J, Rojas F, Navarro M, Alvarez VE. Depolymerization of SUMO chains induces slender to stumpy differentiation in T. brucei bloodstream parasites. PLoS Pathog 2024; 20:e1012166. [PMID: 38635823 PMCID: PMC11060531 DOI: 10.1371/journal.ppat.1012166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024] Open
Abstract
Trypanosoma brucei are protozoan parasites that cause sleeping sickness in humans and nagana in cattle. Inside the mammalian host, a quorum sensing-like mechanism coordinates its differentiation from a slender replicative form into a quiescent stumpy form, limiting growth and activating metabolic pathways that are beneficial to the parasite in the insect host. The post-translational modification of proteins with the Small Ubiquitin-like MOdifier (SUMO) enables dynamic regulation of cellular metabolism. SUMO can be conjugated to its targets as a monomer but can also form oligomeric chains. Here, we have investigated the role of SUMO chains in T. brucei by abolishing the ability of SUMO to polymerize. We have found that parasites able to conjugate only SUMO monomers are primed for differentiation. This was demonstrated for monomorphic lines that are normally unable to produce stumpy forms in response to quorum sensing signaling in mice, and also for pleomorphic cell lines in which stumpy cells were observed at unusually low parasitemia levels. SUMO chain mutants showed a stumpy compatible transcriptional profile and better competence to differentiate into procyclics. Our study indicates that SUMO depolymerization may represent a coordinated signal triggered during stumpy activation program.
Collapse
Affiliation(s)
- Paula Ana Iribarren
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - Lucía Ayelén Di Marzio
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - María Agustina Berazategui
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - Andreu Saura
- Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC (IPBLN-CSIC), Granada, Spain
| | - Lorena Coria
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - Federico Rojas
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC (IPBLN-CSIC), Granada, Spain
| | - Vanina Eder Alvarez
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| |
Collapse
|
2
|
Burge RJ, Mottram JC, Wilkinson AJ. Ubiquitin and ubiquitin-like conjugation systems in trypanosomatids. Curr Opin Microbiol 2022; 70:102202. [PMID: 36099676 DOI: 10.1016/j.mib.2022.102202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 01/25/2023]
Abstract
In eukaryotic cells, reversible attachment of ubiquitin and ubiquitin-like modifiers (Ubls) to specific target proteins is conducted by multicomponent systems whose collective actions control protein fate and cell behaviour in precise but complex ways. In trypanosomatids, attachment of ubiquitin and Ubls to target proteins regulates the cell cycle, endocytosis, protein sorting and degradation, autophagy and various aspects of infection and stress responses. The extent of these systems in trypanosomatids has been surveyed in recent reports, while in Leishmania mexicana, essential roles have been defined for many ubiquitin-system genes in deletion mutagenesis and life-cycle phenotyping campaigns. The first steps to elucidate the pathways of ubiquitin transfer among the ubiquitination components and to define the acceptor substrates and the downstream deubiquitinases are now being taken.
Collapse
Affiliation(s)
- Rebecca J Burge
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK.
| | - Anthony J Wilkinson
- York Biomedical Research Institute & York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| |
Collapse
|
3
|
Zhang S, Jin B, Liang W, Guo A, Luo X, Pu L, Chen X, Cai X, Wang S. Identification and expression analysis of a new small ubiquitin-like modifier from Taenia pisiformis. Exp Parasitol 2022; 242:108403. [DOI: 10.1016/j.exppara.2022.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022]
|
4
|
Bromodomain factor 5 is an essential regulator of transcription in Leishmania. Nat Commun 2022; 13:4071. [PMID: 35831302 PMCID: PMC9279504 DOI: 10.1038/s41467-022-31742-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Leishmania are unicellular parasites that cause human and animal diseases. Like other kinetoplastids, they possess large transcriptional start regions (TSRs) which are defined by histone variants and histone lysine acetylation. Cellular interpretation of these chromatin marks is not well understood. Eight bromodomain factors, the reader modules for acetyl-lysine, are found across Leishmania genomes. Using L. mexicana, Cas9-driven gene deletions indicate that BDF1–5 are essential for promastigotes. Dimerisable, split Cre recombinase (DiCre)-inducible gene deletion of BDF5 show it is essential for both promastigotes and murine infection. ChIP-seq identifies BDF5 as enriched at TSRs. XL-BioID proximity proteomics shows the BDF5 landscape is enriched for BDFs, HAT2, proteins involved in transcriptional activity, and RNA processing; revealing a Conserved Regulators of Kinetoplastid Transcription (CRKT) Complex. Inducible deletion of BDF5 causes global reduction in RNA polymerase II transcription. Our results indicate the requirement of Leishmania to interpret histone acetylation marks through the bromodomain-enriched CRKT complex for normal gene expression and cellular viability. Leishmania use large (5–10 kb) transcriptional start regions, where the chromatin is highly enriched for acetylated histones, to drive the expression of polycistronic gene arrays. Here the authors show bromodomain-containing protein BDF5 is enriched at transcriptional start sites and its depletion leads to cell death in vitro and in murine infections, and they identify its interactors.
Collapse
|
5
|
Díaz-Hernández M, Javier-Reyna R, Sotto-Ortega I, García-Rivera G, Montaño S, Betanzos A, Zanatta D, Orozco E. Protein Sumoylation Is Crucial for Phagocytosis in Entamoeba histolytica Trophozoites. Int J Mol Sci 2021; 22:ijms22115709. [PMID: 34071922 PMCID: PMC8198320 DOI: 10.3390/ijms22115709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 01/12/2023] Open
Abstract
Posttranslational modifications provide Entamoeba histolytica proteins the timing and signaling to intervene during different processes, such as phagocytosis. However, SUMOylation has not been studied in E. histolytica yet. Here, we characterized the E. histolytica SUMO gene, its product (EhSUMO), and the relevance of SUMOylation in phagocytosis. Our results indicated that EhSUMO has an extended N-terminus that differentiates SUMO from ubiquitin. It also presents the GG residues at the C-terminus and the ΨKXE/D binding motif, both involved in target protein contact. Additionally, the E. histolytica genome possesses the enzymes belonging to the SUMOylation-deSUMOylation machinery. Confocal microscopy assays disclosed a remarkable EhSUMO membrane activity with convoluted and changing structures in trophozoites during erythrophagocytosis. SUMOylated proteins appeared in pseudopodia, phagocytic channels, and around the adhered and ingested erythrocytes. Docking analysis predicted interaction of EhSUMO with EhADH (an ALIX family protein), and immunoprecipitation and immunofluorescence assays revealed that the association increased during phagocytosis; whereas the EhVps32 (a protein of the ESCRT-III complex)-EhSUMO interaction appeared stronger since basal conditions. In EhSUMO knocked-down trophozoites, the bizarre membranous structures disappeared, and EhSUMO interaction with EhADH and EhVps32 diminished. Our results evidenced the presence of a SUMO gene in E. histolytica and the SUMOylation relevance during phagocytosis. This is supported by bioinformatics screening of many other proteins of E. histolytica involved in phagocytosis, which present putative SUMOylation sites and the ΨKXE/D binding motif.
Collapse
Affiliation(s)
- Mitzi Díaz-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07360, Mexico; (M.D.-H.); (R.J.-R.); (G.G.-R.); (A.B.); (D.Z.)
| | - Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07360, Mexico; (M.D.-H.); (R.J.-R.); (G.G.-R.); (A.B.); (D.Z.)
| | - Izaid Sotto-Ortega
- Bacteriología y Laboratorio Clínico, Universidad de Santander, 200004 Valledupar, Colombia;
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07360, Mexico; (M.D.-H.); (R.J.-R.); (G.G.-R.); (A.B.); (D.Z.)
| | - Sarita Montaño
- Laboratorio de Bioinformática y Simulación Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Sinaloa 80030, Mexico;
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07360, Mexico; (M.D.-H.); (R.J.-R.); (G.G.-R.); (A.B.); (D.Z.)
- Consejo Nacional de Ciencia y Tecnología (Conacyt), Mexico City 03940, Mexico
| | - Dxinegueela Zanatta
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07360, Mexico; (M.D.-H.); (R.J.-R.); (G.G.-R.); (A.B.); (D.Z.)
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07360, Mexico; (M.D.-H.); (R.J.-R.); (G.G.-R.); (A.B.); (D.Z.)
