1
|
Boland L, Bitterlich LM, Hogan AE, Ankrum JA, English K. Translating MSC Therapy in the Age of Obesity. Front Immunol 2022; 13:943333. [PMID: 35860241 PMCID: PMC9289617 DOI: 10.3389/fimmu.2022.943333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cell (MSC) therapy has seen increased attention as a possible option to treat a number of inflammatory conditions including COVID-19 acute respiratory distress syndrome (ARDS). As rates of obesity and metabolic disease continue to rise worldwide, increasing proportions of patients treated with MSC therapy will be living with obesity. The obese environment poses critical challenges for immunomodulatory therapies that should be accounted for during development and testing of MSCs. In this review, we look to cancer immunotherapy as a model for the challenges MSCs may face in obese environments. We then outline current evidence that obesity alters MSC immunomodulatory function, drastically modifies the host immune system, and therefore reshapes interactions between MSCs and immune cells. Finally, we argue that obese environments may alter essential features of allogeneic MSCs and offer potential strategies for licensing of MSCs to enhance their efficacy in the obese microenvironment. Our aim is to combine insights from basic research in MSC biology and clinical trials to inform new strategies to ensure MSC therapy is effective for a broad range of patients.
Collapse
Affiliation(s)
- Lauren Boland
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Laura Melanie Bitterlich
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - Andrew E. Hogan
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - James A. Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- *Correspondence: James A. Ankrum, ; Karen English,
| | - Karen English
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
- *Correspondence: James A. Ankrum, ; Karen English,
| |
Collapse
|
2
|
Kuca-Warnawin E, Olesińska M, Szczȩsny P, Kontny E. Impact and Possible Mechanism(s) of Adipose Tissue-Derived Mesenchymal Stem Cells on T-Cell Proliferation in Patients With Rheumatic Disease. Front Physiol 2022; 12:749481. [PMID: 35095547 PMCID: PMC8793746 DOI: 10.3389/fphys.2021.749481] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Objectives: Systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) are chronic wasting, incurable rheumatic diseases of autoimmune background, in which T cells play a critical pathogenic role. Autologous adipose tissue-derived mesenchymal stem cells (ASCs) may represent an alternative therapeutic option for SLE and SSc patients, but the biology of these cells is poorly understood. Methods: Herein, we evaluated the anti-proliferative impact of ASCs of healthy donors (HD/ASCs, 5 reference cell lines), SLE patients (n = 20), and SSc patients (n = 20) on T lymphocytes. To assess the direct and indirect pathway of ASCs action, peripheral blood mononuclear cells (PBMCs) and purified CD4+ T cells of HD were activated and co-cultured in cell-to-cell contact (C-C) and transwell (T-W) conditions with untreated or cytokine (TNF + IFNΥ, TI)-licensed ASCs, then analyzed by flow cytometry to rate the proliferation response of CD8+ and/or CD4+ T cells. The concentrations of kynurenines, prostaglandin E2 (PGE2), interleukin 10 (IL-10), and transforming growth factor β (TGFβ) were measured from culture supernatants. Specific inhibitors of these factors (1-MT, indomethacin, and cytokine-neutralizing antibody) were used to assess their contribution to anti-proliferative ASCs action. Results: All tested ASCs significantly decreased the number of proliferating CD4+ and CD8+ T cells, the number of division/proliferating cell (PI), and fold expansion (RI), and similarly upregulated kynurenines and PGE2, but not cytokine levels, in the co-cultures with both types of target cells. However, TI-treated SLE/ASCs and SSc/ASCs exerted a slightly weaker inhibitory effect on CD4+ T-cell replication than their respective HD/ASCs. All ASCs acted mainly via soluble factors. Their anti-proliferative effect was stronger, and kynurenine levels were higher in the T-W condition than the C-C condition. Blocking experiments indicated an involvement of kynurenine pathway in inhibiting the number of proliferating cells, PI, and RI values as well as PGE2 role in decreasing the number of proliferating cells. TGFβ did not contribute to ASCs anti-proliferative capabilities, while IL-10 seems to be involved in such activity of only SLE/ASCs. Conclusion: The results indicate that SLE/ASCs and SSc/ASCs retain their capability to restrain the expansion of allogeneic CD4+ and CD8+ T cells and act by similar mechanisms as ASCs of healthy donors and thus may have therapeutic value.
Collapse
Affiliation(s)
- Ewa Kuca-Warnawin
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Marzena Olesińska
- Clinic of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Piotr Szczȩsny
- Clinic of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Ewa Kontny
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| |
Collapse
|
3
|
Aleahmad M, Bozorgmehr M, Nikoo S, Ghanavatinejad A, Shokri MR, Montazeri S, Shokri F, Zarnani AH. Endometrial mesenchymal stem/stromal cells: The Enigma to code messages for generation of functionally active regulatory T cells. Stem Cell Res Ther 2021; 12:536. [PMID: 34627370 PMCID: PMC8502414 DOI: 10.1186/s13287-021-02603-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/23/2021] [Indexed: 12/04/2022] Open
Abstract
Background Regulatory T cells (Tregs) play an important role in fine-tuning of immune responses and are pivotal for a successful pregnancy. Recently, the importance of mesenchymal stem cells in regulation of immune responses in general and Tregs in particular has been highlighted. Here, we hypothesized that menstrual stromal/stem cells (MenSCs) contribute to uterine immune system regulation through induction of functionally active Tregs. Methods MenSCs were collected from 18 apparently healthy women and characterized. Bone marrow mesenchymal stem cells (BMSCs) served as a control. The effect of MenSCs on proliferation of anti-CD3/CD28-stimulated T CD4 + cells and generation of Tregs with or without pre-treatment with mitomycin C, IFN-γ and IL-1β was evaluated by flow cytometry. The potential role of IDO, PGE2, IL-6, IL-10, and TGF-β on proliferation of T CD4 + cells and generation of Tregs was assessed using blocking antibodies or agents. IDO activity was evaluated in MenSCs and BMSCs culture supernatants by a colorimetric assay. IL-10 and IFN-γ production in MenSCs-primed T CD4 + was measured using intracellular staining. To investigate the functional properties of Tregs induced by MenSCs, Treg cells were isolated and their functional property to inhibit proliferation of anti-CD3/CD28-stimulated PBMCs was assessed by flow cytometry. Results According to the results, proliferation of T CD4 + lymphocytes was enhanced in the presence of MenSCs, while pre-treatment of MenSCs with pro-inflammatory cytokines reversed this effect. PGE2 and IDO were the major players in MenSCs-induced T cell proliferation. Non-treated MenSCs decreased the frequency of Tregs, whereas after pre-treatment with IFN-γ and IL-1β, they induced functional Tregs with ability to inhibit the proliferation of anti-CD3/CD28-stimulated PBMCs. This effect was mediated through IL-6, IL-10, TGF-β and IDO. IFN-γ/IL-1β-treated MenSCs induced IL-10 and IFN-γ production in CD4 + T cells. Conclusion Collectively, these findings indicate that immunomodulatory impact of menstrual blood stem cells (MenSCs) on generation of Tregs and inhibition of T cells proliferation is largely dependent on pre-treatment with IFN-γ and IL-1β. This is the first report on immunomodulatory impact of MenSCs on Tregs and highlights the pivotal role of endometrial stem cells in regulation of local endometrial immune responses. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02603-3.
Collapse
Affiliation(s)
- Mehdi Aleahmad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, P.O. Box: 1417613151, Tehran, Iran
| | - Mahmood Bozorgmehr
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Shohreh Nikoo
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Ghanavatinejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, P.O. Box: 1417613151, Tehran, Iran
| | - Mohammad-Reza Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, P.O. Box: 1417613151, Tehran, Iran
| | - Samaneh Montazeri
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, P.O. Box: 1417613151, Tehran, Iran.
