1
|
Liu Y, Wu Z, Li Y, Chen Y, Zhao X, Wu M, Xia Y. Metabolic reprogramming and interventions in angiogenesis. J Adv Res 2025; 70:323-338. [PMID: 38704087 DOI: 10.1016/j.jare.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Endothelial cell (EC) metabolism plays a crucial role in the process of angiogenesis. Intrinsic metabolic events such as glycolysis, fatty acid oxidation, and glutamine metabolism, support secure vascular migration and proliferation, energy and biomass production, as well as redox homeostasis maintenance during vessel formation. Nevertheless, perturbation of EC metabolism instigates vascular dysregulation-associated diseases, especially cancer. AIM OF REVIEW In this review, we aim to discuss the metabolic regulation of angiogenesis by EC metabolites and metabolic enzymes, as well as prospect the possible therapeutic opportunities and strategies targeting EC metabolism. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we discuss various aspects of EC metabolism considering normal and diseased vasculature. Of relevance, we highlight that the implications of EC metabolism-targeted intervention (chiefly by metabolic enzymes or metabolites) could be harnessed in orchestrating a spectrum of pathological angiogenesis-associated diseases.
Collapse
Affiliation(s)
- Yun Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yikun Li
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yating Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xuan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Pandian K, Huang L, Junaid A, Harms A, van Zonneveld AJ, Hankemeier T. Tracer-based metabolomics for profiling nitric oxide metabolites in a 3D microvessels-on-chip model. FASEB J 2024; 38:e70005. [PMID: 39171967 DOI: 10.1096/fj.202400553r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/19/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Endothelial dysfunction, prevalent in cardiovascular diseases (CVDs) and linked to conditions like diabetes, hypertension, obesity, renal failure, or hypercholesterolemia, is characterized by diminished nitric oxide (NO) bioavailability-a key signaling molecule for vascular homeostasis. Current two-dimensional (2D) in vitro studies on NO synthesis by endothelial cells (ECs) lack the crucial laminar shear stress, a vital factor in modulating the NO-generating enzyme, endothelial nitric oxide synthase (eNOS), under physiological conditions. Here we developed a tracer-based metabolomics approach to measure NO-specific metabolites with mass spectrometry (MS) and show the impact of fluid flow on metabolic parameters associated with NO synthesis using 2D and 3D platforms. Specifically, we tracked the conversion of stable-isotope labeled NO substrate L-Arginine to L-Citrulline and L-Ornithine to determine eNOS activity. We demonstrated clear responses in human coronary artery endothelial cells (HCAECs) cultured with 13C6, 15N4-L-Arginine, and treated with eNOS stimulator, eNOS inhibitor, and arginase inhibitor. Analysis of downstream metabolites, 13C6, 15N3 L-Citrulline and 13C5, 15N2 L-Ornithine, revealed distinct outcomes. Additionally, we evaluated the NO metabolic status in static 2D culture and 3D microvessel models with bidirectional and unidirectional fluid flow. Our 3D model exhibited significant effects, particularly in microvessels exposed to the eNOS stimulator, as indicated by the 13C6, 15N3 L-Citrulline/13C5, 15N2 L-Ornithine ratio, compared to the 2D culture. The obtained results indicate that the 2D static culture mimics an endothelial dysfunction status, while the 3D model with a unidirectional fluid flow provides a more representative physiological environment that provides a better model to study endothelial dysfunction.
Collapse
Affiliation(s)
- Kanchana Pandian
- Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, Leiden, the Netherlands
| | - Luojiao Huang
- Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, Leiden, the Netherlands
| | - Abidemi Junaid
- Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, Leiden, the Netherlands
| | - Amy Harms
- Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, Leiden, the Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Thomas Hankemeier
- Division of Systems Biomedicine and Pharmacology, LACDR, Leiden University, Leiden, the Netherlands
| |
Collapse
|
3
|
Cai Y, Li L, Shao C, Chen Y, Wang Z. Therapeutic Strategies for Angiogenesis Based on Endothelial Cell Epigenetics. J Cardiovasc Transl Res 2024; 17:816-827. [PMID: 38294628 DOI: 10.1007/s12265-024-10485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
With the in-depth investigation of various diseases, angiogenesis has gained increasing attention. Among the contributing factors to angiogenesis research, endothelial epigenetics has emerged as an influential player. Endothelial epigenetic therapy exerts its regulatory effects on endothelial cells by controlling gene expression, RNA, and histone modification within these cells, which subsequently promotes or inhibits angiogenesis. As a result, this therapeutic approach offers potential strategies for disease treatment. The purpose of this review is to outline the pertinent mechanisms of endothelial cell epigenetics, encompassing glycolysis, lactation, amino acid metabolism, non-coding RNA, DNA methylation, histone modification, and their connections to specific diseases and clinical applications. We firmly believe that endothelial cell epigenetics has the potential to become an integral component of precision medicine therapy, unveiling novel therapeutic targets and providing new directions and opportunities for disease treatment.