- Correspondence: ; Tel.: +52-55-5747-5642
| |
Collapse
|
6
|
Bijlmakers MJ. Ubiquitination and the Proteasome as Drug Targets in Trypanosomatid Diseases. Front Chem 2021; 8:630888. [PMID: 33732684 PMCID: PMC7958763 DOI: 10.3389/fchem.2020.630888] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic pathogens Trypanosoma brucei, Trypanosoma cruzi and Leishmania are responsible for debilitating diseases that affect millions of people worldwide. The numbers of drugs available to treat these diseases, Human African Trypanosomiasis, Chagas' disease and Leishmaniasis are very limited and existing treatments have substantial shortcomings in delivery method, efficacy and safety. The identification and validation of novel drug targets opens up new opportunities for the discovery of therapeutic drugs with better efficacy and safety profiles. Here, the potential of targeting the ubiquitin-proteasome system in these parasites is reviewed. Ubiquitination is the posttranslational attachment of one or more ubiquitin proteins to substrates, an essential eukaryotic mechanism that regulates a wide variety of cellular processes in many different ways. The best studied of these is the delivery of ubiquitinated substrates for degradation to the proteasome, the major cellular protease. However, ubiquitination can also regulate substrates in proteasome-independent ways, and proteasomes can degrade proteins to some extent in ubiquitin-independent ways. Because of these widespread roles, both ubiquitination and proteasomal degradation are essential for the viability of eukaryotes and the proteins that mediate these processes are therefore attractive drug targets in trypanosomatids. Here, the current understanding of these processes in trypanosomatids is reviewed. Furthermore, significant recent progress in the development of trypanosomatid-selective proteasome inhibitors that cure mouse models of trypanosomatid infections is presented. In addition, the targeting of the key enzyme in ubiquitination, the ubiquitin E1 UBA1, is discussed as an alternative strategy. Important differences between human and trypanosomatid UBA1s in susceptibility to inhibitors predicts that the selective targeting of these enzymes in trypanosomatids may also be feasible. Finally, it is proposed that activating enzymes of the ubiquitin-like proteins SUMO and NEDD8 may represent drug targets in these trypanosomatids as well.
Collapse
|
7
|
Burge RJ, Damianou A, Wilkinson AJ, Rodenko B, Mottram JC. Leishmania differentiation requires ubiquitin conjugation mediated by a UBC2-UEV1 E2 complex. PLoS Pathog 2020; 16:e1008784. [PMID: 33108402 PMCID: PMC7647121 DOI: 10.1371/journal.ppat.1008784] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/06/2020] [Accepted: 09/10/2020] [Indexed: 12/27/2022] Open
Abstract
Post-translational modifications such as ubiquitination are important for orchestrating the cellular transformations that occur as the Leishmania parasite differentiates between its main morphological forms, the promastigote and amastigote. 2 E1 ubiquitin-activating (E1), 13 E2 ubiquitin-conjugating (E2), 79 E3 ubiquitin ligase (E3) and 20 deubiquitinating cysteine peptidase (DUB) genes can be identified in the Leishmania mexicana genome but, currently, little is known about the role of E1, E2 and E3 enzymes in this parasite. Bar-seq analysis of 23 E1, E2 and HECT/RBR E3 null mutants generated in promastigotes using CRISPR-Cas9 revealed numerous loss-of-fitness phenotypes in promastigote to amastigote differentiation and mammalian infection. The E2s UBC1/CDC34, UBC2 and UEV1 and the HECT E3 ligase HECT2 are required for the successful transformation from promastigote to amastigote and UBA1b, UBC9, UBC14, HECT7 and HECT11 are required for normal proliferation during mouse infection. Of all ubiquitination enzyme null mutants examined in the screen, Δubc2 and Δuev1 exhibited the most extreme loss-of-fitness during differentiation. Null mutants could not be generated for the E1 UBA1a or the E2s UBC3, UBC7, UBC12 and UBC13, suggesting these genes are essential in promastigotes. X-ray crystal structure analysis of UBC2 and UEV1, orthologues of human UBE2N and UBE2V1/UBE2V2 respectively, reveal a heterodimer with a highly conserved structure and interface. Furthermore, recombinant L. mexicana UBA1a can load ubiquitin onto UBC2, allowing UBC2-UEV1 to form K63-linked di-ubiquitin chains in vitro. Notably, UBC2 can cooperate in vitro with human E3s RNF8 and BIRC2 to form non-K63-linked polyubiquitin chains, showing that UBC2 can facilitate ubiquitination independent of UEV1, but association of UBC2 with UEV1 inhibits this ability. Our study demonstrates the dual essentiality of UBC2 and UEV1 in the differentiation and intracellular survival of L. mexicana and shows that the interaction between these two proteins is crucial for regulation of their ubiquitination activity and function. The post-translational modification of proteins is key for allowing Leishmania parasites to transition between the different life cycle stages that exist in its insect vector and mammalian host. In particular, components of the ubiquitin system are important for the transformation of Leishmania from its insect (promastigote) to mammalian (amastigote) stage and normal infection in mice. However, little is known about the role of the enzymes that generate ubiquitin modifications in Leishmania. Here we characterise 28 enzymes of the ubiquitination pathway and show that many are required for life cycle progression or mouse infection by this parasite. Two proteins, UBC2 and UEV1, were selected for further study based on their importance in the promastigote to amastigote transition. We demonstrate that UBC2 and UEV1 form a heterodimer capable of carrying out ubiquitination and that the structural basis for this activity is conserved between Leishmania, Saccharomyces cerevisiae and humans. We also show that the interaction of UBC2 with UEV1 alters the nature of the ubiquitination activity performed by UBC2. Overall, we demonstrate the important role that ubiquitination enzymes play in the life cycle and infection process of Leishmania and explore the biochemistry underlying UBC2 and UEV1 function.
Collapse
Affiliation(s)
- Rebecca J. Burge
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | - Andreas Damianou
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Anthony J. Wilkinson
- York Biomedical Research Institute and York Structural Biology Laboratory, Department of Chemistry, University of York, United Kingdom
| | - Boris Rodenko
- UbiQ Bio BV, Amsterdam Science Park, the Netherlands
| | - Jeremy C. Mottram
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Karpiyevich M, Artavanis-Tsakonas K. Ubiquitin-Like Modifiers: Emerging Regulators of Protozoan Parasites. Biomolecules 2020; 10:E1403. [PMID: 33022940 PMCID: PMC7600729 DOI: 10.3390/biom10101403] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022] Open
Abstract
Post-translational protein regulation allows for fine-tuning of cellular functions and involves a wide range of modifications, including ubiquitin and ubiquitin-like modifiers (Ubls). The dynamic balance of Ubl conjugation and removal shapes the fates of target substrates, in turn modulating various cellular processes. The mechanistic aspects of Ubl pathways and their biological roles have been largely established in yeast, plants, and mammalian cells. However, these modifiers may be utilised differently in highly specialised and divergent organisms, such as parasitic protozoa. In this review, we explore how these parasites employ Ubls, in particular SUMO, NEDD8, ATG8, ATG12, URM1, and UFM1, to regulate their unconventional cellular physiology. We discuss emerging data that provide evidence of Ubl-mediated regulation of unique parasite-specific processes, as well as the distinctive features of Ubl pathways in parasitic protozoa. We also highlight the potential to leverage these essential regulators and their cognate enzymatic machinery for development of therapeutics to protect against the diseases caused by protozoan parasites.
Collapse
|
9
|
Solution structure of TbUfm1 from Trypanosoma brucei and its binding to TbUba5. J Struct Biol 2020; 212:107580. [PMID: 32693018 DOI: 10.1016/j.jsb.2020.107580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/21/2022]
Abstract
Ubiquitin-like proteins are conserved in eukaryotes and involved in numerous cellular processes. Ufm1 is proved to play important roles in endoplasmic reticulum homeostasis, vesicle transportation and embryonic development. Enzyme cascade of Ufm1 is similar to that of ubiquitin. Mature Ufm1 is activated and conjugated to substrates by assistance of Ufm1 activating enzyme Uba5 (E1), Ufm1 conjugating enzyme Ufc1 (E2), and Ufm1 ligating enzyme Ufl1 (E3). Here, we determined the solution structure of TbUfm1 from Trypanosoma brucei (T. brucei) by NMR spectroscopy and explored the interactions between TbUfm1 and TbUba5/TbUfc1/TbUfl1. TbUfm1 adopts a typical β-grasp fold, which partially wraps a central α-helix and the other two helixes. NMR chemical shift perturbation indicated that TbUfm1 interacts with TbUba5 via a hydrophobic pocket formed by α1α2β1β2. Although the structure and Uba5-interaction mode of TbUfm1 are conserved in Ufm1 proteins, there are also some differences, which might reflect the potential diversity of Ufm1 in evolution and biological functions.