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, P.O. Box: 1417613151, Tehran, Iran. .,Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran. .,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Direct anti-proliferative effect of adipose-derived mesenchymal stem cells of ankylosing spondylitis patients on allogenic CD4+ cells. Reumatologia 2021; 59:12-22. [PMID: 33707791 PMCID: PMC7944962 DOI: 10.5114/reum.2021.103940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/14/2021] [Indexed: 11/17/2022] Open
Abstract
Objectives T-cell-mediated adaptive immunity contributes to the development and persistence of ankylosing spondylitis (AS). Mesenchymal stromal/stem cells (MSCs) have immunomodulatory potential and are able to inhibit T-cell proliferation, but their functionality in AS patients is relatively unknown. The aim of the study was to assess the direct anti-proliferative effects of MSCs isolated from subcutaneous abdominal adipose tissue of AS patients (AS/ASCs) on allogeneic T lymphocytes, using commercially available ASC lines from healthy donors (HD/ASCs) as a control. Material and methods CD3+CD4+ T-cells were isolated from peripheral blood of healthy blood donors, activated with anti-CD3/CD28 beads, and co-cultured for 5 days with untreated and TNF+IFN-γ pre-stimulated HD/ASCs (5 cell lines) and AS/ASCs, obtained from 11 patients (6F/5M). The proliferative response of T-cells was analysed by flow cytometry, while the concentrations of kynurenines, prostaglandin E2 (PGE-2), interleukin 10 (IL-10), and interleukin 1 receptor antagonist (IL-1Ra) were measured spectrophotometrically or using a specific enzyme-linked immunosorbent assay (ELISA). Results HD/ASCs and AS/ASCs similarly reduced the T-cell proliferation response, i.e. the percentage of proliferating cells, the proliferation, and replication indices, and these effects were dependent mostly on soluble factors. In the co-cultures of activated CD4+ T-cells with HD/ASCs and AS/ASCs significant increases of kynurenines, PGE-2, and IL-1Ra, but not IL-10, production were observed. The release of these factors was dependent either on cell-to-cell contact (IL-10, IL-1Ra) or soluble factors (kynurenines, PGE-2). There was a moderate to strong negative correlation between T-cell proliferative response, and the concentrations of kynurenines, PGE-2, and IL-10, but not IL-1Ra. This association was more evident in the case of TI-treated AS/ASCs than HD/ASCs. Conclusions AS/ASCs, similar to HD/ASCs, exert a direct effective anti-proliferative impact on CD4+ T cells, acting via soluble factors that are released in cell contact-dependent (IL-10) and independent (kynurenines, PGE-2) pathways. Thus, our results suggest that AS/ASCs are potentially useful for therapeutic application.
Collapse
|
5
|
Inhibition of Allogeneic and Autologous T Cell Proliferation by Adipose-Derived Mesenchymal Stem Cells of Ankylosing Spondylitis Patients. Stem Cells Int 2021; 2021:6637328. [PMID: 33777148 PMCID: PMC7979299 DOI: 10.1155/2021/6637328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/17/2021] [Accepted: 02/15/2021] [Indexed: 01/14/2023] Open
Abstract
Background In ankylosing spondylitis (AS), accompanied by chronic inflammation, T cell expansion plays a pathogenic role; the immunoregulatory properties of bone marrow-derived mesenchymal stem cells (BM-MSCs) are impaired, while functional characteristics of their adipose tissue-derived counterparts are (ASCs) unknown. Methods We evaluated the antiproliferative activity of AS/ASCs, obtained from 20 patients, towards allogeneic and autologous T lymphocytes, using ASCs from healthy donors (HD/ASCs) as the reference cell lines. The PHA-activated peripheral blood mononuclear cells (PBMCs) were cocultured in cell-cell contact and transwell conditions with untreated or TNF + IFNγ- (TI-) licensed ASCs, then analyzed by flow cytometry to identify proliferating and nonproliferating CD4+ and CD8+ T cells. The concentrations of kynurenines, prostaglandin E2 (PGE2), and IL-10 were measured in culture supernatants. Results In an allogeneic system, HD/ASCs and AS/ASCs similarly decreased the proliferation of CD4+ and CD8+ T cells and acted mainly via soluble factors. The concentrations of kynurenines and PGE2 inversely correlated with T cell proliferation, and selective inhibitors of these factors synthesis significantly restored T cell response. AS/ASCs exerted a similar antiproliferative impact also on autologous T cells. Conclusion We report for the first time that despite chronic in vivo exposure to inflammatory conditions, AS/ASCs retain the normal capability to restrain expansion of allogeneic and autologous CD4+ and CD8+ T cells, act primarily via kynurenines and PGE2, and thus may have potential therapeutic value. Some distinctions between the antiproliferative effects of AS/ASCs and HD/ASCs suggest in vivo licensing of AS/ASCs.
Collapse
|
6
|
Gao Y, Wu G, Xu Y, Zhao D, Zheng L. Stem Cell-Based Therapy for Asherman Syndrome: Promises and Challenges. Cell Transplant 2021; 30:9636897211020734. [PMID: 34105392 PMCID: PMC8193648 DOI: 10.1177/09636897211020734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/23/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
Asherman syndrome (AS) has an adverse effect on reproductive health and fertility by affecting endometrial regeneration. Stem cell-based therapies hold promise for future use in activating non-functional endometrium and reconstructing the endometrium in vivo. It has been postulated that various endometrial stem cells (EnSCs) are responsible for endometrial regeneration. Numerous studies have focused on bone marrow-derived stem cells (BMDSCs), which may provide new ideas for repairing endometrial lesions and reconstructing the endometrium. Other sources of stem cells, such as menstrual blood, umbilical cord, and amniotic membrane, have also attracted much attention as candidates for transplantation in AS. This review discusses the features and specific biomarkers among four types of resident endometrial stem cells, applications of four different sources of exogenous stem cells in AS, and development of stem cell therapy using biomaterials and exosomes.
Collapse
Affiliation(s)
- Yiyin Gao
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Guijie Wu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Xu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Donghai Zhao
- Department of Pathology, Jilin Medical University, Jilin, Jilin, China
| | - Lianwen Zheng
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Dai J, Umrath F, Reinert S, Alexander D. Jaw Periosteal Cells Seeded in Beta-Tricalcium Phosphate Inhibit Dendritic Cell Maturation. Biomolecules 2020; 10:biom10060887. [PMID: 32531991 PMCID: PMC7355649 DOI: 10.3390/biom10060887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 01/03/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have gained attraction not only in the field of regenerative medicine but also in the field of autoimmune disease therapies or organ transplantation due to their immunoregulatory and/or immunosuppressive features. Dendritic cells (DCs) play a crucial role in initiating and regulating immune reactions by promoting antigen-specific T cell activation. In this study, we investigated the effect of human jaw periosteal progenitor cells (JPCs) seeded in beta-tricalcium phosphate (β-TCP) scaffolds on monocyte-derived DC differentiation. Significantly lower numbers of differentiated DCs were observed in the presence of normal (Co) and osteogenically induced (Ob) JPCs-seeded β-TCP constructs. Gene expression analysis revealed significantly lower interleukin-12 subunit p35 (IL-12p35) and interleukin-12 receptor beta 2 (IL-12Rβ2) and pro-inflammatory cytokine interferon-gamma (IFN-γ) levels in DCs under Ob conditions, while interleukin-8 (IL-8) gene levels were significantly increased. Furthermore, in the presence of JPCs-seeded β-TCP constructs, interleukin-10 (IL-10) gene expression was significantly induced in DCs, particularly under Ob conditions. Analysis of DC protein levels shows that granulocyte-colony stimulating factor (G-CSF) was significantly upregulated in coculture groups. Our results indicate that undifferentiated and osteogenically induced JPCs-seeded β-TCP constructs have an overall inhibitory effect on monocyte-derived DC maturation.