Collapse
Affiliation(s)
- Yue Cai
- Department of Cardiology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China
| | - Yiliu Chen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China.
| |
Collapse
|
4
|
Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L, Liu Y. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther 2023; 8:152. [PMID: 37037849 PMCID: PMC10086073 DOI: 10.1038/s41392-023-01400-z] [Citation(s) in RCA: 176] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 04/12/2023] Open
Abstract
Vascular complications of diabetes pose a severe threat to human health. Prevention and treatment protocols based on a single vascular complication are no longer suitable for the long-term management of patients with diabetes. Diabetic panvascular disease (DPD) is a clinical syndrome in which vessels of various sizes, including macrovessels and microvessels in the cardiac, cerebral, renal, ophthalmic, and peripheral systems of patients with diabetes, develop atherosclerosis as a common pathology. Pathological manifestations of DPDs usually manifest macrovascular atherosclerosis, as well as microvascular endothelial function impairment, basement membrane thickening, and microthrombosis. Cardiac, cerebral, and peripheral microangiopathy coexist with microangiopathy, while renal and retinal are predominantly microangiopathic. The following associations exist between DPDs: numerous similar molecular mechanisms, and risk-predictive relationships between diseases. Aggressive glycemic control combined with early comprehensive vascular intervention is the key to prevention and treatment. In addition to the widely recommended metformin, glucagon-like peptide-1 agonist, and sodium-glucose cotransporter-2 inhibitors, for the latest molecular mechanisms, aldose reductase inhibitors, peroxisome proliferator-activated receptor-γ agonizts, glucokinases agonizts, mitochondrial energy modulators, etc. are under active development. DPDs are proposed for patients to obtain more systematic clinical care requires a comprehensive diabetes care center focusing on panvascular diseases. This would leverage the advantages of a cross-disciplinary approach to achieve better integration of the pathogenesis and therapeutic evidence. Such a strategy would confer more clinical benefits to patients and promote the comprehensive development of DPD as a discipline.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yanfei Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Mengqi Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Wenting Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Luqi Huang
- China Center for Evidence-based Medicine of TCM, China Academy of Chinese Medical Sciences, Beijing, 100010, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
5
|
Chen K, Bai L, Lu J, Chen W, Liu C, Guo E, Qin X, Jiao X, Huang M, Tian H. Human Decidual Mesenchymal Stem Cells Obtained From Early Pregnancy Improve Cardiac Revascularization Postinfarction by Activating Ornithine Metabolism. Front Cardiovasc Med 2022; 9:837780. [PMID: 35242829 PMCID: PMC8887417 DOI: 10.3389/fcvm.2022.837780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
Background Compared with bone marrow mesenchymal stem cells (BMSCs), decidual mesenchymal stem cells (DMSCs) are easy to obtain and exhibit excellent angiogenic effects, but their role in cell transplantation after myocardial infarction (MI) remains unclear. Methods BMSCs and DMSCs were harvested from healthy donors. The effects of both cell types on angiogenesis were observed in vitro. Metabonomics analysis was performed to compare different metabolites and screen critical metabolic pathways. A murine model of acute myocardial infarction (AMI) was established, which was randomized into five groups (control, BMSC, DMSC, DMSC + ODCshRNA and BMSC + ODC consisting of 50 animals, equally divided into each group). The therapeutic effect of DMSCs on MI in rats was assessed based on neovascularization and cardiac remodeling. Results DMSCs exhibited a better angiogenic effect on human umbilical vein endothelial cells (HUVECs) than BMSCs in vitro. In addition, ornithine metabolism, which is associated with vascularization, was significantly increased in DMSCs. The transplantation of DMSCs in the rat MI model significantly enhanced angiogenesis of the infarct border area and improved cardiac remodeling and dysfunction postinfarction compared with BMSCs. Furthermore, inhibition of ornithine metabolism by silencing ornithine decarboxylase (ODC) in DMSCs partly abolished the benefits of DMSC transplantation. Conclusion Compared with BMSCs, DMSCs exhibited better efficacy in improving revascularization and heart remodeling post-MI via the activation of ODC-associated ornithine metabolism.