Collapse
|
10
|
Manzano-Román R, Fuentes M. Relevance and proteomics challenge of functional posttranslational modifications in Kinetoplastid parasites. J Proteomics 2020; 220:103762. [PMID: 32244008 DOI: 10.1016/j.jprot.2020.103762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/06/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
Protozoan parasitic infections are health, social and economic issues impacting both humans and animals, with significant morbidity and mortality worldwide. Protozoan parasites have complicated life cycles with both intracellular and extracellular forms. As a consequence, protozoan adapt to changing environments in part through a dynamic enzyme-catalyzed process leading to reversible posttranslational modifications (PTMs). The characterization by proteomics approaches reveals the critical role of the PTMs of the proteins involved in host-pathogen interaction. The complexity of PTMs characterization is increased by the high diversity, stoichiometry, dynamic and also co-existence of several PTMs in the same moieties which crosstalk between them. Here, we review how to understand the complexity and the essential role of PTMs crosstalk in order to provide a new hallmark for vaccines developments, immunotherapies and personalized medicine. In addition, the importance of these motifs in the biology and biological cycle of kinetoplastid parasites is highlighted with key examples showing the potential to act as targets against protozoan diseases.
Collapse
Affiliation(s)
- R Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain..
| | - M Fuentes
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.; Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain
| |
Collapse
|
11
|
Saura A, Iribarren PA, Rojas‐Barros D, Bart JM, López‐Farfán D, Andrés‐León E, Vidal‐Cobo I, Boehm C, Alvarez VE, Field MC, Navarro M. SUMOylated SNF2PH promotes variant surface glycoprotein expression in bloodstream trypanosomes. EMBO Rep 2019; 20:e48029. [PMID: 31693280 PMCID: PMC6893287 DOI: 10.15252/embr.201948029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023] Open
Abstract
SUMOylation is a post-translational modification that positively regulates monoallelic expression of the trypanosome variant surface glycoprotein (VSG). The presence of a highly SUMOylated focus associated with the nuclear body, where the VSG gene is transcribed, further suggests an important role of SUMOylation in regulating VSG expression. Here, we show that SNF2PH, a SUMOylated plant homeodomain (PH)-transcription factor, is upregulated in the bloodstream form of the parasite and enriched at the active VSG telomere. SUMOylation promotes the recruitment of SNF2PH to the VSG promoter, where it is required to maintain RNA polymerase I and thus to regulate VSG transcript levels. Further, ectopic overexpression of SNF2PH in insect forms, but not of a mutant lacking the PH domain, induces the expression of bloodstream stage-specific surface proteins. These data suggest that SNF2PH SUMOylation positively regulates VSG monoallelic transcription, while the PH domain is required for the expression of bloodstream-specific surface proteins. Thus, SNF2PH functions as a positive activator, linking expression of infective form surface proteins and VSG regulation, thereby acting as a major regulator of pathogenicity.
Collapse
Affiliation(s)
- Andreu Saura
- Instituto de Parasitología y Biomedicina “López‐Neyra”CSIC (IPBLN‐CSIC)GranadaSpain
| | | | - Domingo Rojas‐Barros
- Instituto de Parasitología y Biomedicina “López‐Neyra”CSIC (IPBLN‐CSIC)GranadaSpain
| | - Jean M Bart
- Instituto de Parasitología y Biomedicina “López‐Neyra”CSIC (IPBLN‐CSIC)GranadaSpain
| | - Diana López‐Farfán
- Instituto de Parasitología y Biomedicina “López‐Neyra”CSIC (IPBLN‐CSIC)GranadaSpain
| | - Eduardo Andrés‐León
- Instituto de Parasitología y Biomedicina “López‐Neyra”CSIC (IPBLN‐CSIC)GranadaSpain
| | - Isabel Vidal‐Cobo
- Instituto de Parasitología y Biomedicina “López‐Neyra”CSIC (IPBLN‐CSIC)GranadaSpain
| | | | | | - Mark C Field
- School of Life SciencesUniversity of DundeeDundeeUK
- Biology CentreInstitute of ParasitologyCzech Academy of SciencesCeske BudejoviceCzech Republic
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina “López‐Neyra”CSIC (IPBLN‐CSIC)GranadaSpain
| |
Collapse
|
12
|
Wang R, Zhang J, Liao S, Tu X. 1H, 13C and 15N resonance assignments of NEDD8 from Trypanosoma brucei. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:159-161. [PMID: 29327103 DOI: 10.1007/s12104-018-9800-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
Neural precursor cell-expressed, developmently downregulated 8 (NEDD8) is a small ubiquitin-like modifier, which plays important roles in many cellular processes. Although it has been well studied in many eukaryotes, NEDD8 is still uncharacterized in some unicellular parasites, such as Trypanosoma brucei (T. brucei). Here we report the resonance assignments of NEDD8 from T. brucei.
Collapse
Affiliation(s)
- Rui Wang
- Department of Anthropotomy and Histoembryology, Medical College, Henan University of Science and Technology, Luoyang, 471023, Henan, People's Republic of China
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Shanhui Liao
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China.
| | - Xiaoming Tu
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China.
| |
Collapse
|
13
|
Iribarren PA, Di Marzio LA, Berazategui MA, De Gaudenzi JG, Alvarez VE. SUMO polymeric chains are involved in nuclear foci formation and chromatin organization in Trypanosoma brucei procyclic forms. PLoS One 2018; 13:e0193528. [PMID: 29474435 PMCID: PMC5825156 DOI: 10.1371/journal.pone.0193528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/13/2018] [Indexed: 01/10/2023] Open
Abstract
SUMOylation is a post-translational modification conserved in eukaryotic organisms that involves the covalent attachment of the small ubiquitin-like protein SUMO to internal lysine residues in target proteins. This tag usually alters the interaction surface of the modified protein and can be translated into changes in its biological activity, stability or subcellular localization, among other possible outputs. SUMO can be attached as a single moiety or as SUMO polymers in case there are internal acceptor sites in SUMO itself. These chains have been shown to be important for proteasomal degradation as well as for the formation of subnuclear structures such as the synaptonemal complex in Saccharomyces cerevisiae or promyelocytic leukemia nuclear bodies in mammals. In this work, we have examined SUMO chain formation in the protozoan parasite Trypanosoma brucei. Using a recently developed bacterial strain engineered to produce SUMOylated proteins we confirmed the ability of TbSUMO to form polymers and determined the type of linkage using site-directed mutational analysis. By generating transgenic procyclic parasites unable to form chains we demonstrated that although not essential for normal growth, SUMO polymerization determines the localization of the modified proteins in the nucleus. In addition, FISH analysis of telomeres showed a differential positioning depending on the polySUMOylation abilities of the cells. Thus, our observations suggest that TbSUMO chains might play a role in establishing interaction platforms contributing to chromatin organization.
Collapse
Affiliation(s)
- Paula Ana Iribarren
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - Lucía Ayelén Di Marzio
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - María Agustina Berazategui
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - Javier Gerardo De Gaudenzi
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
- * E-mail: (VEA); (JGDG)
| | - Vanina Eder Alvarez
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
- * E-mail: (VEA); (JGDG)
| |
Collapse
|
14
|
Di Genova BM, da Silva RC, da Cunha JPC, Gargantini PR, Mortara RA, Tonelli RR. Protein SUMOylation is Involved in Cell-cycle Progression and Cell Morphology in Giardia lamblia. J Eukaryot Microbiol 2016; 64:491-503. [PMID: 27864857 DOI: 10.1111/jeu.12386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/13/2016] [Accepted: 11/02/2016] [Indexed: 01/08/2023]
Abstract
The unicellular protozoa Giardia lamblia is a food- and waterborne parasite that causes giardiasis. This illness is manifested as acute and self-limited diarrhea and can evolve to long-term complications. Successful establishment of infection by Giardia trophozoites requires adhesion to host cells and colonization of the small intestine, where parasites multiply by mitotic division. The tight binding of trophozoites to host cells occurs by means of the ventral adhesive disc, a spiral array of microtubules and associated proteins such as giardins. In this work we show that knock down of the Small Ubiquitin-like MOdifier (SUMO) results in less adhesive trophzoites, decreased cell proliferation and deep morphological alterations, including at the ventral disc. Consistent with the reduced proliferation, SUMO knocked-down trophozoites were arrested in G1 and in S phases of the cell cycle. Mass spectrometry analysis of anti-SUMO immunoprecipitates was performed to identify SUMO substrates possibly involved in these events. Among the identified SUMOylation targets, α-tubulin was further validated by Western blot and confirmed to be a SUMO target in Giardia trophozoites.
