1
|
Yeager R, Riggs DW, DeJarnett N, Tollerud DJ, Wilson J, Conklin DJ, O'Toole TE, McCracken J, Lorkiewicz P, Xie Z, Zafar N, Krishnasamy SS, Srivastava S, Finch J, Keith RJ, DeFilippis A, Rai SN, Liu G, Bhatnagar A. Association Between Residential Greenness and Cardiovascular Disease Risk. J Am Heart Assoc 2018; 7:e009117. [PMID: 30561265 PMCID: PMC6405613 DOI: 10.1161/jaha.118.009117] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Exposure to green vegetation has been linked to positive health, but the pathophysiological processes affected by exposure to vegetation remain unclear. To study the relationship between greenness and cardiovascular disease, we examined the association between residential greenness and biomarkers of cardiovascular injury and disease risk in susceptible individuals. Methods and Results In this cross-sectional study of 408 individuals recruited from a preventive cardiology clinic, we measured biomarkers of cardiovascular injury and risk in participant blood and urine. We estimated greenness from satellite-derived normalized difference vegetation index ( NDVI ) in zones with radii of 250 m and 1 km surrounding the participants' residences. We used generalized estimating equations to examine associations between greenness and cardiovascular disease biomarkers. We adjusted for residential clustering, demographic, clinical, and environmental variables. In fully adjusted models, contemporaneous NDVI within 250 m of participant residence was inversely associated with urinary levels of epinephrine (-6.9%; 95% confidence interval, -11.5, -2.0/0.1 NDVI ) and F2-isoprostane (-9.0%; 95% confidence interval, -15.1, -2.5/0.1 NDVI ). We found stronger associations between NDVI and urinary epinephrine in women, those not on β-blockers, and those who had not previously experienced a myocardial infarction. Of the 15 subtypes of circulating angiogenic cells examined, 11 were inversely associated (8.0-15.6% decrease/0.1 NDVI ), whereas 2 were positively associated (37.6-45.8% increase/0.1 NDVI ) with contemporaneous NDVI . Conclusions Independent of age, sex, race, smoking status, neighborhood deprivation, statin use, and roadway exposure, residential greenness is associated with lower levels of sympathetic activation, reduced oxidative stress, and higher angiogenic capacity.
Collapse
Affiliation(s)
- Ray Yeager
- Envirome InstituteUniversity of LouisvilleLouisvilleKY,Superfund Research CenterUniversity of LouisvilleLouisvilleKY
| | - Daniel W. Riggs
- Envirome InstituteUniversity of LouisvilleLouisvilleKY,Superfund Research CenterUniversity of LouisvilleLouisvilleKY,Department of Bioinformatics and BiostatisticsUniversity of LouisvilleLouisvilleKY
| | - Natasha DeJarnett
- Center for Public Health PolicyAmerican Public Health AssociationWashington D.C.
| | - David J. Tollerud
- Department of Environmental and Occupational Health SciencesUniversity of LouisvilleLouisvilleKY
| | - Jeffrey Wilson
- Department of GeographyIndiana University ‐ Purdue University IndianapolisIndianapolisIN
| | - Daniel J. Conklin
- Envirome InstituteUniversity of LouisvilleLouisvilleKY,Superfund Research CenterUniversity of LouisvilleLouisvilleKY
| | - Timothy E. O'Toole
- Envirome InstituteUniversity of LouisvilleLouisvilleKY,Superfund Research CenterUniversity of LouisvilleLouisvilleKY
| | | | - Pawel Lorkiewicz
- Envirome InstituteUniversity of LouisvilleLouisvilleKY,Superfund Research CenterUniversity of LouisvilleLouisvilleKY
| | - Zhengzhi Xie
- Envirome InstituteUniversity of LouisvilleLouisvilleKY,Superfund Research CenterUniversity of LouisvilleLouisvilleKY
| | - Nagma Zafar
- Department of PediatricsUniversity of LouisvilleLouisvilleKY
| | - Sathya S. Krishnasamy
- Division of Endocrinology, Metabolism & DiabetesUniversity of LouisvilleLouisvilleKY
| | - Sanjay Srivastava
- Envirome InstituteUniversity of LouisvilleLouisvilleKY,Superfund Research CenterUniversity of LouisvilleLouisvilleKY
| | - Jordan Finch
- Envirome InstituteUniversity of LouisvilleLouisvilleKY
| | - Rachel J. Keith
- Envirome InstituteUniversity of LouisvilleLouisvilleKY,Superfund Research CenterUniversity of LouisvilleLouisvilleKY
| | - Andrew DeFilippis
- Envirome InstituteUniversity of LouisvilleLouisvilleKY,Division of Cardiovascular MedicineUniversity of LouisvilleLouisvilleKY
| | - Shesh N. Rai
- Department of Bioinformatics and BiostatisticsUniversity of LouisvilleLouisvilleKY,Biostatistics and Bioinformatics Shared FacilityJames Graham Brown Cancer CenterUniversity of LouisvilleLouisvilleKY
| | - Gilbert Liu
- Department of PediatricsUniversity of LouisvilleLouisvilleKY
| | - Aruni Bhatnagar
- Envirome InstituteUniversity of LouisvilleLouisvilleKY,Superfund Research CenterUniversity of LouisvilleLouisvilleKY
| |
Collapse
|
2
|
Phytochemicals Targeting Estrogen Receptors: Beneficial Rather Than Adverse Effects? Int J Mol Sci 2017; 18:ijms18071381. [PMID: 28657580 PMCID: PMC5535874 DOI: 10.3390/ijms18071381] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/19/2017] [Accepted: 06/24/2017] [Indexed: 12/31/2022] Open
Abstract
In mammals, the effects of estrogen are mainly mediated by two different estrogen receptors, ERα and ERβ. These proteins are members of the nuclear receptor family, characterized by distinct structural and functional domains, and participate in the regulation of different biological processes, including cell growth, survival and differentiation. The two estrogen receptor (ER) subtypes are generated from two distinct genes and have partially distinct expression patterns. Their activities are modulated differently by a range of natural and synthetic ligands. Some of these ligands show agonistic or antagonistic effects depending on ER subtype and are described as selective ER modulators (SERMs). Accordingly, a few phytochemicals, called phytoestrogens, which are synthesized from plants and vegetables, show low estrogenic activity or anti-estrogenic activity with potentially anti-proliferative effects that offer nutraceutical or pharmacological advantages. These compounds may be used as hormonal substitutes or as complements in breast cancer treatments. In this review, we discuss and summarize the in vitro and in vivo effects of certain phytoestrogens and their potential roles in the interaction with estrogen receptors.