Collapse
Affiliation(s)
- Kegong Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Long Bai
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jingtong Lu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Chest Surgery, The Third Hospital of Xiamen, Xiamen, China
| | - Wei Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Liu
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Erliang Guo
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xionghai Qin
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuan Jiao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingli Huang
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Mingli Huang
| | - Hai Tian
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Hai Tian
| |
Collapse
|
6
|
Grant ZL, Hickey PF, Abeysekera W, Whitehead L, Lewis SM, Symons RCA, Baldwin TM, Amann-Zalcenstein D, Garnham AL, Smyth GK, Thomas T, Voss AK, Coultas L. The histone acetyltransferase HBO1 promotes efficient tip cell sprouting during angiogenesis. Development 2021; 148:272249. [PMID: 34550360 DOI: 10.1242/dev.199581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022]
Abstract
Blood vessel growth and remodelling are essential during embryonic development and disease pathogenesis. The diversity of endothelial cells (ECs) is transcriptionally evident and ECs undergo dynamic changes in gene expression during vessel growth and remodelling. Here, we investigated the role of the histone acetyltransferase HBO1 (KAT7), which is important for activating genes during development and for histone H3 lysine 14 acetylation (H3K14ac). Loss of HBO1 and H3K14ac impaired developmental sprouting angiogenesis and reduced pathological EC overgrowth in the retinal endothelium. Single-cell RNA sequencing of retinal ECs revealed an increased abundance of tip cells in Hbo1-deficient retinas, which led to EC overcrowding in the retinal sprouting front and prevented efficient tip cell migration. We found that H3K14ac was highly abundant in the endothelial genome in both intra- and intergenic regions, suggesting that HBO1 acts as a genome organiser that promotes efficient tip cell behaviour necessary for sprouting angiogenesis. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Zoe L Grant
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter F Hickey
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Waruni Abeysekera
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Sabrina M Lewis
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Robert C A Symons
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Australia.,Department of Surgery, University of Melbourne, Parkville, 3010, Australia.,Department of Ophthalmology, Royal Melbourne Hospital, Parkville, 3050, Australia
| | - Tracey M Baldwin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Daniela Amann-Zalcenstein
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Leigh Coultas
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
7
|
Li J, Fang Y, Wu D. Mechanical forces and metabolic changes cooperate to drive cellular memory and endothelial phenotypes. CURRENT TOPICS IN MEMBRANES 2021; 87:199-253. [PMID: 34696886 PMCID: PMC8639155 DOI: 10.1016/bs.ctm.2021.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endothelial cells line the innermost layer of arterial, venous, and lymphatic vascular tree and accordingly are subject to hemodynamic, stretch, and stiffness mechanical forces. Normally quiescent, endothelial cells have a hemodynamic set point and become "activated" in response to disturbed hemodynamics, which may signal impending nutrient or gas depletion. Endothelial cells in the majority of tissue beds are normally inactivated and maintain vessel barrier functions, are anti-inflammatory, anti-coagulant, and anti-thrombotic. However, under aberrant mechanical forces, endothelial signaling transforms in response, resulting cellular changes that herald pathological diseases. Endothelial cell metabolism is now recognized as the primary intermediate pathway that undergirds cellular transformation. In this review, we discuss the various mechanical forces endothelial cells sense in the large vessels, microvasculature, and lymphatics, and how changes in environmental mechanical forces result in changes in metabolism, which ultimately influence cell physiology, cellular memory, and ultimately disease initiation and progression.
Collapse
Affiliation(s)
- Jin Li
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Yun Fang
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - David Wu
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
8
|
Abstract
Endothelial cell (EC) metabolism is important for health and disease. Metabolic pathways, such as glycolysis, fatty acid oxidation, and amino acid metabolism, determine vasculature formation. These metabolic pathways have different roles in securing the production of energy and biomass and the maintenance of redox homeostasis in vascular migratory tip cells, proliferating stalk cells, and quiescent phalanx cells, respectively. Emerging evidence demonstrates that perturbation of EC metabolism results in EC dysfunction and vascular pathologies. Here, we summarize recent insights into EC metabolic pathways and their deregulation in vascular diseases. We further discuss the therapeutic implications of targeting EC metabolism in various pathologies.