Collapse
Affiliation(s)
- Bruno M Di Genova
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, RuaBotucatu 862, 04023-062, Vila Clementino, São Paulo, SP, Brazil
| | - Richard C da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, RuaBotucatu 862, 04023-062, Vila Clementino, São Paulo, SP, Brazil
| | - Júlia P C da Cunha
- Laboratório Especial de Ciclo Celular, Centro de Toxinas, Resposta Imune e Sinalização Celular - CeTICS, Instituto Butantan, Avenida Vital Brasil 1500, 05503-900, Butantã, São Paulo, SP, Brazil
| | - Pablo R Gargantini
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Católica de Córdoba (UCC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Armada Argentina 3555., X5016DHK, Cordoba, Argentina
| | - Renato A Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, RuaBotucatu 862, 04023-062, Vila Clementino, São Paulo, SP, Brazil
| | - Renata R Tonelli
- Departamento de Ciências Biológicas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau 210, 09913-030, Diadema, SP, Brazil
| |
Collapse
|
15
|
Liao S, Hu H, Wang T, Tu X, Li Z. The Protein Neddylation Pathway in Trypanosoma brucei: FUNCTIONAL CHARACTERIZATION AND SUBSTRATE IDENTIFICATION. J Biol Chem 2016; 292:1081-1091. [PMID: 27956554 DOI: 10.1074/jbc.m116.766741] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/28/2016] [Indexed: 11/06/2022] Open
Abstract
Protein posttranslational modifications such as neddylation play crucial roles in regulating protein function. Only a few neddylated substrates have been validated to date, and the role of neddylation remains poorly understood. Here, using Trypanosoma brucei as the model organism, we investigated the function and substrates of TbNedd8. TbNedd8 is distributed throughout the cytosol but enriched in the nucleus and the flagellum. Depletion of TbNedd8 by RNAi abolished global protein ubiquitination, caused DNA re-replication in postmitotic cells, impaired spindle assembly, and compromised the flagellum attachment zone filament, leading to flagellum detachment. Through affinity purification and mass spectrometry, we identified 70 TbNedd8-conjugated and -associated proteins, including known Nedd8-conjugated and -associated proteins, putative TbNedd8 conjugation system enzymes, proteins of diverse biological functions, and proteins of unknown function. Finally, we validated six Cullins as bona fide TbNedd8 substrates and identified the TbNedd8 conjugation site in three Cullins. This work lays the foundation for understanding the roles of protein neddylation in this early divergent parasitic protozoan.
Collapse
Affiliation(s)
- Shanhui Liao
- From the Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China and.,the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030
| | - Huiqing Hu
- the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030
| | - Tao Wang
- the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030
| | - Xiaoming Tu
- From the Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China and
| | - Ziyin Li
- the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030
| |
Collapse
|
16
|
Jones DC, Foth BJ, Urbaniak MD, Patterson S, Ong HB, Berriman M, Fairlamb AH. Genomic and Proteomic Studies on the Mode of Action of Oxaboroles against the African Trypanosome. PLoS Negl Trop Dis 2015; 9:e0004299. [PMID: 26684831 PMCID: PMC4689576 DOI: 10.1371/journal.pntd.0004299] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/21/2015] [Indexed: 11/30/2022] Open
Abstract
SCYX-7158, an oxaborole, is currently in Phase I clinical trials for the treatment of human African trypanosomiasis. Here we investigate possible modes of action against Trypanosoma brucei using orthogonal chemo-proteomic and genomic approaches. SILAC-based proteomic studies using an oxaborole analogue immobilised onto a resin was used either in competition with a soluble oxaborole or an immobilised inactive control to identify thirteen proteins common to both strategies. Cell-cycle analysis of cells incubated with sub-lethal concentrations of an oxaborole identified a subtle but significant accumulation of G2 and >G2 cells. Given the possibility of compromised DNA fidelity, we investigated long-term exposure of T. brucei to oxaboroles by generating resistant cell lines in vitro. Resistance proved more difficult to generate than for drugs currently used in the field, and in one of our three cell lines was unstable. Whole-genome sequencing of the resistant cell lines revealed single nucleotide polymorphisms in 66 genes and several large-scale genomic aberrations. The absence of a simple consistent mechanism among resistant cell lines and the diverse list of binding partners from the proteomic studies suggest a degree of polypharmacology that should reduce the risk of resistance to this compound class emerging in the field. The combined genetic and chemical biology approaches have provided lists of candidates to be investigated for more detailed information on the mode of action of this promising new drug class. The mode of action of a new class of boron-containing chemicals (the oxaboroles), currently under development for the treatment of human African trypanosomiasis, is unknown. Here we identify a number of potential candidate proteins that could be involved either in the mode of action of these compounds or in the mechanism of resistance. This information could prove critical in protecting the compounds against resistance emerging in the field as well as opening up new avenues for drug discovery.
Collapse
Affiliation(s)
- Deuan C. Jones
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Bernardo J. Foth
- Parasite Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Michael D. Urbaniak
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Stephen Patterson
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Han B. Ong
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Matthew Berriman
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Alan H. Fairlamb
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Ureña E, Pirone L, Chafino S, Pérez C, Sutherland JD, Lang V, Rodriguez MS, Lopitz-Otsoa F, Blanco FJ, Barrio R, Martín D. Evolution of SUMO Function and Chain Formation in Insects. Mol Biol Evol 2015; 33:568-84. [PMID: 26538142 PMCID: PMC4866545 DOI: 10.1093/molbev/msv242] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
SUMOylation, the covalent binding of Small Ubiquitin-like Modifier (SUMO) to target proteins, is a posttranslational modification that regulates critical cellular processes in eukaryotes. In insects, SUMOylation has been studied in holometabolous species, particularly in the dipteran Drosophila melanogaster, which contains a single SUMO gene (smt3). This has led to the assumption that insects contain a single SUMO gene. However, the analysis of insect genomes shows that basal insects contain two SUMO genes, orthologous to vertebrate SUMO1 and SUMO2/3. Our phylogenetical analysis reveals that the SUMO gene has been duplicated giving rise to SUMO1 and SUMO2/3 families early in Metazoan evolution, and that later in insect evolution the SUMO1 gene has been lost after the Hymenoptera divergence. To explore the consequences of this loss, we have examined the characteristics and different biological functions of the two SUMO genes (SUMO1 and SUMO3) in the hemimetabolous cockroach Blattella germanica and compared them with those of Drosophila Smt3. Here, we show that the metamorphic role of the SUMO genes is evolutionary conserved in insects, although there has been a regulatory switch from SUMO1 in basal insects to SUMO3 in more derived ones. We also show that, unlike vertebrates, insect SUMO3 proteins cannot form polySUMO chains due to the loss of critical lysine residues within the N-terminal part of the protein. Furthermore, the formation of polySUMO chains by expression of ectopic human SUMO3 has a deleterious effect in Drosophila. These findings contribute to the understanding of the functional consequences of the evolution of SUMO genes.
Collapse
Affiliation(s)
- Enric Ureña
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Lucia Pirone
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Silvia Chafino
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Coralia Pérez
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | | | - Valérie Lang
- Cancer Unit, Inbiomed, San Sebastian, Gipuzkoa, Spain
| | | | | | - Francisco J Blanco
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Rosa Barrio
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - David Martín
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
18
|
Levy GV, Bañuelos CP, Níttolo AG, Ortiz GE, Mendiondo N, Moretti G, Tekiel VS, Sánchez DO. Depletion of the SR-Related Protein TbRRM1 Leads to Cell Cycle Arrest and Apoptosis-Like Death in Trypanosoma brucei. PLoS One 2015; 10:e0136070. [PMID: 26284933 PMCID: PMC4540419 DOI: 10.1371/journal.pone.0136070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/29/2015] [Indexed: 11/19/2022] Open
Abstract
Arginine-Serine (RS) domain-containing proteins are RNA binding proteins with multiple functions in RNA metabolism. In mammalian cells this group of proteins is also implicated in regulation and coordination of cell cycle and apoptosis. In trypanosomes, an early branching group within the eukaryotic lineage, this group of proteins is represented by 3 members, two of them are SR proteins and have been recently shown to be involved in rRNA processing as well as in pre-mRNA splicing and stability. Here we report our findings on the 3rd member, the SR-related protein TbRRM1. In the present study, we showed that TbRRM1 ablation by RNA-interference in T. brucei procyclic cells leads to cell-cycle block, abnormal cell elongation compatible with the nozzle phenotype and cell death by an apoptosis-like mechanism. Our results expand the role of the trypanosomal RS-domain containing proteins in key cellular processes such as cell cycle and apoptosis-like death, roles also carried out by the mammalian SR proteins, and thus suggesting a conserved function in this phylogenetically conserved protein family.