Collapse
|
3
|
Effect on Multipotency and Phenotypic Transition of Unrestricted Somatic Stem Cells from Human Umbilical Cord Blood after Treatment with Epigenetic Agents. Stem Cells Int 2015; 2016:7643218. [PMID: 26788071 PMCID: PMC4691642 DOI: 10.1155/2016/7643218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/19/2022] Open
Abstract
The epigenetic mechanism of DNA methylation is of central importance for cellular differentiation processes. Unrestricted somatic stem cells (USSCs) from human umbilical cord blood, which have a broad differentiation spectrum, reside in an uncommitted epigenetic state with partial methylation of the regulatory region of the gene coding for the pluripotency master regulator OCT4. Thus we hypothesized that further opening of this “poised” epigenetic state could broaden the differentiation potential of USSCs. Here we document that USSCs drastically change their phenotype after treatment by a new elaborated cultivation protocol which utilizes the DNA hypomethylating compound 5′-aza-2-deoxycytidine (5-Aza-CdR) and the histone deacetylase inhibitor trichostatin A (TSA). This treatment leads to a new stable, spheroid-forming cell type which we have named SpheUSSC. These cells can be stably propagated over at least 150 cell divisions, express OCT4, retain the potential to undergo osteogenic differentiation, and have additionally acquired the ability to uniformly differentiate into adipocytes, unlike the source USSC population. Here we describe our treatment protocol and provide evidence that it induces a dedifferentiation step and concomitantly the acquisition of an extended differentiation capability of the new SpheUSSC type.
Collapse
|
4
|
Whiteley J, Bielecki R, Li M, Chua S, Ward MR, Yamanaka N, Stewart DJ, Casper RF, Rogers IM. An expanded population of CD34+ cells from frozen banked umbilical cord blood demonstrate tissue repair mechanisms of mesenchymal stromal cells and circulating angiogenic cells in an ischemic hind limb model. Stem Cell Rev Rep 2014; 10:338-50. [PMID: 24443055 DOI: 10.1007/s12015-014-9496-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Peripheral vascular disease affects ~20 % of the population over 50 years of age and is a complication of type 2 diabetes. Cell therapy studies revealed that cells from older or diabetic donors have a reduced capacity to induce tissue repair compared to healthy and younger cells. This fact greatly impedes the use of autologous cells for treatment. Umbilical cord blood CD34+ cells are a source of angiogenic cells but unlike bone marrow CD34+ angiogenic cells, achieving clinically significant cell numbers has been difficult without in vitro expansion. We report here that culturing CD34+/CD45+ blood cells from frozen umbilical cord blood units in a medium supplemented with FGF4, SCF and FLT3-ligand produced a population of cells that remain CD34+/CD45+ but have an increased capacity for tissue healing. The cultured CD34+ cells were compared directly to non-cultured CD34+ cells in a mouse model of ischemia. Cultured CD34+ cells demonstrated strong paracrine signaling as well as the capacity to differentiate into endothelial cells, smooth muscle and striated muscle. We observed an improvement in blood flow and a significant reduction in foot necrosis. A second study was completed to assess the safety of the cells. No adverse effects were associated with the injection of the cultured cells. Our method described here for culturing umbilical cord blood cells resulted in cells with a strong paracrine effect that induces substantial tissue repair in a murine model of hind limb ischemia and evidence of engraftment and differentiation of the cultured cells into new vasculature and muscle.