Collapse
|
8
|
Dilogo IH, Canintika AF, Hanitya AL, Pawitan JA, Liem IK, Pandelaki J. Umbilical cord-derived mesenchymal stem cells for treating osteoarthritis of the knee: a single-arm, open-label study. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2020; 30:799-807. [PMID: 31989258 DOI: 10.1007/s00590-020-02630-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Despite being a common cause of quality-of-life impairment, there are no efficacious therapies that could prevent the progression of knee osteoarthritis (KOA). We conducted an open-label trial of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and hyaluronic acid (HA) for treating KOA. METHODS This open-label study was conducted from July 2015 to December 2018 at Cipto Mangunkusumo Hospital, Jakarta, Indonesia. Patients diagnosed with KOA were injected three times, comprising of 10 × 106 units of hUC-MSCs in 2-ml secretome implantation and 2-ml hyaluronic acid (HA) injection in the first week, followed with 2-ml HA injection twice in the second and third week. RESULTS Twenty-nine subjects (57 knees) were recruited. Seventeen (58.6%) subjects were male, and the mean age was 58.3 ± 9.6 years. Thirty-three (57.9%) knees were classified into Kellgren-Lawrence grade I-II KOA (mild OA). hUC-MSCs significantly decreased pain measured by visual analogue scale in severe KOA from initial to 6th month follow-up [5 ± 2.97 to 3.38 ± 2.44 (p = 0.035)]. The International Knee Documentation Committee score significantly increased at 6th month follow-up (53.26 ± 16.66 to 65.49 ± 13.01, p < 0.001, in subjects with grade I-II and 48.84 ± 18.41 to 61.83 ± 18.83, p = 0.008, in subjects with severe KOA). The Western Ontario and McMaster Universities Osteoarthritis decreased significantly in both groups from initial to 6th month follow-up (from 22.55 ± 15.94 to 13.23 ± 10.29, p = 0.003, and from 27.57 ± 15.99 to 17.92 ± 19.1, p = 0.003, in those with mild and severe KOA, respectively). CONCLUSIONS hUC-MSCs could be a potentially new regenerative treatment for KOA. The maximum effect of hUC-MSCs was achieved after 6 months of injection. LEVEL OF EVIDENCE Therapeutic level II.
Collapse
Affiliation(s)
- Ismail Hadisoebroto Dilogo
- Department of Orthopaedics and Traumatology, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia. .,Stem Cell Medical Technology Integrated Medical Service Unit, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia. .,Stem Cell and Tissue Engineering Research Center, IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| | - Anissa Feby Canintika
- Department of Orthopaedics and Traumatology, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Alberto Lastiko Hanitya
- Department of Orthopaedics and Traumatology, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Jeanne Adiwinata Pawitan
- Stem Cell Medical Technology Integrated Medical Service Unit, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Stem Cell and Tissue Engineering Research Center, IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Isabella Kurnia Liem
- Stem Cell Medical Technology Integrated Medical Service Unit, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Stem Cell and Tissue Engineering Research Center, IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Jacub Pandelaki
- Department of Radiology, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
9
|
Cao Y, Sun H, Zhu H, Zhu X, Tang X, Yan G, Wang J, Bai D, Wang J, Wang L, Zhou Q, Wang H, Dai C, Ding L, Xu B, Zhou Y, Hao J, Dai J, Hu Y. Allogeneic cell therapy using umbilical cord MSCs on collagen scaffolds for patients with recurrent uterine adhesion: a phase I clinical trial. Stem Cell Res Ther 2018; 9:192. [PMID: 29996892 PMCID: PMC6042450 DOI: 10.1186/s13287-018-0904-3] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/14/2018] [Accepted: 05/14/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intrauterine adhesions (IUA) are the most common cause of uterine infertility and are caused by endometrium fibrotic regeneration following severe damage to the endometrium. Although current stem cell treatment options using different types of autologous stem cells have exhibited some beneficial outcomes in IUA patients, the reported drawbacks include variable therapeutic efficacies, invasiveness and treatment unavailability. Therefore, the development of new therapeutic stem cell treatments is critical to improving clinical outcomes. METHODS Twenty-six patients who suffered from infertility caused by recurrent IUA were enrolled in this prospective, non-controlled, phase I clinical trial with a 30-month follow-up. During the procedure, 1 × 107 umbilical cord-derived mesenchymal stromal cells (UC-MSCs), loaded onto a collagen scaffold, were transplanted into the uterine cavity following an adhesion separation procedure. Medical history, physical examination, endometrial thickness, intrauterine adhesion score and the biological molecules related to endometrial proliferation and differentiation were assessed both before and 3 months after cell therapy. RESULTS No treatment-related serious adverse events were found. Three months after the operation, the average maximum endometrial thickness in patients increased, and the intrauterine adhesion score decreased compared to those before the treatment. A histological study showed the upregulation of ERα (estrogen receptor α), vimentin, Ki67 and vWF (von Willebrand factor) expression levels and the downregulation of ΔNP63 expression level, which indicates an improvement in endometrial proliferation, differentiation and neovascularization following treatment. DNA short tandem repeat (STR) analysis showed that the regenerated endometrium contained patient DNA only. By the end of the 30-month follow-up period, ten of the 26 patients had become pregnant, and eight of them had delivered live babies with no obvious birth defects and without placental complications, one patient in the third trimester of pregnancy, and one had a spontaneous abortion at 7 weeks. CONCLUSIONS Transplanting clinical-grade UC-MSCs loaded onto a degradable collagen scaffold into the uterine cavity of patients with recurrent IUA following adhesiolysis surgery is a safety and effective therapeutic method. TRIAL REGISTRATION Clinicaltrials.gov . NCT02313415 , Registered December 6, 2014.
Collapse
Affiliation(s)
- Yun Cao
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Haixiang Sun
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hui Zhu
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xianghong Zhu
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoqiu Tang
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Guijun Yan
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jingmei Wang
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Donghui Bai
- Institute of Zoology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang district, Beijing, 100101, China
| | - Juan Wang
- Institute of Zoology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang district, Beijing, 100101, China
| | - Liu Wang
- Institute of Zoology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang district, Beijing, 100101, China
| | - Qi Zhou
- Institute of Zoology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang district, Beijing, 100101, China
| | - Huiyan Wang
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Chengyan Dai
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lijun Ding
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Biyun Xu
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yan Zhou
- University of California, San Francisco, CA, USA
| | - Jie Hao
- Institute of Zoology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang district, Beijing, 100101, China.
| | - Jianwu Dai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing, 100190, China.
| | - Yali Hu
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China. .,Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital and Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, 321 Zhongshan Road, Nanjing, China.
| |
Collapse
|
10
|
Ma L, Zhou Z, Zhang D, Yang S, Wang J, Xue F, Yang Y, Yang R. Immunosuppressive function of mesenchymal stem cells from human umbilical cord matrix in immune thrombocytopenia patients. Thromb Haemost 2017; 107:937-50. [DOI: 10.1160/th11-08-0596] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 01/18/2012] [Indexed: 01/12/2023]
Abstract
SummaryHuman umbilical cord matrix/Wharton's Jelly (hUC)-derived mesenchymal stem cells (MSC) have been shown to have marked therapeutic effects in a number of inflammatory diseases and autoimmune diseases in humans based on their potential for immunosuppression and their low immunogenicity. Currently, no data are available on the effectiveness of UC-MSC transplantation in immune thrombocytopenia (ITP) patients. It was the objective of this study to assess the effect of allogeneic UC-MSCs on ITP patients in vitro and in vivo. Peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells (BM-MNCs) from ITP patients and healthy controls were co-cultured with UC-MSCs for three days and seven days, respectively. Flow cytometry and ELISA were applied to assess the various parameters. In PBMCs from ITP patients, the proliferation of autoreactive T, B lymphocytes and destruction of autologous platelets were dramatically suppressed by UC-MSCs. UC-MSCs not only suppressed co-stimulatory molecules CD80, CD40L and FasL expression but also in shifting Th1/Th2/Treg cytokines profile in ITP patients. UC-MSCs obviously reversed the dysfunctions of megakaryocytes by promoting platelet production and decreasing the number of living megakaryocytes as well as early apoptosis. In addition, the level of thrombopoietin was increased significantly. Our clinical study showed that UC-MSCs play a role in alleviating refractory ITP by increasing platelet numbers. These findings suggested that UC-MSCs transplantation might be a potential therapy for ITP.