Collapse
Affiliation(s)
- Gabriela V. Levy
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia. Gral. San Martín, Buenos Aires, Argentina
- * E-mail:
| | - Carolina P. Bañuelos
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia. Gral. San Martín, Buenos Aires, Argentina
| | - Analía G. Níttolo
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia. Gral. San Martín, Buenos Aires, Argentina
| | - Gastón E. Ortiz
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia. Gral. San Martín, Buenos Aires, Argentina
| | - Nicolás Mendiondo
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia. Gral. San Martín, Buenos Aires, Argentina
| | - Georgina Moretti
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia. Gral. San Martín, Buenos Aires, Argentina
| | - Valeria S. Tekiel
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia. Gral. San Martín, Buenos Aires, Argentina
| | - Daniel O. Sánchez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia. Gral. San Martín, Buenos Aires, Argentina
| |
Collapse
|
19
|
Iribarren PA, Berazategui MA, Cazzulo JJ, Alvarez VE. Biosynthesis of SUMOylated Proteins in Bacteria Using the Trypanosoma brucei Enzymatic System. PLoS One 2015; 10:e0134950. [PMID: 26258470 PMCID: PMC4530879 DOI: 10.1371/journal.pone.0134950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/15/2015] [Indexed: 11/19/2022] Open
Abstract
Post-translational modification with the Small Ubiquitin-like Modifier (SUMO) is conserved in eukaryotic organisms and plays important regulatory roles in proteins affecting diverse cellular processes. In Trypanosoma brucei, member of one of the earliest branches in eukaryotic evolution, SUMO is essential for normal cell cycle progression and is likely to be involved in the epigenetic control of genes crucial for parasite survival, such as those encoding the variant surface glycoproteins. Molecular pathways modulated by SUMO have started to be discovered by proteomic studies; however, characterization of functional consequences is limited to a reduced number of targets. Here we present a bacterial strain engineered to produce SUMOylated proteins, by transferring SUMO from T. brucei together with the enzymes essential for its activation and conjugation. Due to the lack of background in E. coli, this system is useful to express and identify SUMOylated proteins directly in cell lysates by immunoblotting, and SUMOylated targets can be eventually purified for biochemical or structural studies. We applied this strategy to describe the ability of TbSUMO to form chains in vitro and to detect SUMOylation of a model substrate, PCNA both from Saccharomyces cerevisiae and from T. brucei. To further validate targets, we applied an in vitro deconjugation assay using the T. brucei SUMO-specific protease capable to revert the pattern of modification. This system represents a valuable tool for target validation, mutant generation and functional studies of SUMOylated proteins in trypanosomatids.
Collapse
Affiliation(s)
- Paula Ana Iribarren
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, 1650 San Martín, Buenos Aires, Argentina
| | - María Agustina Berazategui
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, 1650 San Martín, Buenos Aires, Argentina
| | - Juan José Cazzulo
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, 1650 San Martín, Buenos Aires, Argentina
| | - Vanina Eder Alvarez
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, 1650 San Martín, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
20
|
Iribarren PA, Berazategui MA, Bayona JC, Almeida IC, Cazzulo JJ, Alvarez VE. Different proteomic strategies to identify genuine Small Ubiquitin-like MOdifier targets and their modification sites in Trypanosoma brucei procyclic forms. Cell Microbiol 2015; 17:1413-22. [PMID: 26096196 DOI: 10.1111/cmi.12467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/01/2015] [Accepted: 06/05/2015] [Indexed: 01/10/2023]
Abstract
SUMOylation is an important post-translational modification conserved in eukaryotic organisms. In Trypanosoma brucei, SUMO (Small Ubiquitin-like MOdifier) is essential in procyclic and bloodstream forms. Furthermore, SUMO has been linked to the antigenic variation process, as a highly SUMOylated focus was recently identified within chromatin-associated proteins of the active variant surface glycoprotein expression site. We aimed to establish a reliable strategy to identify SUMO conjugates in T. brucei. We expressed various tagged variants of SUMO from the endogenous locus. His-HA-TbSUMO was useful to validate the tag functionality but SUMO conjugates were not enriched enough over contaminants after affinity purification. A Lys-deficient SUMO version, created to reduce contaminants by Lys-C digestion, was able to overcome this issue but did not allow mapping many SUMOylation sites. This cell line was in turn useful to demonstrate that polySUMO chains are not essential for parasite viability. Finally, a His-HA-TbSUMO(T106K) version allowed the purification of SUMO conjugates and, after digestion with Lys-C, the enrichment for diGly-Lys peptides using specific antibodies. This site-specific proteomic strategy led us to identify 45 SUMOylated proteins and 53 acceptor sites unambiguously. SUMOylated proteins belong mainly to nuclear processes, such as DNA replication and repair, transcription, rRNA biogenesis and chromatin remodelling, among others.
Collapse
Affiliation(s)
- P A Iribarren
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Av. 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina
| | - M A Berazategui
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Av. 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina
| | - J C Bayona
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Av. 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina
| | - I C Almeida
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - J J Cazzulo
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Av. 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina
| | - V E Alvarez
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Av. 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina
| |
Collapse
|
21
|
Ye K, Zhang X, Ni J, Liao S, Tu X. Identification of enzymes involved in SUMOylation in Trypanosoma brucei. Sci Rep 2015; 5:10097. [PMID: 25959766 PMCID: PMC4426598 DOI: 10.1038/srep10097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/30/2015] [Indexed: 11/30/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO), a reversible post-translational protein modifier, plays important roles in diverse cellular mechanisms. Three enzymes, E1 (activating enzyme), E2 (conjugating enzyme) and E3 (ligase), are involved in SUMO modification. SUMOylation system and process in higher eukaryotes have been well studied. However, in protozoa, such as Trypanosoma brucei (T. brucei), these remain poorly understood. Herein, we identified the E1 (TbAos1/TbUba2) and E2 (TbUbc9) enzymes of SUMOylation pathway in T. brucei by sequence analysis and GST pull-down assay. Furthermore, we successfully reconstructed the SUMOylation system in vitro with recombinant enzymes. Using this system, the active site of TbUba2 and TbUbc9 was revealed to be located at Cys343 and Cys132, respectively, and a centrin homologue (TbCentrin3) was identified to be a target of SUMOylation in T. brucei. Altogether, our results demonstrate that TbAos1/TbUba2 and TbUbc9 are the bona fide E1 and E2 enzymes of the SUMOylation system in T. brucei.
Collapse
Affiliation(s)
- Kaiqin Ye
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Xuecheng Zhang
- 1] School of Life Sciences, Anhui University, Hefei, Anhui 230039, P.R. China [2] Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 111 Jiulong Road, Hefei, Anhui 230601, P.R. China
| | - Jun Ni
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Shanhui Liao
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Xiaoming Tu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| |
Collapse
|
22
|
SUMOylation by the E3 ligase TbSIZ1/PIAS1 positively regulates VSG expression in Trypanosoma brucei. PLoS Pathog 2014; 10:e1004545. [PMID: 25474309 PMCID: PMC4256477 DOI: 10.1371/journal.ppat.1004545] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/29/2014] [Indexed: 12/31/2022] Open
Abstract
Bloodstream form trypanosomes avoid the host immune response by switching the expression of their surface proteins between Variant Surface Glycoproteins (VSG), only one of which is expressed at any given time. Monoallelic transcription of the telomeric VSG Expression Site (ES) by RNA polymerase I (RNA pol I) localizes to a unique nuclear body named the ESB. Most work has focused on silencing mechanisms of inactive VSG-ESs, but the mechanisms involved in transcriptional activation of a single VSG-ES remain largely unknown. Here, we identify a highly SUMOylated focus (HSF) in the nucleus of the bloodstream form that partially colocalizes with the ESB and the active VSG-ES locus. SUMOylation of chromatin-associated proteins was enriched along the active VSG-ES transcriptional unit, in contrast to silent VSG-ES or rDNA, suggesting that it is a distinct feature of VSG-ES monoallelic expression. In addition, sequences upstream of the active VSG-ES promoter were highly enriched in SUMOylated proteins. We identified TbSIZ1/PIAS1 as the SUMO E3 ligase responsible for SUMOylation in the active VSG-ES chromatin. Reduction of SUMO-conjugated proteins by TbSIZ1 knockdown decreased the recruitment of RNA pol I to the VSG-ES and the VSG-ES-derived transcripts. Furthermore, cells depleted of SUMO conjugated proteins by TbUBC9 and TbSUMO knockdown confirmed the positive function of SUMO for VSG-ES expression. In addition, the largest subunit of RNA pol I TbRPA1 was SUMOylated in a TbSIZ-dependent manner. Our results show a positive mechanism associated with active VSG-ES expression via post-translational modification, and indicate that chromatin SUMOylation plays an important role in the regulation of VSG-ES. Thus, protein SUMOylation is linked to active gene expression in this protozoan parasite that diverged early in evolution. African trypanosomes have evolved one of the most complex strategies of immune evasion by routinely switching the expression of surface proteins called Variant Surface Glycoproteins (VSG), only one of which is expressed at any given time. Previous work has suggested that the recruitment of a single VSG telomeric locus to a discrete nuclear body (ESB) underlies the mechanism responsible for VSG monoallelic expression. Our findings establish unexpected roles for SUMOylation as a specific post-translational modification that marks the ESB and the VSG-ES chromatin. We describe a highly SUMOylated focus (HSF) as a novel nuclear structure that partially colocalizes with the VSG-ES locus and the nuclear body ESB. Furthermore, chromatin SUMOylation is a distinct feature of the active VSG-ES locus, in contrast to other loci investigated. SUMOylation of chromatin-associated proteins is required for efficient recruitment of the polymerase to the VSG-ES promoter and for VSG-ES expression. Altogether, these data suggest the presence of a large number of SUMOylated proteins associated with monoallelic expression as Protein Group SUMOylation. In contrast to the wealth of literature focused on VSG regulation by silencing, our results indicate a positive mechanism via SUMOylation to regulate VSG expression in the infectious form of this protozoan parasite.