Collapse
Affiliation(s)
- Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; ,
| | - Anil Kumar
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; ,
| | - Peter Carmeliet
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; , .,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven B-3000, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven B-3000, Belgium
| |
Collapse
|
9
|
Al-Koussa H, El Mais N, Maalouf H, Abi-Habib R, El-Sibai M. Arginine deprivation: a potential therapeutic for cancer cell metastasis? A review. Cancer Cell Int 2020; 20:150. [PMID: 32390765 PMCID: PMC7201942 DOI: 10.1186/s12935-020-01232-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/23/2020] [Indexed: 01/04/2023] Open
Abstract
Arginine is a semi essential amino acid that is used in protein biosynthesis. It can be obtained from daily food intake or synthesized in the body through the urea cycle using l-citrulline as a substrate. Arginine has a versatile role in the body because it helps in cell division, wound healing, ammonia disposal, immune system, and hormone biosynthesis. It is noteworthy that l-arginine is the precursor for the biosynthesis of nitric oxide (NO) and polyamines. In the case of cancer cells, arginine de novo synthesis is not enough to compensate for their high nutritional needs, forcing them to rely on extracellular supply of arginine. In this review, we will go through the importance of arginine deprivation as a novel targeting therapy by discussing the different arginine deprivation agents and their mechanism of action. We will also focus on the factors that affect cell migration and on the influence of arginine on metastases through polyamine and NO.
Collapse
Affiliation(s)
- Houssam Al-Koussa
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801 Beirut, Lebanon
| | - Nour El Mais
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801 Beirut, Lebanon
| | - Hiba Maalouf
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801 Beirut, Lebanon
| | - Ralph Abi-Habib
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801 Beirut, Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801 Beirut, Lebanon
| |
Collapse
|
10
|
Teuwen LA, Geldhof V, Carmeliet P. How glucose, glutamine and fatty acid metabolism shape blood and lymph vessel development. Dev Biol 2019; 447:90-102. [DOI: 10.1016/j.ydbio.2017.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/26/2017] [Accepted: 12/01/2017] [Indexed: 12/18/2022]
|
11
|
Ocaña MC, Martínez-Poveda B, Quesada AR, Medina MÁ. Metabolism within the tumor microenvironment and its implication on cancer progression: An ongoing therapeutic target. Med Res Rev 2019; 39:70-113. [PMID: 29785785 DOI: 10.1002/med.21511] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 01/03/2025]
Abstract
Since reprogramming energy metabolism is considered a new hallmark of cancer, tumor metabolism is again in the spotlight of cancer research. Many studies have been carried out and many possible therapies have been developed in the last years. However, tumor cells are not alone. A series of extracellular components and stromal cells, such as endothelial cells, cancer-associated fibroblasts, tumor-associated macrophages, and tumor-infiltrating T cells, surround tumor cells in the so-called tumor microenvironment (TME). Metabolic features of these cells are being studied in deep in order to find relationships between metabolism within the TME and tumor progression. Moreover, it cannot be forgotten that tumor growth is able to modulate host metabolism and homeostasis, so that TME is not the whole story. Importantly, the metabolic switch in cancer is just a consequence of the flexibility and adaptability of metabolism and should not be surprising. Treatments of cancer patients with combined therapies including antitumor agents with those targeting stromal cell metabolism, antiangiogenic drugs, and/or immunotherapy are being developed as promising therapeutics.