Collapse
|
11
|
Yang ZX, Chi Y, Ji YR, Wang YW, Zhang J, Luo WF, Li LN, Hu CD, Zhuo GS, Wang LF, Han ZB, Han ZC. Human umbilical cord mesenchymal stem cells increase interleukin-9 production of CD4 + T cells. Exp Ther Med 2017; 14:3541-3548. [PMID: 29042945 PMCID: PMC5639408 DOI: 10.3892/etm.2017.4952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 07/12/2017] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSC) are able to differentiate into cells of multiple lineage, and additionally act to modulate the immune response. Interleukin (IL)-9 is primarily produced by cluster of differentiation (CD)4+ T cells to regulate the immune response. The present study aimed to investigate the effect of human umbilical cord derived-MSC (UC-MSC) on IL-9 production of human CD4+ T cells. It was demonstrated that the addition of UC-MSC to the culture of CD4+ T cells significantly enhanced IL-9 production by CD4+ T cells. Transwell experiments suggested that UC-MSC promotion of IL-9 production by CD4+ T cells was dependent on cell-cell contact. Upregulated expression of CD106 was observed in UC-MSC co-cultured with CD4+ T cells, and the addition of a blocking antibody of CD106 significantly impaired the ability of UC-MSC to promote IL-9 production by CD4+ T cells. Therefore, the results of the present study demonstrated that UC-MSC promoted the generation of IL-9 producing cells, which may be mediated, in part by CD106. The findings may act to expand understanding and knowledge of the immune modulatory role of UC-MSC.
Collapse
Affiliation(s)
- Zhou Xin Yang
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin 300020, P.R. China.,Zhejiang Provincial Key Laboratory of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Ying Chi
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin 300020, P.R. China
| | - Yue Ru Ji
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin 300020, P.R. China
| | - You Wei Wang
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin 300020, P.R. China.,National Engineering Research Center of Cell Products, Tianjin 300457, P.R. China
| | - Jing Zhang
- Zhejiang Provincial Key Laboratory of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Wei Feng Luo
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Li Na Li
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Cai Dong Hu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Guang Sheng Zhuo
- Beijing Institute of Health and Stem Cells, Beijing 100176, P.R. China
| | - Li Fang Wang
- Department of Basic Medicine, Zhejiang Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhi-Bo Han
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin 300020, P.R. China.,National Engineering Research Center of Cell Products, Tianjin 300457, P.R. China
| | - Zhong Chao Han
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin 300020, P.R. China.,National Engineering Research Center of Cell Products, Tianjin 300457, P.R. China
| |
Collapse
|
12
|
Chang YH, Liu HW, Wu KC, Ding DC. Mesenchymal Stem Cells and Their Clinical Applications in Osteoarthritis. Cell Transplant 2016; 25:937-50. [DOI: 10.3727/096368915x690288] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis is a chronic degenerative joint disorder characterized by articular cartilage destruction and osteophyte formation. Chondrocytes in the matrix have a relatively slow turnover rate, and the tissue itself lacks a blood supply to support repair and remodeling. Researchers have evaluated the effectiveness of stem cell therapy and tissue engineering for treating osteoarthritis. All sources of stem cells, including embryonic, induced pluripotent, fetal, and adult stem cells, have potential use in stem cell therapy, which provides a permanent biological solution. Mesenchymal stem cells (MSCs) isolated from bone marrow, adipose tissue, and umbilical cord show considerable promise for use in cartilage repair. MSCs can be sourced from any or all joint tissues and can modulate the immune response. Additionally, MSCs can directly differentiate into chondrocytes under appropriate signal transduction. They also have immunosuppressive and anti-inflammatory paracrine effects. This article reviews the current clinical applications of MSCs and future directions of research in osteoarthritis.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Department of Pediatrics, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Hwan-Wun Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Occupational Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Kun-Chi Wu
- Department of Orthopedics, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Dah-Ching Ding
- Department of Pediatrics, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Department of Obstetrics and Gynecology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| |
Collapse
|
13
|
Wise AF, Williams TM, Rudd S, Wells CA, Kerr PG, Ricardo SD. Human mesenchymal stem cells alter the gene profile of monocytes from patients with Type 2 diabetes and end-stage renal disease. Regen Med 2015; 11:145-58. [PMID: 26544198 DOI: 10.2217/rme.15.74] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM Macrophage infiltration contributes to the pathogenesis of Type 2 diabetes. Mesenchymal stem cells (MSCs) possess immunomodulatory properties, making them an ideal candidate for therapeutic intervention. This study investigated whether MSCs can modulate the phenotype of monocytes isolated from Type 2 diabetic patients with end-stage renal disease. MATERIALS & METHODS Monocytes from control (n = 4) and Type 2 diabetic patients with end-stage renal disease (n = 5) were assessed using flow cytometry and microarray profiling, following 48 h of co-culture with MSCs. RESULTS Control subjects had a greater proportion of CD14(++)CD16(-) monocytes while diabetic patients had a higher proportion of CD14(++)CD16(+) and CD14(+)CD16(++) monocytes. MSCs promoted the proliferation of monocytes isolated from diabetic patients, reduced HLA-DR expression in both groups and promoted the expression of anti-inflammatory genes. CONCLUSION MSC-derived factors alter the polarization of monocytes isolated from healthy and diabetic subjects toward an M2 phenotype.
Collapse
Affiliation(s)
- Andrea F Wise
- Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Timothy M Williams
- Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Stephen Rudd
- Queensland Facility for Advanced Bioinformatics (QFAB), University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Christine A Wells
- The Australian Institute for Bioengineering & Nanotechnology, University of Queensland, St Lucia, Queensland, 4072, Australia.,Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, G12 8TA, UK
| | - Peter G Kerr
- Department of Medicine, Monash Medical Centre, Clayton, Victoria, 3168, Australia
| | - Sharon D Ricardo
- Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
14
|
Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration. Methods 2015; 99:69-80. [PMID: 26384579 DOI: 10.1016/j.ymeth.2015.09.015] [Citation(s) in RCA: 320] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/10/2015] [Accepted: 09/15/2015] [Indexed: 01/15/2023] Open
Abstract
Musculoskeletal disorders represent a major cause of disability and morbidity globally and result in enormous costs for health and social care systems. Development of cell-based therapies is rapidly proliferating in a number of disease areas, including musculoskeletal disorders. Novel biological therapies that can effectively treat joint and spine degeneration are high priorities in regenerative medicine. Mesenchymal stem cells (MSCs) isolated from bone marrow (BM-MSCs), adipose tissue (AD-MSCs) and umbilical cord (UC-MSCs) show considerable promise for use in cartilage and intervertebral disc (IVD) repair. This review article focuses on stem cell-based therapeutics for cartilage and IVD repair in the context of the rising global burden of musculoskeletal disorders. We discuss the biology MSCs and chondroprogenitor cells and specifically focus on umbilical cord/Wharton's jelly derived MSCs and examine their potential for regenerative applications. We also summarize key components of the molecular machinery and signaling pathways responsible for the control of chondrogenesis and explore biomimetic scaffolds and biomaterials for articular cartilage and IVD regeneration. This review explores the exciting opportunities afforded by MSCs and discusses the challenges associated with cartilage and IVD repair and regeneration. There are still many technical challenges associated with isolating, expanding, differentiating, and pre-conditioning MSCs for subsequent implantation into degenerate joints and the spine. However, the prospect of combining biomaterials and cell-based therapies that incorporate chondrocytes, chondroprogenitors and MSCs leads to the optimistic view that interdisciplinary approaches will lead to significant breakthroughs in regenerating musculoskeletal tissues, such as the joint and the spine in the near future.
Collapse
|
15
|
He H, Nagamura-Inoue T, Takahashi A, Mori Y, Yamamoto Y, Shimazu T, Tsunoda H, Tojo A. Immunosuppressive properties of Wharton’s jelly-derived mesenchymal stromal cells in vitro. Int J Hematol 2015; 102:368-78. [DOI: 10.1007/s12185-015-1844-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 01/29/2023]
|
16
|
Li X, Du W, Ma FX, Feng X, Bayard F, Han ZC. High Concentrations of TNF-α Induce Cell Death during Interactions between Human Umbilical Cord Mesenchymal Stem Cells and Peripheral Blood Mononuclear Cells. PLoS One 2015; 10:e0128647. [PMID: 26023782 PMCID: PMC4448993 DOI: 10.1371/journal.pone.0128647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/29/2015] [Indexed: 12/29/2022] Open
Abstract
Human umbilical cord mesenchymal stromal cells (hUC-MSCs) are currently being used as novel therapeutic agents in numerous clinical trials. Previous works have shown that hUC-MSCs possess profound immunomodulatory capacities through IL-1 stimulation produced by peripheral blood mononuclear cells (PBMCs), their main cellular partner in most pathophysiological and therapeutic situations. The present study was designed to explore the role of TNF-α in these interactions. In these experiments, we demonstrated that TNF-α originated from PBMCs under the influence of IL-1. We also showed that TNF-α acted differently depending upon the concentrations reached. At low concentrations it clearly contributed to IL-6 and monocyte chemotactic protein 1 (MCP-1) production. At high concentrations, used alone or in association with the TNF-related apoptosis-inducing ligand, TNF-α also stimulated hUC-MSC IL-6 but, more intensely, MCP-1 production. This stimulation was associated but independent of apoptosis induction in a process involving Inhibitor of Apoptosis Proteins. Interferon gamma (IFN-γ), tested to stimulate PBMC and tissue activation, amplified IL-6 and MCP-1 production and cell death by, apparently, a different process involving necrosis. Our findings bring new insights into the complex interactions between hUC-MSCs and PBMCs, involving cytokines, chemokines and cell death, and are of fundamental importance for tissue homeostasis.