Collapse
|
23
|
Trypanosome alternative oxidase possesses both an N-terminal and internal mitochondrial targeting signal. EUKARYOTIC CELL 2014; 13:539-47. [PMID: 24562910 DOI: 10.1128/ec.00312-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recognition of mitochondrial targeting signals (MTS) by receptor translocases of outer and inner membranes of mitochondria is one of the prerequisites for import of nucleus-encoded proteins into this organelle. The MTS for a majority of trypanosomatid mitochondrial proteins have not been well defined. Here we analyzed the targeting signal for trypanosome alternative oxidase (TAO), which functions as the sole terminal oxidase in the infective form of Trypanosoma brucei. Deleting the first 10 of 24 amino acids predicted to be the classical N-terminal MTS of TAO did not affect its import into mitochondria in vitro. Furthermore, ectopically expressed TAO was targeted to mitochondria in both forms of the parasite even after deletion of first 40 amino acid residues. However, deletion of more than 20 amino acid residues from the N terminus reduced the efficiency of import. These data suggest that besides an N-terminal MTS, TAO possesses an internal mitochondrial targeting signal. In addition, both the N-terminal MTS and the mature TAO protein were able to target a cytosolic protein, dihydrofolate reductase (DHFR), to a T. brucei mitochondrion. Further analysis identified a cryptic internal MTS of TAO, located within amino acid residues 115 to 146, which was fully capable of targeting DHFR to mitochondria. The internal signal was more efficient than the N-terminal MTS for import of this heterologous protein. Together, these results show that TAO possesses a cleavable N-terminal MTS as well as an internal MTS and that these signals act together for efficient import of TAO into mitochondria.
Collapse
|
24
|
Chu B, Yao F, Cheng C, Wu Y, Mei Y, Li X, Liu Y, Wang P, Hou L, Zou X. The potential role of As-sumo-1 in the embryonic diapause process and early embryo development of Artemia sinica. PLoS One 2014; 9:e85343. [PMID: 24404204 PMCID: PMC3880333 DOI: 10.1371/journal.pone.0085343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/04/2013] [Indexed: 11/19/2022] Open
Abstract
During embryonic development of Artemia sinica, environmental stresses induce the embryo diapause phenomenon, required to resist apoptosis and regulate cell cycle activity. The small ubiquitin-related modifier-1 (SUMO), a reversible post-translational protein modifier, plays an important role in embryo development. SUMO regulates multiple cellular processes, including development and other biological processes. The molecular mechanism of diapause, diapause termination and the role of As-sumo-1 in this processes and in early embryo development of Artemia sinica still remains unknown. In this study, the complete cDNA sequences of the sumo-1 homolog, sumo ligase homolog, caspase-1 homolog and cyclin B homolog from Artemia sinica were cloned. The mRNA expression patterns of As-sumo-1, sumo ligase, caspase-1, cyclin B and the location of As-sumo-1 were investigated. SUMO-1, p53, Mdm2, Caspase-1, Cyclin B and Cyclin E proteins were analyzed during different developmental stages of the embryo of A. sinica. Small interfering RNA (siRNA) was used to verify the function of sumo-1 in A. sinica. The full-length cDNA of As-sumo-1 was 476 bp, encoding a 92 amino acid protein. The As-caspases-1 cDNA was 966 bp, encoding a 245 amino-acid protein. The As-sumo ligase cDNA was 1556 bp encoding, a 343 amino acid protein, and the cyclin B cDNA was 739 bp, encoding a 133 amino acid protein. The expressions of As-sumo-1, As-caspase-1 and As-cyclin B were highest at the 10 h stage of embryonic development, and As-sumo ligase showed its highest expression at 0 h. The expression of As-SUMO-1 showed no tissue or organ specificity. Western blotting showed high expression of As-SUMO-1, p53, Mdm2, Caspase-1, Cyclin B and Cyclin E at the 10 h stage. The siRNA caused abnormal development of the embryo, with increased malformation and mortality. As-SUMO-1 is a crucial regulation and modification protein resumption of embryonic diapause and early embryo development of A. sinica.
Collapse
Affiliation(s)
- Bing Chu
- College of Life Sciences, Liaoning Normal University, Dalian, PR China
| | - Feng Yao
- College of Life Sciences, Liaoning Normal University, Dalian, PR China
| | - Cheng Cheng
- College of Life Sciences, Liaoning Normal University, Dalian, PR China
| | - Yang Wu
- College of Life Sciences, Liaoning Normal University, Dalian, PR China
| | - Yanli Mei
- College of Life Sciences, Liaoning Normal University, Dalian, PR China
| | - Xuejie Li
- College of Life Sciences, Liaoning Normal University, Dalian, PR China
| | - Yan Liu
- College of Life Sciences, Liaoning Normal University, Dalian, PR China
| | - Peisheng Wang
- Department of Biology, Dalian Medical University, Dalian, PR China
| | - Lin Hou
- College of Life Sciences, Liaoning Normal University, Dalian, PR China
- * E-mail: (LH); (X-YZ)
| | - Xiangyang Zou
- Department of Biology, Dalian Medical University, Dalian, PR China
- * E-mail: (LH); (X-YZ)
| |
Collapse
|
25
|
Klein CA, Droll D, Clayton C. SUMOylation in Trypanosoma brucei. PeerJ 2013; 1:e180. [PMID: 24133638 PMCID: PMC3796365 DOI: 10.7717/peerj.180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 09/18/2013] [Indexed: 11/20/2022] Open
Abstract
Small ubiquitin like modifier (SUMO) proteins are involved in many processes in eukaryotes. We here show that Trypanosoma brucei SUMO (Tb927.5.3210) modifies many proteins. The levels of SUMOylation were unaffected by temperature changes but were increased by severe oxidative stress. We obtained evidence that trypanosome homologues of the SUMO conjugating enzyme Ubc9 (Tb927.2.2460) and the SUMO-specific protease SENP (Tb927.9.2220) are involved in SUMOylation and SUMO removal, respectively.
Collapse
Affiliation(s)
- Cornelia Andrea Klein
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance , Heidelberg , Germany
| | | | | |
Collapse
|
26
|
Dai K, Liao S, Zhang J, Zhang X, Tu X. Structural and functional insight into ADF/cofilin from Trypanosoma brucei. PLoS One 2013; 8:e53639. [PMID: 23326476 PMCID: PMC3541276 DOI: 10.1371/journal.pone.0053639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 12/03/2012] [Indexed: 01/20/2023] Open
Abstract
The ADF/cofilin family has been characterized as a group of actin-binding proteins critical for controlling the assembly of actin within the cells. In this study, the solution structure of the ADF/cofilin from Trypanosoma brucei (TbCof) was determined by NMR spectroscopy. TbCof adopts the conserved ADF/cofilin fold with a central β-sheet composed of six β-strands surrounded by five α-helices. Isothermal titration calorimetry experiments denoted a submicromolar affinity between TbCof and G-actin, and the affinity between TbCof and ADP-G-actin was five times higher than that between TbCof and ATP-G-actin at low ionic strength. The results obtained from electron microscopy and actin filament sedimentation assays showed that TbCof depolymerized but did not co-sediment with actin filaments and its ability of F-actin depolymerization was pH independent. Similar to actin, TbCof was distributed throughout the cytoplasm. All our data indicate a structurally and functionally conserved ADF/cofilin from Trypanosoma brucei.