Collapse
Affiliation(s)
- Ma Carmen Ocaña
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech, Universidad de Málaga, Málaga, Spain
| | - Beatriz Martínez-Poveda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech, Universidad de Málaga, Málaga, Spain
| | - Ana R Quesada
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Málaga, Spain
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Málaga, Spain
| |
Collapse
|
12
|
Rasila T, Saavalainen O, Attalla H, Lankila P, Haglund C, Hölttä E, Andersson LC. Astroprincin (FAM171A1, C10orf38): A Regulator of Human Cell Shape and Invasive Growth. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:177-189. [PMID: 30312582 DOI: 10.1016/j.ajpath.2018.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 11/29/2022]
Abstract
Our group originally found and cloned cDNA for a 98-kDa type 1 transmembrane glycoprotein of unknown function. Because of its abundant expression in astrocytes, it was called the protein astroprincin (APCN). Two thirds of the evolutionarily conserved protein is intracytoplasmic, whereas the extracellular domain carries two N-glycosidic side chains. APCN is physiologically expressed in placental trophoblasts, skeletal and hearth muscle, and kidney and pancreas. Overexpression of APCN (cDNA) in various cell lines induced sprouting of slender projections, whereas knockdown of APCN expression by siRNA caused disappearance of actin stress fibers. Immunohistochemical staining of human cancers for endogenous APCN showed elevated expression in invasive tumor cells compared with intratumoral cells. Human melanoma cells (SK-MEL-28) transfected with APCN cDNA acquired the ability of invasive growth in semisolid medium (Matrigel) not seen with control cells. A conserved carboxyterminal stretch of 21 amino acids was found to be essential for APCN to induce cell sprouting and invasive growth. Yeast two-hybrid screening revealed several interactive partners, of which ornithine decarboxylase antizyme-1, NEEP21 (NSG1), and ADAM10 were validated by coimmunoprecipitation. This is the first functional description of APCN. These data show that APCN regulates the dynamics of the actin cytoskeletal and, thereby, the cell shape and invasive growth potential of tumor cells.
Collapse
Affiliation(s)
- Tiina Rasila
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Olga Saavalainen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Hesham Attalla
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Petri Lankila
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Caj Haglund
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland; HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Erkki Hölttä
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Leif C Andersson
- Department of Pathology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
13
|
Draoui N, de Zeeuw P, Carmeliet P. Angiogenesis revisited from a metabolic perspective: role and therapeutic implications of endothelial cell metabolism. Open Biol 2018; 7:rsob.170219. [PMID: 29263247 PMCID: PMC5746547 DOI: 10.1098/rsob.170219] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022] Open
Abstract
Endothelial cell (EC) metabolism has lately emerged as a novel and promising therapeutic target to block vascular dysregulation associated with diseases like cancer and blinding eye disease. Glycolysis, fatty acid oxidation (FAO) and, more recently, glutamine/asparagine metabolism emerged as key regulators of EC metabolism, able to impact angiogenesis in health and disease. ECs are highly glycolytic as they require ATP and biomass for vessel sprouting. Notably, a regulator of the glycolytic pathway, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3, controls vessel sprouting during the angiogenic switch and its inhibition in tumour ECs leads to vessel normalization, thereby reducing metastasis and ameliorating chemotherapy. Moreover, FAO promotes EC proliferation through DNA synthesis, and plays an essential role in lymphangiogenesis via epigenetic regulation of histone acetylation. Pathological angiogenesis was decreased upon blockade of carnitine palmitoyltransferase 1, a regulator of FAO in ECs. More recently, metabolism of glutamine, in conjunction with asparagine, was reported to maintain EC sprouting through TCA anaplerosis, redox homeostasis, mTOR activation and endoplasmic stress control. Inactivation or blockade of glutaminase 1, which hydrolyses glutamine into ammonia and glutamate, impairs angiogenesis in health and disease, while silencing of asparagine synthetase reduces vessel sprouting in vitro. In this review, we summarize recent insights into EC metabolism and discuss therapeutic implications of targeting EC metabolism.