Collapse
Affiliation(s)
- Xue Li
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin, China
| | - Wenjing Du
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin, China
| | - Feng Xia Ma
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin, China
| | - Xiaoming Feng
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin, China
| | - Francis Bayard
- Institut de Médecine Moléculaire de Rangueil, Institut National de la Santé et de la Recherche Médicale, Toulouse, France
- * E-mail: (FB); (ZCH)
| | - Zhong Chao Han
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin, China
- National Engineering Research Center of Cell Products, AmCellGene Co. Ltd., TEDA, Tianjin, China
- * E-mail: (FB); (ZCH)
| |
Collapse
|
17
|
Widowati W, Wijaya L, Murti H, Widyastuti H, Agustina D, Laksmitawati DR, Fauziah N, Sumitro SB, Widodo MA, Bachtiar I. Conditioned medium from normoxia (WJMSCs-norCM) and hypoxia-treated WJMSCs (WJMSCs-hypoCM) in inhibiting cancer cell proliferation. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.bgm.2014.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Implantation of human umbilical cord mesenchymal stem cells for ischemic stroke: perspectives and challenges. Front Med 2014; 9:20-9. [DOI: 10.1007/s11684-014-0371-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 08/12/2014] [Indexed: 01/01/2023]
|
19
|
Human mesenchymal stem cells possess different biological characteristics but do not change their therapeutic potential when cultured in serum free medium. Stem Cell Res Ther 2014; 5:132. [PMID: 25476802 PMCID: PMC4445567 DOI: 10.1186/scrt522] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) are widely investigated in clinical researches to treat various diseases. Classic culture medium for MSCs, even for clinical use, contains fetal bovine serum. The serum-containing medium (SCM) seems a major obstacle for MSCs-related therapies due to the risk of contamination of infectious pathogens. Some studies showed that MSCs could be expanded in serum free medium (SFM); however, whether SFM would change the biological characteristics and safety issues of MSCs has not been well answered. Methods Human umbilical cord mesenchymal stem cells (hUC-MSCs) were cultured in a chemical defined serum free medium. Growth, multipotency, surface antigen expression, telomerase, immunosuppressive ability, gene expression profile and genomic stability of hUC-MSCs cultured in SFM and SCM were analyzed and compared side by side. Results hUC-MSCs propagated more slowly and senesce ultimately in SFM. SFM-expanded hUC-MSCs were different from SCM-expanded hUC-MSCs in growth rate, telomerase, gene expression profile. However, SFM-expanded hUC-MSCs maintained multipotency and the profile of surface antigen which were used to define human MSCs. Both SFM- and SCM-expanded hUC-MSCs gained copy number variation (CNV) in long-term in vitro culture. Conclusion hUC-MCSs could be expanded in SFM safely to obtain enough cells for clinical application, meeting the basic criteria for human mesenchymal stem cells. hUC-MSCs cultured in SFM were distinct from hUC-MSCs cultured in SCM, yet they remained therapeutic potentials for future regenerative medicine. Electronic supplementary material The online version of this article (doi:10.1186/scrt522) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Masson S, Caironi P, Fanizza C, Thomae R, Bernasconi R, Noto A, Oggioni R, Pasetti GS, Romero M, Tognoni G, Latini R, Gattinoni L. Circulating presepsin (soluble CD14 subtype) as a marker of host response in patients with severe sepsis or septic shock: data from the multicenter, randomized ALBIOS trial. Intensive Care Med 2014; 41:12-20. [PMID: 25319385 DOI: 10.1007/s00134-014-3514-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/06/2014] [Indexed: 02/06/2023]
Abstract
PURPOSE Presepsin is a soluble fragment of the cluster-of-differentiation marker protein 14 (CD14) involved in pathogen recognition by innate immunity. We evaluated the relation between its circulating concentration, host response, appropriateness of antibiotic therapy, and mortality in patients with severe sepsis. METHODS Plasma presepsin was measured 1, 2, and 7 days after enrollment of 997 patients with severe sepsis or septic shock in the multicenter Albumin Italian Outcome Sepsis (ALBIOS) trial. They were randomized to albumin or crystalloids. We tested with univariate and adjusted models the association of single measurements of presepsin or changes over time with clinical events, organ dysfunctions, appropriateness of antibiotic therapy, and ICU or 90-day mortality. RESULTS Presepsin concentration at baseline (946 [492-1,887] ng/L) increased with the SOFA score, the number of prevalent organ dysfunctions or failures, and the incidence of new failures of the respiratory, coagulation, liver, and kidney systems. The concentration decreased in ICU over 7 days in patients with negative blood cultures, and in those with positive blood cultures and appropriate antibiotic therapy; it increased with inappropriate antibiotic therapy (p = 0.0009). Baseline presepsin was independently associated with, and correctly reclassified, the risk of ICU and 90-day mortality. Increasing concentrations of presepsin from day 1 to day 2 predicted higher ICU and 90-day mortality (adjusted p < 0.0001 and 0.01, respectively). Albumin had no effect on presepsin concentration. CONCLUSIONS Presepsin is an early predictor of host response and mortality in septic patients. Changes in concentrations over time seem to reflect the appropriateness of antibiotic therapy.
Collapse
Affiliation(s)
- Serge Masson
- Department of Cardiovascular Research, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via Privata Giuseppe La Masa 19, 20156, Milan, Italy,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cuerquis J, Romieu-Mourez R, François M, Routy JP, Young YK, Zhao J, Eliopoulos N. Human mesenchymal stromal cells transiently increase cytokine production by activated T cells before suppressing T-cell proliferation: effect of interferon-γ and tumor necrosis factor-α stimulation. Cytotherapy 2014; 16:191-202. [PMID: 24438900 DOI: 10.1016/j.jcyt.2013.11.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 10/12/2013] [Accepted: 11/16/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) suppress T-cell proliferation, especially after activation with inflammatory cytokines. We compared the dynamic action of unprimed and interferon (IFN)-γ plus tumor necrosis factor (TNF)-α-pretreated human bone marrow-derived MSCs on resting or activated T cells. METHODS MSCs were co-cultured with allogeneic peripheral blood mononuclear cells (PBMCs) at high MSC-to-PBMC ratios in the absence or presence of concomitant CD3/CD28-induced T-cell activation. The kinetic effects of MSCs on cytokine production and T-cell proliferation, cell cycle and apoptosis were assessed. RESULTS Unprimed MSCs increased the early production of IFN-γ and interleukin (IL)-2 by CD3/CD28-activated PBMCs before suppressing T-cell proliferation. In non-activated PBMC co-cultures, low levels of IL-2 and IL-10 synthesis were observed with MSCs in addition to low levels of CD69 expression by T cells and no T-cell proliferation. MSCs also decreased apoptosis in resting and activated T cells and inhibited the transition of these cells into the sub-G0/G1 and the S phases. With inhibition of indoleamine 2,3 dioxygenase, MSCs increased CD3/CD28-induced T-cell proliferation. After priming with IFN-γ plus TNF-α, MSCs were less potent at increasing cytokine production by CD3/CD28-activated PBMCs and more effective at inhibiting T-cell proliferation but had preserved anti-apoptotic functions. CONCLUSIONS Unprimed MSCs induce a transient increase in IFN-γ and IL-2 synthesis by activated T cells. Pre-treatment of MSCs with IFN-γ plus TNF-α may increase their effectiveness and safety in vivo.