Collapse
Affiliation(s)
- Kun Dai
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Shanhui Liao
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Xuecheng Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, P.R. China
| | - Xiaoming Tu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P.R. China
- * E-mail:
| |
Collapse
|
27
|
Duncan MR, Fullerton M, Chaudhuri M. Tim50 in Trypanosoma brucei possesses a dual specificity phosphatase activity and is critical for mitochondrial protein import. J Biol Chem 2012; 288:3184-97. [PMID: 23212919 DOI: 10.1074/jbc.m112.436378] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In eukaryotes, proteins are imported into mitochondria via multiprotein translocases of the mitochondrial outer and inner membranes, TOM and TIM, respectively. Trypanosoma brucei, a hemoflagellated parasitic protozoan and the causative agent of African trypanosomiasis, imports about a thousand proteins into the mitochondrion; however, the mitochondrial protein import machinery in this organism is largely unidentified. Here, we characterized a homolog of Tim50 that is localized in the mitochondrial membrane in T. brucei. Similar to Tim50 proteins from fungi and mammals, Tim50 in T. brucei (TbTim50) possesses a mitochondrial targeting signal at its N terminus and a C-terminal domain phosphatase motif at its C terminus. Knockdown of TbTim50 reduced cell growth and inhibited import of proteins that contain N-terminal targeting signals. Co-immunoprecipitation analysis revealed that TbTim50 interacts with TbTim17. Unlike its fungal counterpart but similar to the human homolog of Tim50, recombinant TbTim50 possesses a dual specificity phosphatase activity with a greater affinity for protein tyrosine phosphate than for protein serine/threonine phosphate. Mutation of the aspartic acid residues to alanine in the C-terminal domain phosphatase motif (242)DXDX(V/T)(246) abolished activity for both type of substrates. TbTim50 knockdown increased and its overexpression decreased the level of voltage-dependent anion channel (VDAC). However, the VDAC level was unaltered when the phosphatase-inactive mutant of TbTim50 was overexpressed, suggesting that the phosphatase activity of TbTim50 plays a role in regulation of VDAC expression. In contrast, phosphatase activity of the TbTim50 is required neither for mitochondrial protein import nor for its interaction with TbTim17. Overall, our results show that TbTim50 plays additional roles in mitochondrial activities besides preprotein translocation.
Collapse
Affiliation(s)
- Melanie R Duncan
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee 37208, USA
| | | | | |
Collapse
|
28
|
Gannavaram S, Connelly PS, Daniels MP, Duncan R, Salotra P, Nakhasi HL. Deletion of mitochondrial associated ubiquitin fold modifier protein Ufm1 in Leishmania donovani results in loss of β-oxidation of fatty acids and blocks cell division in the amastigote stage. Mol Microbiol 2012; 86:187-98. [PMID: 22897198 DOI: 10.1111/j.1365-2958.2012.08183.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recently, we described the existence of the ubiquitin fold modifier 1 (Ufm1) and its conjugation pathway in Leishmania donovani. We demonstrated the conjugation of Ufm1 to proteins such as mitochondrial trifunctional protein (MTP) that catalyses β-oxidation of fatty acids in L. donovani. To elucidate the biological roles of the Ufm1-mediated modifications, we made an L. donovani Ufm1 null mutant (Ufm1(-/-)). Loss of Ufm1 and consequently absence of Ufm1 conjugation with MTP resulted in diminished acetyl-CoA, the end-product of the β-oxidation in the Ufm1(-/-) amastigote stage. The Ufm1(-/-) mutants showed reduced survival in the amastigote stage in vitro and ex vivo in human macrophages. This survival was restored by re-expression of wild-type Ufm1 with concomitant induction of acetyl-CoA but not by re-expressing the non-conjugatable Ufm1, indicating the essential nature of Ufm1 conjugation and β-oxidation. Both cell cycle analysis and ultrastructural studies of Ufm1(-/-) parasites confirmed the role of Ufm1 in amastigote growth. The defect in vitro growth of amastigotes in human macrophages was further substantiated by reduced survival. Therefore, these studies suggest the importance of Ufm1 in Leishmania pathogenesis with larger impact on other organisms and further provide an opportunity to test Ufm1(-/-) parasites as drug and vaccine targets.
Collapse
Affiliation(s)
- Sreenivas Gannavaram
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, FDA, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The cell division cycle is tightly regulated by the activation and inactivation of a series of proteins that control the replication and segregation of organelles to the daughter cells. During the past decade, we have witnessed significant advances in our understanding of the cell cycle in Trypanosoma brucei and how the cycle is regulated by various regulatory proteins. However, many other regulators, especially those unique to trypanosomes, remain to be identified, and we are just beginning to delineate the signaling pathways that drive the transitions through different cell cycle stages, such as the G(1)/S transition, G(2)/M transition, and mitosis-cytokinesis transition. Trypanosomes appear to employ both evolutionarily conserved and trypanosome-specific molecules to regulate the various stages of its cell cycle, including DNA replication initiation, spindle assembly, chromosome segregation, and cytokinesis initiation and completion. Strikingly, trypanosomes lack some crucial regulators that are well conserved across evolution, such as Cdc6 and Cdt1, which are involved in DNA replication licensing, the spindle motor kinesin-5, which is required for spindle assembly, the central spindlin complex, which has been implicated in cytokinesis initiation, and the actomyosin contractile ring, which is located at the cleavage furrow. Conversely, trypanosomes possess certain regulators, such as cyclins, cyclin-dependent kinases, and mitotic centromere-associated kinesins, that are greatly expanded and likely play diverse cellular functions. Overall, trypanosomes apparently have integrated unique regulators into the evolutionarily conserved pathways to compensate for the absence of those conserved molecules and, additionally, have evolved certain cell cycle regulatory pathways that are either different from its human host or distinct between its own life cycle forms.
Collapse
|
30
|
Vranych CV, Merino MC, Zamponi N, Touz MC, Rópolo AS. SUMOylation in Giardia lamblia: A Conserved Post-Translational Modification in One of the Earliest Divergent Eukaryotes. Biomolecules 2012; 2:312-30. [PMID: 24970140 PMCID: PMC4030834 DOI: 10.3390/biom2030312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 07/05/2012] [Accepted: 07/13/2012] [Indexed: 11/16/2022] Open
Abstract
Post-translational modifications are able to regulate protein function and cellular processes in a rapid and reversible way. SUMOylation, the post-translational modification of proteins by the addition of SUMO, is a highly conserved process that seems to be present in modern cells. However, the mechanism of protein SUMOylation in earlier divergent eukaryotes, such as Giardia lamblia, is only starting to become apparent. In this work, we report the presence of a single SUMO gene encoding to SUMO protein in Giardia. Monoclonal antibodies against recombinant Giardia SUMO protein revealed the cytoplasmic localization of native SUMO in wild-type trophozoites. Moreover, the over-expression of SUMO protein showed a mainly cytoplasmic localization, though also neighboring the plasma membrane, flagella, and around and even inside the nuclei. Western blot assays revealed a number of SUMOylated proteins in a range between 20 and 120 kDa. The genes corresponding to putative enzymes involved in the SUMOylation pathway were also explored. Our results as a whole suggest that SUMOylation is a process conserved in the eukaryotic lineage, and that its study is significant for understanding the biology of this interesting parasite and the role of post-translational modification in its evolution.
Collapse
Affiliation(s)
- Cecilia V Vranych
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC- CONICET, Friuli 2434, Córdoba, Argentina.
| | - María C Merino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC- CONICET, Friuli 2434, Córdoba, Argentina.
| | - Nahuel Zamponi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC- CONICET, Friuli 2434, Córdoba, Argentina.
| | - María C Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC- CONICET, Friuli 2434, Córdoba, Argentina.
| | - Andrea S Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC- CONICET, Friuli 2434, Córdoba, Argentina.
| |
Collapse
|
31
|
Annoura T, Makiuchi T, Sariego I, Aoki T, Nara T. SUMOylation of paraflagellar rod protein, PFR1, and its stage-specific localization in Trypanosoma cruzi. PLoS One 2012; 7:e37183. [PMID: 22615934 PMCID: PMC3355114 DOI: 10.1371/journal.pone.0037183] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/17/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The flagellate protozoan parasite, Trypanosoma cruzi, is a causative agent of Chagas disease that is transmitted by reduviid bugs to humans. The parasite exists in multiple morphological forms in both vector and host, and cell differentiation in T. cruzi is tightly associated with stage-specific protein synthesis and degradation. However, the specific molecular mechanisms responsible for this coordinated cell differentiation are unclear. METHODOLOGY/PRINCIPAL FINDINGS The SUMO conjugation system plays an important role in specific protein expression. In T. cruzi, a subset of SUMOlylated protein candidates and the nuclear localization of SUMO have been shown. Here, we examined the biological roles of SUMO in T. cruzi. Site-directed mutagenesis analysis of SUMO consensus motifs within T. cruzi SUMO using a bacterial SUMOylation system revealed that T. cruzi SUMO can polymerize. Indirect fluorescence analysis using T. cruzi SUMO-specific antibody showed the extra-nuclear localization of SUMO on the flagellum of epimastigote and metacyclic and bloodstream trypomastigote stages. In the short-flagellate intracellular amastigote, an extra-nuclear distribution of SUMO is associated with basement of the flagellum and becomes distributed along the flagellum as amastigote transforms into trypomastigote. We examined the flagellar target protein of SUMO and show that a paraflagellar rod protein, PFR1, is SUMOylated. CONCLUSIONS These findings indicate that SUMOylation is associated with flagellar homeostasis throughout the parasite life cycle, which may play an important role in differentiation of T. cruzi.