Collapse
Affiliation(s)
- Jennifer Whiteley
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Rm. 5-1015A 25 Orde St, Toronto, M5G 1X5, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Boyette LB, Tuan RS. Adult Stem Cells and Diseases of Aging. J Clin Med 2014; 3:88-134. [PMID: 24757526 PMCID: PMC3992297 DOI: 10.3390/jcm3010088] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/15/2013] [Accepted: 12/17/2013] [Indexed: 02/06/2023] Open
Abstract
Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan.
Collapse
Affiliation(s)
- Lisa B Boyette
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; ; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; ; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA ; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
6
|
LEE HYERIM, KIM TAEHEE, CHOI KELVINJ, CHOI KYUNGCHUL. Effects of octylphenol on the expression of cell cycle-related genes and the growth of mesenchymal stem cells derived from human umbilical cord blood. Int J Mol Med 2013; 33:221-6. [DOI: 10.3892/ijmm.2013.1556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/08/2013] [Indexed: 11/06/2022] Open
|
7
|
Ponce-Regalado MD, Ortuño-Sahagún D, Zarate CB, Gudiño-Cabrera G. Ensheathing cell-conditioned medium directs the differentiation of human umbilical cord blood cells into aldynoglial phenotype cells. Hum Cell 2012; 25:51-60. [PMID: 22529032 DOI: 10.1007/s13577-012-0044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
Abstract
Despite their similarities to bone marrow precursor cells (PC), human umbilical cord blood (HUCB) PCs are more immature and, thus, they exhibit greater plasticity. This plasticity is evident by their ability to proliferate and spontaneously differentiate into almost any cell type, depending on their environment. Moreover, HUCB-PCs yield an accessible cell population that can be grown in culture and differentiated into glial, neuronal and other cell phenotypes. HUCB-PCs offer many potential therapeutic benefits, particularly in the area of neural replacement. We sought to induce the differentiation of HUCB-PCs into glial cells, known as aldynoglia. These cells can promote neuronal regeneration after lesion and they can be transplanted into areas affected by several pathologies, which represents an important therapeutic strategy to treat central nervous system damage. To induce differentiation to the aldynoglia phenotype, HUCB-PCs were exposed to different culture media. Mononuclear cells from HUCB were isolated and purified by identification of CD34 and CD133 antigens, and after 12 days in culture, differentiation of CD34+ HUCB-PCs to an aldynoglia phenotypic, but not that of CD133+ cells, was induced in ensheathing cell (EC)-conditioned medium. Thus, we demonstrate that the differentiation of HUCB-PCs into aldynoglia cells in EC-conditioned medium can provide a new source of aldynoglial cells for use in transplants to treat injuries or neurodegenerative diseases.
Collapse
Affiliation(s)
- María Dolores Ponce-Regalado
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Instituto de Neurobiología, C.U.C.B.A, Universidad de Guadalajara, Apdo. Postal 52-126, 45021, Guadalajara, Jalisco, Mexico
| | | | | | | |
Collapse
|
8
|
Chua SJ, Casper RF, Rogers IM. Toward transgene-free induced pluripotent stem cells: lessons from transdifferentiation studies. Cell Reprogram 2011; 13:273-80. [PMID: 21599518 DOI: 10.1089/cell.2010.0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Abstract Regenerative medicine has received much attention over the years due to its clinical and commercial potential. The excitement around regenerative medicine waxes and wanes as new discoveries add to its foundation but are not immediately clinically applicable. The recent discovery of induced pluripotent stem cells has lead to a sustained effort from many research groups to develop clinically relevant regenerative medicine therapies. A major focus of cellular reprogramming is to generate safe cellular products through the use of proteins or small molecules instead of transgenes. The successful reprogramming of somatic nuclei to generate pluripotential cells capable of embryo development was pioneered over 50 years ago by Briggs and King and followed by Gurdon in the early 1960s. The success of these studies, the cloning of Dolly, and more current studies involving adult stem cells and transdifferentiation provide us with a large repository of potential candidate molecules and experimental systems that will assist in the generation of safe, transgene-free pluripotential cells.
Collapse
Affiliation(s)
- Shawn J Chua
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
9
|
Racila D, Winter M, Said M, Tomanek-Chalkley A, Wiechert S, Eckert RL, Bickenbach JR. Transient expression of OCT4 is sufficient to allow human keratinocytes to change their differentiation pathway. Gene Ther 2010; 18:294-303. [PMID: 20981110 PMCID: PMC3032017 DOI: 10.1038/gt.2010.148] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, we describe a simple system in which human keratinocytes can be redirected to an alternative differentiation pathway. We transiently transfected freshly isolated human skin keratinocytes with the single transcription factor OCT4. Within 2 days these cells displayed expression of endogenous embryonic genes and showed reduced genomic methylation. More importantly, these cells could be specifically converted into neuronal and contractile mesenchymal cell types. Redirected differentiation was confirmed by expression of neuronal and mesenchymal cell mRNA and protein, and through a functional assay in which the newly differentiated mesenchymal cells contracted collagen gels as efficiently as authentic myofibroblasts. Thus, to generate patient-specific cells for therapeutic purposes, it may not be necessary to completely reprogram somatic cells into induced pluripotent stem cells before altering their differentiation and grafting them into new tissues.
Collapse
Affiliation(s)
- D Racila
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | | | | | | | | | | |
Collapse
|