Collapse
Affiliation(s)
- Jessica Cuerquis
- Lady Davis Institute for Medical Research and Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada
| | - Raphaëlle Romieu-Mourez
- Lady Davis Institute for Medical Research and Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada
| | - Moïra François
- Lady Davis Institute for Medical Research and Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada
| | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Yoon Kow Young
- Lady Davis Institute for Medical Research and Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada
| | - Jing Zhao
- Lady Davis Institute for Medical Research and Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada
| | - Nicoletta Eliopoulos
- Lady Davis Institute for Medical Research and Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada; Department of Surgery, Division of Surgical Research, McGill University, Montreal, Quebec, Canada; Department of Oncology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
22
|
T cells from autoimmune patients display reduced sensitivity to immunoregulation by mesenchymal stem cells: role of IL-2. Autoimmun Rev 2013; 13:187-96. [PMID: 24121085 DOI: 10.1016/j.autrev.2013.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 09/26/2013] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitor cells which have been shown to possess broad immunoregulatory and anti-inflammatory capabilities, making them a promising tool to treat autoimmune diseases (AIDs). Nevertheless, as in recent years T cells from AID patients have been found to resist suppression by regulatory T cells, the question of whether they could be regulated by MSCs arises. To use MSCs as a therapeutic tool in human autoimmune diseases, one prerequisite is that T cells from autoimmune patients will be sensitive to these stem cells. The aim of this work was to investigate the ability of healthy donor derived MSCs to inhibit the proliferation of T cells from two pathophysiologically different AIDs: Multiple Sclerosis (MS) and Myasthenia Gravis (MG). We show that MSC-induced inhibition of interferon-γ production and surface expression of the CD3, CD4 and CD28 receptors by activated lymphocytes was similar in the AID patients and healthy controls. Contrarily, the MSCs' ability to suppress the proliferation of T cells of both diseases was significantly weaker compared to their ability to affect T cells of healthy individuals. Although we found that the inhibitory mechanism is mediated through CD14+ monocytes, the faulty cellular component is the patients' T cells. MSC-treated MS and MG lymphocytes were shown to produce significantly more IL-2 than healthy subjects while coupling of the MSC treatment with neutralizing IL-2 antibodies resulted in inhibition levels similar to those of the healthy controls. MSCs were also found to down-regulate the lymphocyte surface expression of the IL-2 receptor (CD25) through both transcription inhibition and induction of receptor shedding. Addition of IL-2 to MSC-inhibited lymphocytes restored proliferation thus suggesting a key role played by this cytokine in the inhibitory mechanism. Taken together, these results demonstrate the potential of a MSC-based cellular therapy for MS, MG and possibly other autoimmune diseases but also highlight the need for a better understanding of the underlying mechanisms for development and optimization of clinical protocols.
Collapse
|
23
|
CD106 identifies a subpopulation of mesenchymal stem cells with unique immunomodulatory properties. PLoS One 2013; 8:e59354. [PMID: 23555021 PMCID: PMC3595282 DOI: 10.1371/journal.pone.0059354] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/13/2013] [Indexed: 01/27/2023] Open
Abstract
Mesenchymal stem cells (MSCs) reside in almost all of the body tissues, where they undergo self-renewal and multi-lineage differentiation. MSCs derived from different tissues share many similarities but also show some differences in term of biological properties. We aim to search for significant differences among various sources of MSCs and to explore their implications in physiopathology and clinical translation. We compared the phenotype and biological properties among different MSCs isolated from human term placental chorionic villi (CV), umbilical cord (UC), adult bone marrow (BM) and adipose (AD). We found that CD106 (VCAM-1) was expressed highest on the CV-MSCs, moderately on BM-MSCs, lightly on UC-MSCs and absent on AD-MSCs. CV-MSCs also showed unique immune-associated gene expression and immunomodulation. We thus separated CD106(+)cells and CD106(-)cells from CV-MSCs and compared their biological activities. Both two subpopulations were capable of osteogenic and adipogenic differentiation while CD106(+)CV-MSCs were more effective to modulate T helper subsets but possessed decreased colony formation capacity. In addition, CD106(+)CV-MSCs expressed more cytokines than CD106(-)CV-MSCs. These data demonstrate that CD106 identifies a subpopulation of CV-MSCs with unique immunoregulatory activity and reveal a previously unrecognized mechanism underlying immunomodulation of MSCs.
Collapse
|
24
|
Ji YR, Yang ZX, Han ZB, Meng L, Liang L, Feng XM, Yang SG, Chi Y, Chen DD, Wang YW, Han ZC. Mesenchymal stem cells support proliferation and terminal differentiation of B cells. Cell Physiol Biochem 2012; 30:1526-37. [PMID: 23235695 DOI: 10.1159/000343340] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSC) play important roles in modulating the activities of T lymphocytes, dendritic cells and natural killer cells. These immunoregulatory properties of MSC suggest their therapeutic potential in autoimmune diseases. However, the effects of MSC on B cells are still poorly understood. The present study was designed to investigate the interaction between MSC and B cells both in vitro and in vivo, and to determine the possible mechanism of action. DESIGN AND METHOD The effect of human umbilical cord mesenchymal stem cells (UC-MSC) on proliferation and differentiation of B-cells were characterized in vitro, and we also tested the immunoregulatory properties of mouse bone marrow MSC (BM-MSC) on T cell dependent and independent antibody production in vivo in mice. RESULTS Treatment with human UC-MSC resulted in an increase of proliferation, differentiation of B cells into plasma cells and production of antibodies in vitro. Mouse BM-MSC significantly enhanced T cell dependent and independent antibodies production in vivo in mice. PGE2 partially mediated the immunosuppressive activity of human UC-MSC but IL-6 did not regulate this activity. CONCLUSION MSC promote proliferation and differentiation of B cells in vitro and in vivo partially through PGE2 but not IL-6.
Collapse
Affiliation(s)
- Yue Ru Ji
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Maria Spaggiari G, Moretta L. Cellular and molecular interactions of mesenchymal stem cells in innate immunity. Immunol Cell Biol 2012; 91:27-31. [DOI: 10.1038/icb.2012.62] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Liew A, O'Brien T. Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia. Stem Cell Res Ther 2012; 3:28. [PMID: 22846185 PMCID: PMC3580466 DOI: 10.1186/scrt119] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The therapeutic potential of mesenchymal stem cell (MSC) transplantation for the treatment of ischemic conditions such as coronary artery disease, peripheral arterial disease, and stroke has been explored in animal models and early-phase clinical trials. A substantial database documents the safety profile of MSC administration to humans in a large number of disease states. The mechanism of the therapeutic effect of MSC transplantation in ischemic disease has been postulated to be due to paracrine, immunomodulatory, and differentiation effects. This review provides an overview of the potential role of MSC-based therapy for critical limb ischemia (CLI), the comparison of MSC cellular therapy with angiogenesis gene therapy in CLI, and the proposed mechanism of action of MSC therapy. Preclinical efficacy data in animal models of hindlimb ischemia, current early-phase human trial data, and considerations for future MSC-based therapy in CLI will also be discussed.
Collapse
|
27
|
Fisher-Shoval Y, Barhum Y, Sadan O, Yust-Katz S, Ben-Zur T, Lev N, Benkler C, Hod M, Melamed E, Offen D. Transplantation of placenta-derived mesenchymal stem cells in the EAE mouse model of MS. J Mol Neurosci 2012; 48:176-84. [PMID: 22638856 DOI: 10.1007/s12031-012-9805-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/03/2012] [Indexed: 02/07/2023]
Abstract
Stem cell-based regenerative medicine raises great hope for the treatment of multiple sclerosis (MS). Bone marrow-derived mesenchymal stem cells (BM-MSCs) are being tested in clinical trials. Bone marrow is the traditional source of human MSCs, but human term placenta appears to be an excellent alternative because of its availability, without ethical issues. In this study, the therapeutic effect of human placental MSCs (PL-MSCs) was evaluated in experimental autoimmune encephalomyelitis (EAE), the mice model of MS. EAE mice were transplanted intra-cerebrally with PL-MSCs or with the vehicle saline 5 or 10 days after first MOG injection. The mice were monitored for a month after therapy. A daily EAE score revealed a decrease in disease severity in the transplanted animals when compared to saline. Survival was significantly higher in the transplanted animals. In vitro experiments demonstrated that conditioned media from LPS-activated astrocytes stimulated PL-MSCs to express the gene TNF-α-stimulated gene/protein 6 (TSG-6). The same mRNA expression was obtained when PL-MSCs were exposed to TNF-α or IL1-β. These results demonstrate that PL-MSCs have a therapeutic effect in the EAE mice model. We assume that this effect is caused by reduction of the anti-inflammatory protein, TSG-6, of the inflammatory damage.