Collapse
Affiliation(s)
| | | | | | | | - Takeshi Nara
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
32
|
Mbita Z, Meyer M, Skepu A, Hosie M, Rees J, Dlamini Z. De-regulation of the RBBP6 isoform 3/DWNN in human cancers. Mol Cell Biochem 2011; 362:249-62. [PMID: 22139301 DOI: 10.1007/s11010-011-1150-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 11/03/2011] [Indexed: 01/30/2023]
Abstract
Retinoblastoma binding protein 6 (RBBP6) is a nuclear protein, previously implicated in the regulation of cell cycle and apoptosis. The human RBBP6 gene codes for three protein isoforms and isoform 3 consists of the domain with no name domain only whilst the other two isoforms, 1 and 2 comprise of additional zinc, RING, retinoblastoma and p53 binding domains. In this study, the localization of RBBP6 using RBBP6 variant 3 mRNA-specific probe was performed to investigate the expression levels of the gene in different tumours and find a link between RBBP6 and human carcinogenesis. Using FISH, real-time PCR and Western blotting analysis our results show that RBBP6 isoform 3 is down-regulated in human cancers. RBBP6 isoform 3 knock-down resulted in reduced G2/M cell cycle arrest whilst its over-expression resulted in increased G2/M cell cycle arrest using propidium iodide DNA staining. The results further demonstrate that the RBBP6 isoform 3 may be the cell cycle regulator and involved in mitotic apoptosis not the isoform 1 as previously reported for mice. In conclusion, these findings suggest that RBBP6 isoform 3 is a cell cycle regulator and may be de-regulated in carcinogenesis.
Collapse
Affiliation(s)
- Zukile Mbita
- College of Agriculture and Environmental Science, University of South Africa, Florida Campus, Johannesburg, South Africa
| | | | | | | | | | | |
Collapse
|
33
|
Bayona JC, Nakayasu ES, Laverrière M, Aguilar C, Sobreira TJP, Choi H, Nesvizhskii AI, Almeida IC, Cazzulo JJ, Alvarez VE. SUMOylation pathway in Trypanosoma cruzi: functional characterization and proteomic analysis of target proteins. Mol Cell Proteomics 2011; 10:M110.007369. [PMID: 21832256 DOI: 10.1074/mcp.m110.007369] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
SUMOylation is a relevant protein post-translational modification in eukaryotes. The C terminus of proteolytically activated small ubiquitin-like modifier (SUMO) is covalently linked to a lysine residue of the target protein by an isopeptide bond, through a mechanism that includes an E1-activating enzyme, an E2-conjugating enzyme, and transfer to the target, sometimes with the assistance of a ligase. The modification is reversed by a protease, also responsible for SUMO maturation. A number of proteins have been identified as SUMO targets, participating in the regulation of cell cycle progression, transcription, translation, ubiquitination, and DNA repair. In this study, we report that orthologous genes corresponding to the SUMOylation pathway are present in the etiological agent of Chagas disease, Trypanosoma cruzi. Furthermore, the SUMOylation system is functionally active in this protozoan parasite, having the requirements for SUMO maturation and conjugation. Immunofluorescence analysis showed that T. cruzi SUMO (TcSUMO) is predominantly found in the nucleus. To identify SUMOylation targets and get an insight into their physiological roles we generated transfectant T. cruzi epimastigote lines expressing a double-tagged T. cruzi SUMO, and SUMOylated proteins were enriched by tandem affinity chromatography. By two-dimensional liquid chromatography-mass spectrometry a total of 236 proteins with diverse biological functions were identified as potential T. cruzi SUMO targets. Of these, metacaspase-3 was biochemically validated as a bona fide SUMOylation substrate. Proteomic studies in other organisms have reported that orthologs of putative T. cruzi SUMOylated proteins are similarly modified, indicating conserved functions for protein SUMOylation in this early divergent eukaryote.
Collapse
|
34
|
Gannavaram S, Sharma P, Duncan RC, Salotra P, Nakhasi HL. Mitochondrial associated ubiquitin fold modifier-1 mediated protein conjugation in Leishmania donovani. PLoS One 2011; 6:e16156. [PMID: 21264253 PMCID: PMC3021533 DOI: 10.1371/journal.pone.0016156] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 12/10/2010] [Indexed: 11/25/2022] Open
Abstract
In this report, we demonstrate the existence of the ubiquitin fold modifier-1 (Ufm1) and its conjugation pathway in trypanosomatid parasite Leishmania donovani. LdUfm1 is activated by E1-like enzyme LdUba5. LdUfc1 (E2) specifically interacted with LdUfm1 and LdUba5 to conjugate LdUfm1 to proteinaceous targets. Mass spectrometry analysis revealed that LdUfm1 is conjugated to Leishmania protein targets that are associated with mitochondria. Immunofluorescence experiments showed that Leishmania Ufm1, Uba5 and Ufc1 are associated with the mitochondria. The demonstration that all the components of this system as well as the substrates are associated with mitochondrion suggests it may have physiological roles not yet described in any other organism. Overexpression of a non-conjugatable form of LdUfm1 and an active site mutant of LdUba5 resulted in reduced survival of Leishmania in the macrophage. Since mitochondrial activities are developmentally regulated in the life cycle of trypanosomatids, Ufm1 mediated modifications of mitochondrial proteins may be important in such regulation. Thus, Ufm1 conjugation pathway in Leishmania could be explored as a potential drug target in the control of Leishmaniasis.
Collapse
Affiliation(s)
- Sreenivas Gannavaram
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Paresh Sharma
- Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, India
| | - Robert C. Duncan
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Poonam Salotra
- Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, India
- * E-mail: (HLN); (PS)
| | - Hira L. Nakhasi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, United States of America
- * E-mail: (HLN); (PS)
| |
Collapse
|
35
|
Obado SO, Bot C, Echeverry MC, Bayona JC, Alvarez VE, Taylor MC, Kelly JM. Centromere-associated topoisomerase activity in bloodstream form Trypanosoma brucei. Nucleic Acids Res 2010; 39:1023-33. [PMID: 20864447 PMCID: PMC3035458 DOI: 10.1093/nar/gkq839] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Topoisomerase-II accumulates at centromeres during prometaphase, where it resolves the DNA catenations that represent the last link between sister chromatids. Previously, using approaches including etoposide-mediated topoisomerase-II cleavage, we mapped centromeric domains in trypanosomes, early branching eukaryotes in which chromosome segregation is poorly understood. Here, we show that in bloodstream form Trypanosoma brucei, RNAi-mediated depletion of topoisomerase-IIα, but not topoisomerase-IIβ, results in the abolition of centromere-localized activity and is lethal. Both phenotypes can be rescued by expression of the corresponding enzyme from T. cruzi. Therefore, processes which govern centromere-specific topoisomerase-II accumulation/activation have been functionally conserved within trypanosomes, despite the long evolutionary separation of these species and differences in centromeric DNA organization. The variable carboxyl terminal region of topoisomerase-II has a major role in regulating biological function. We therefore generated T. brucei lines expressing T. cruzi topoisomerase-II truncated at the carboxyl terminus and examined activity at centromeres after the RNAi-mediated depletion of the endogenous enzyme. A region necessary for nuclear localization was delineated to six residues. In other organisms, sumoylation of topoisomerase-II has been shown to be necessary for regulated chromosome segregation. Evidence that we present here suggests that sumoylation of the T. brucei enzyme is not required for centromere-specific cleavage activity.
Collapse
Affiliation(s)
- Samson O Obado
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | | | | | | | | | | |
Collapse
|