Collapse
Affiliation(s)
- Yonit Fisher-Shoval
- Neuroscience Laboratory, Felsenstein Medical Research Center-Tel Aviv University, Petah Tikva, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Current approaches aiming to cure type 1 diabetes (T1D) have made a negligible number of patients insulin-independent. In this review, we revisit the role of stem cell (SC)-based applications in curing T1D. The optimal therapeutic approach for T1D should ideally preserve the remaining β-cells, restore β-cell function, and protect the replaced insulin-producing cells from autoimmunity. SCs possess immunological and regenerative properties that could be harnessed to improve the treatment of T1D; indeed, SCs may reestablish peripheral tolerance toward β-cells through reshaping of the immune response and inhibition of autoreactive T-cell function. Furthermore, SC-derived insulin-producing cells are capable of engrafting and reversing hyperglycemia in mice. Bone marrow mesenchymal SCs display a hypoimmunogenic phenotype as well as a broad range of immunomodulatory capabilities, they have been shown to cure newly diabetic nonobese diabetic (NOD) mice, and they are currently undergoing evaluation in two clinical trials. Cord blood SCs have been shown to facilitate the generation of regulatory T cells, thereby reverting hyperglycemia in NOD mice. T1D patients treated with cord blood SCs also did not show any adverse reaction in the absence of major effects on glycometabolic control. Although hematopoietic SCs rarely revert hyperglycemia in NOD mice, they exhibit profound immunomodulatory properties in humans; newly hyperglycemic T1D patients have been successfully reverted to normoglycemia with autologous nonmyeloablative hematopoietic SC transplantation. Finally, embryonic SCs also offer exciting prospects because they are able to generate glucose-responsive insulin-producing cells. Easy enthusiasm should be mitigated mainly because of the potential oncogenicity of SCs.
Collapse
Affiliation(s)
- Paolo Fiorina
- Transplantation Research Center, Division of Nephrology, Children's Hospital/Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
29
|
Montanucci P, Basta G, Pescara T, Pennoni I, Giovanni FD, Calafiore R. New Simple and Rapid Method for Purification of Mesenchymal Stem Cells from the Human Umbilical Cord Wharton Jelly. Tissue Eng Part A 2011; 17:2651-61. [DOI: 10.1089/ten.tea.2010.0587] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Pia Montanucci
- Section of Internal Medicine and Endocrine and Metabolic Sciences (Di.M.I.), Department of Internal Medicine, University of Perugia, Perugia, Italy
| | - Giuseppe Basta
- Section of Internal Medicine and Endocrine and Metabolic Sciences (Di.M.I.), Department of Internal Medicine, University of Perugia, Perugia, Italy
| | - Teresa Pescara
- Section of Internal Medicine and Endocrine and Metabolic Sciences (Di.M.I.), Department of Internal Medicine, University of Perugia, Perugia, Italy
| | - Ilaria Pennoni
- Section of Internal Medicine and Endocrine and Metabolic Sciences (Di.M.I.), Department of Internal Medicine, University of Perugia, Perugia, Italy
| | - Francesca Di Giovanni
- Section of Internal Medicine and Endocrine and Metabolic Sciences (Di.M.I.), Department of Internal Medicine, University of Perugia, Perugia, Italy
| | - Riccardo Calafiore
- Section of Internal Medicine and Endocrine and Metabolic Sciences (Di.M.I.), Department of Internal Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
30
|
Du Rocher B, Mencalha AL, Gomes BE, Abdelhay E. Mesenchymal stromal cells impair the differentiation of CD14(++) CD16(-) CD64(+) classical monocytes into CD14(++) CD16(+) CD64(++) activate monocytes. Cytotherapy 2011; 14:12-25. [PMID: 21838603 DOI: 10.3109/14653249.2011.594792] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSC) possess immunomodulatory activity both in vitro and in vivo. However, little information is available regarding their function during the initiation of immunologic responses through their interactions with monocytes. While many studies have shown that MSC impair the differentiation of monocytes into dendritic cells and macrophages, there are few articles showing the interaction between MSC and monocytes and none of them has addressed the question of monocyte subset modulation. METHODS To understand better the mechanism behind the benefit of MSC infusion for graft-versus-host treatment through monocyte involvement, we performed mixed leucocyte reactions (MLR) in the presence and absence of MSC. After 3 and 7 days, cultures were analyzed by flow cytometry using different approaches. RESULTS MSC induced changes in monocyte phenotype in an MLR. This alteration was accompanied by an increase in monocyte counting and CD14 expression. MSC induced monocyte alterations even without contact, although the parameters above were more pronounced with cell-cell contact. Moreover, the presence of MSC impaired major histocompatibility complex (MHC) I and II, CD11c and CCR5 expression and induced CD14 and CD64 expression on monocytes. These alterations were accompanied by a decrease in interleukin (IL)-1β and IL-6 production by these monocytes, but no change was observed taking into account the phagocytosis capacity of these monocytes. CONCLUSIONS Our results suggest that MSC impair the differentiation of CD14(++) CD16(-) CD64(+) classical monocytes into CD14(++) CD16(+) CD64(++) activated monocytes, having an even earlier role than the differentiation of monocytes into dendritic cells and macrophages.
Collapse
Affiliation(s)
- Bárbara Du Rocher
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, Laboratório de Célula Tronco, Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|
31
|
Chen PM, Yen ML, Liu KJ, Sytwu HK, Yen BL. Immunomodulatory properties of human adult and fetal multipotent mesenchymal stem cells. J Biomed Sci 2011; 18:49. [PMID: 21762539 PMCID: PMC3156728 DOI: 10.1186/1423-0127-18-49] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/18/2011] [Indexed: 02/06/2023] Open
Abstract
In recent years, a large number of studies have contributed to our understanding of the immunomodulatory mechanisms used by multipotent mesenchymal stem cells (MSCs). Initially isolated from the bone marrow (BM), MSCs have been found in many tissues but the strong immunomodulatory properties are best studied in BM MSCs. The immunomodulatory effects of BM MSCs are wide, extending to T lymphocytes and dendritic cells, and are therapeutically useful for treatment of immune-related diseases including graft-versus-host disease as well as possibly autoimmune diseases. However, BM MSCs are very rare cells and require an invasive procedure for procurement. Recently, MSCs have also been found in fetal-stage embryo-proper and extra-embryonic tissues, and these human fetal MSCs (F-MSCs) have a higher proliferative profile, and are capable of multilineage differentiation as well as exert strong immunomodulatory effects. As such, these F-MSCs can be viewed as alternative sources of MSCs. We review here the current understanding of the mechanisms behind the immunomodulatory properties of BM MSCs and F-MSCs. An increase in our understanding of MSC suppressor mechanisms will offer insights for prevalent clinical use of these versatile adult stem cells in the near future.
Collapse
Affiliation(s)
- Pei-Min Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | | | | | | | | |
Collapse
|
32
|
Sun J, Han ZB, Liao W, Yang SG, Yang Z, Yu J, Meng L, Wu R, Han ZC. Intrapulmonary delivery of human umbilical cord mesenchymal stem cells attenuates acute lung injury by expanding CD4+CD25+ Forkhead Boxp3 (FOXP3)+ regulatory T cells and balancing anti- and pro-inflammatory factors. Cell Physiol Biochem 2011; 27:587-96. [PMID: 21691076 DOI: 10.1159/000329980] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Systemic and local inflammatory processes play key, mainly detrimental roles in the pathophysiology of acute lung injury (ALI). The present study was designed to determine whether human umbilical cord mesenchymal stem cells (UCMSC) are able to act on CD4(+)CD25(+) Foxp3(+)Treg cells and lead to an improvement in ALI. METHODS Mice were administered intratracheally endotoxin (lipopolysaccharide [LPS]) and received intrapulmonary 1×10(6) UCMSC 4 hours after challenge. The CD4(+)CD25(+) Foxp3(+)Treg, survival time, body weight, histology and lung injury scores were assessed after transplantation of UCMSC. In addition, anti-inflammatory factor IL10 and pro-inflammatory mediators production including tumor necrosis factor-a (TNF-α), macrophage inflammatory protein-2(MIP-2) and interferon-γ (IFN-γ) were detected. RESULTS Transplantation of UCMSC resulted in significant increase in the level of CD4(+)CD25(+) Foxp3(+)Treg in ALI. Increased level of anti-inflammatory factor IL-10 and reduced levels of TNF-α, MIP-2 and IFN-γ were simultaneously observed in ALI in comparison with control mice. CONCLUSION Our data demonstrate for the first time that transplantation of UCMSC ameliorates ALI by enhancing the diminished levels of alveolar CD4(+)CD25(+) Foxp3(+)Treg and balancing anti- and pro-inflammatory factors in ALI mice.
Collapse
Affiliation(s)
- Jun Sun
- The State Key Laboratory of Experimental Hematology, National Engineering Technology Research Center of Stem Cells, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences, 288 Nanjing Road, Tianjin, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kronsteiner B, Wolbank S, Peterbauer A, Hackl C, Redl H, van Griensven M, Gabriel C. Human mesenchymal stem cells from adipose tissue and amnion influence T-cells depending on stimulation method and presence of other immune cells. Stem Cells Dev 2011; 20:2115-26. [PMID: 21381973 DOI: 10.1089/scd.2011.0031] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitor cells exerting immunomodulatory effects on cells of the innate and adaptive immune system. It has been shown that an inflammatory milieu is required for the activation of MSC-mediated immunomodulation, and interferon-γ (IFN-γ) plays an important role in this process. We determined the influence of IFN-γ on human adipose-derived stem cells (ASCs) and human amniotic mesenchymal stromal cells (hAMSCs). We further evaluated the effect of MSCs on stimulated T-cells and peripheral blood mononuclear cells (PBMCs) in a cell-contact independent setting. On IFN-γ treatment, ASCs and hAMSCs possessed significantly higher antiproliferative properties and showed surface characteristics of nonprofessional antigen presenting cells (HLA-DR(+)CD40(med+)CD54(high)) with a possible regulatory phenotype (PD-L1(+)PD-L2(+)). The effect of ASCs and hAMSCs on cytokine secretion and T-cell activation was dependent on stimulation method and cellular context. Although ASCs and hAMSCs highly inhibited cytokine secretion of stimulated PBMCs, this was not observed in the case of purified T-cells. The presence of ASCs even favored the secretion of pro-inflammatory cytokines including IFN-γ by T-cells, although T-cell proliferation was efficiently inhibited. Further, ASCs enhanced the number of CD69(+) T-cells independent of the stimuli and cellular context. Interestingly, ASCs significantly suppressed CD25 expression on phytohemagglutinin stimulated PBMCs but had no effect on αCD3/αCD28 stimulated cells. Depending on the stimulation method and cellular context, immune cells create a specific cytokine milieu in vitro, thus differently influencing MSCs and, in turn, affecting their action on immune cells.
Collapse
|
34
|
Wu J, Li J, Zhang N, Zhang C. Stem cell-based therapies in ischemic heart diseases: a focus on aspects of microcirculation and inflammation. Basic Res Cardiol 2011; 106:317-24. [PMID: 21424917 DOI: 10.1007/s00395-011-0168-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 02/09/2011] [Accepted: 02/22/2011] [Indexed: 11/28/2022]
Abstract
Stem cells possessing the potential to replace damaged myocardium with functional myocytes have drawn increasing attention in the past decade in treating ischemic heart diseases; these diseases are the leading cause of morbidity and mortality in the world. The adult heart has recently been shown to contain a few cardiac stem cells (CSCs) that, in theory, suggest cardiac repair following acute myocardial infarction is possible if the CSC titer could be increased. Stem cell-based therapies, including hematopoietic stem cells and mesenchymal stem cells, were proven to be marginal and transitional. Multiple factors and mechanisms, rather than direct cardiac regeneration are involved in stem cell-mediated cardiac functional improvement. This review will focus on (1) the interaction between inflammation and stem cells; (2) the fate of stem cells at the microcirculatory level, and their subsequent influences on stem cell-based therapies.
Collapse
Affiliation(s)
- Junxi Wu
- Department of Internal Medicine, Medical Pharmacology and Physiology and Nutrition and Exercise Physiology, Dalton Cardiovascular Research Center, University of Missouri-Columbia, 65211, USA
| | | | | | | |
Collapse
|
35
|
Jiang R, Han Z, Zhuo G, Qu X, Li X, Wang X, Shao Y, Yang S, Han ZC. Transplantation of placenta-derived mesenchymal stem cells in type 2 diabetes: a pilot study. Front Med 2011. [PMID: 21681681 DOI: 10.1007/s11684-011-011-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mesenchymal stem cells (MSC) have been used in clinical trials for severe diabetes, a chronic disease with high morbidity and mortality. Bone marrow is the traditional source of human MSC, but human term placenta appears to be an alternative and more readily available source. Here, the therapeutic effect of human placenta-derived MSC (PD-MSC) was studied in type 2 diabetes patients with longer duration, islet cell dysfunction, high insulin doses as well as poor glycemic control in order to evaluate the safety, efficacy and feasibility of PDMSC treatment in type 2 diabetes (T2D). Ten patients with T2D received three intravenous infusions of PDSC, with one month interval of infusion. The total number of PDSC for each patient was (1.22-1.51) × 10(6)/kg, with an average of 1.35 × 10(6)/kg. All of the patients were followed up after therapy for at least 3 months. A daily mean dose of insulin used in 10 patients was decreased from 63.7±18.7 to 34.7±13.4 IU (P<0.01), and the C-peptide level was increased from 4.1 ±3.7 ng/mL to 5.6 ±3.8 ng/mL (P<0.05) respectively after therapy. In 4 of 10 responders their insulin doses reduced more than 50% after infusion. The mean levels of insulin and C-peptide at each time point in a total of 10 patients was higher after treatment (P<0.05). No fever, chills, liver damage and other side effects were reported. The renal function and cardiac function were improved after infusion. The results obtained from this pilot clinical trial indicate that transplantation of PD-MSC represents a simple, safe and effective therapeutic approach for T2D patients with islet cell dysfunction. Further large-scale, randomized and well-controlled clinical studies will be required to substantiate these observations.
Collapse
Affiliation(s)
- Ranhua Jiang
- Liaoyang Diabetic Hospital, Liaoyang, 111000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Transplantation of placenta-derived mesenchymal stem cells in type 2 diabetes: a pilot study. Front Med 2011; 5:94-100. [PMID: 21681681 DOI: 10.1007/s11684-011-0116-z] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 01/13/2011] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSC) have been used in clinical trials for severe diabetes, a chronic disease with high morbidity and mortality. Bone marrow is the traditional source of human MSC, but human term placenta appears to be an alternative and more readily available source. Here, the therapeutic effect of human placenta-derived MSC (PD-MSC) was studied in type 2 diabetes patients with longer duration, islet cell dysfunction, high insulin doses as well as poor glycemic control in order to evaluate the safety, efficacy and feasibility of PDMSC treatment in type 2 diabetes (T2D). Ten patients with T2D received three intravenous infusions of PDSC, with one month interval of infusion. The total number of PDSC for each patient was (1.22-1.51) × 10(6)/kg, with an average of 1.35 × 10(6)/kg. All of the patients were followed up after therapy for at least 3 months. A daily mean dose of insulin used in 10 patients was decreased from 63.7±18.7 to 34.7±13.4 IU (P<0.01), and the C-peptide level was increased from 4.1 ±3.7 ng/mL to 5.6 ±3.8 ng/mL (P<0.05) respectively after therapy. In 4 of 10 responders their insulin doses reduced more than 50% after infusion. The mean levels of insulin and C-peptide at each time point in a total of 10 patients was higher after treatment (P<0.05). No fever, chills, liver damage and other side effects were reported. The renal function and cardiac function were improved after infusion. The results obtained from this pilot clinical trial indicate that transplantation of PD-MSC represents a simple, safe and effective therapeutic approach for T2D patients with islet cell dysfunction. Further large-scale, randomized and well-controlled clinical studies will be required to substantiate these observations.
Collapse
|