Collapse
Affiliation(s)
- Nihed Draoui
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven 3000, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, KU Leuven, Campus Gasthuisberg O&N4, Herestraat 49-912, Leuven 3000, Belgium
| | - Pauline de Zeeuw
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven 3000, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, KU Leuven, Campus Gasthuisberg O&N4, Herestraat 49-912, Leuven 3000, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven 3000, Belgium .,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, KU Leuven, Campus Gasthuisberg O&N4, Herestraat 49-912, Leuven 3000, Belgium
| |
Collapse
|
14
|
Polyamine concentration is increased in thoracic ascending aorta of patients with bicuspid aortic valve. Heart Vessels 2017; 33:327-339. [DOI: 10.1007/s00380-017-1087-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/13/2017] [Indexed: 12/26/2022]
|
15
|
Rodríguez-Gómez I, Moliz JN, Quesada A, Montoro-Molina S, Vargas-Tendero P, Osuna A, Wangensteen R, Vargas F. L-Arginine metabolism in cardiovascular and renal tissue from hyper- and hypothyroid rats. Exp Biol Med (Maywood) 2015; 241:550-6. [PMID: 26674221 DOI: 10.1177/1535370215619042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 10/27/2015] [Indexed: 12/31/2022] Open
Abstract
This study assessed the effects of thyroid hormones on the enzymes involved in l-arginine metabolism and the metabolites generated by the different metabolic pathways. Compounds of l-arginine metabolism were measured in the kidney, heart, aorta, and liver of euthyroid, hyperthyroid, and hypothyroid rats after 6 weeks of treatment. Enzymes studied were NOS isoforms (neuronal [nNOS], inducible [iNOS], and endothelial [eNOS]), arginases I and II, ornithine decarboxylase (ODC), ornithine aminotransferase (OAT), and l-arginine decarboxylase (ADC). Metabolites studied were l-arginine, l-citrulline, spermidine, spermine, and l-proline. Kidney heart and aorta levels of eNOS and iNOS were augmented and reduced (P < 0.05, for each tissue and enzyme) in hyper- and hypothyroid rats, respectively. Arginase I abundance in aorta, heart, and kidney was increased (P < 0.05, for each tissue) in hyperthyroid rats and was decreased in kidney and aorta of hypothyroid rats (P < 0.05, for each tissue). Arginase II was augmented in aorta and kidney (P < 0.05, for each tissue) of hyperthyroid rats and remained unchanged in all organs of hypothyroid rats. The substrate for these enzymes, l-arginine, was reduced (P < 0.05, for all tissues) in hyperthyroid rats. Levels of ODC and spermidine, its product, were increased and decreased (P < 0.05) in hyper- and hypothyroid rats, respectively, in all organs studied. OAT and proline levels were positively modulated by thyroid hormones in liver but not in the other tissues. ADC protein levels were positively modulated by thyroid hormones in all tissues. According to these findings, thyroid hormone treatment positively modulates different l-arginine metabolic pathways. The changes recorded in the abundance of eNOS, arginases I and II, and ADC protein in renal and cardiovascular tissues may play a role in the hemodynamic and renal manifestations observed in thyroid disorders. Furthermore, the changes in ODC and spermidine might contribute to the changes in cardiac and renal mass observed in thyroid disorders.
Collapse
Affiliation(s)
- Isabel Rodríguez-Gómez
- Instituto de Investigación Biosanitaria ibs. Granada 18012, Spain. Hospitales Universitarios de Granada. Universidad de Granada, Granada 18012, Spain
| | - Juan N Moliz
- Departamento de Fisiología, Facultad de Medicina, Grenada 18012, Spain
| | - Andrés Quesada
- Centro de Instrumentación Científica de la Universidad de Granada, Granada 18003, Spain
| | | | - Pablo Vargas-Tendero
- Instituto de Investigación Biosanitaria ibs. Granada 18012, Spain. Hospitales Universitarios de Granada. Universidad de Granada, Granada 18012, Spain
| | - Antonio Osuna
- Instituto de Investigación Biosanitaria ibs. Granada 18012, Spain. Hospitales Universitarios de Granada. Universidad de Granada, Granada 18012, Spain
| | - Rosemary Wangensteen
- Centro de Instrumentación Científica de la Universidad de Granada, Granada 18003, Spain
| | - Félix Vargas
- Instituto de Investigación Biosanitaria ibs. Granada 18012, Spain. Hospitales Universitarios de Granada. Universidad de Granada, Granada 18012, Spain
| |
Collapse
|
16
|
Grossi M, Rippe C, Sathanoori R, Swärd K, Forte A, Erlinge D, Persson L, Hellstrand P, Nilsson BO. Vascular smooth muscle cell proliferation depends on caveolin-1-regulated polyamine uptake. Biosci Rep 2014; 34:e00153. [PMID: 25301005 PMCID: PMC4240025 DOI: 10.1042/bsr20140140] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/09/2014] [Indexed: 12/11/2022] Open
Abstract
Much evidence highlights the importance of polyamines for VSMC (vascular smooth muscle cell) proliferation and migration. Cav-1 (caveolin-1) was recently reported to regulate polyamine uptake in intestinal epithelial cells. The aim of the present study was to assess the importance of Cav-1 for VSMC polyamine uptake and its impact on cell proliferation and migration. Cav-1 KO (knockout) mouse aortic cells showed increased polyamine uptake and elevated proliferation and migration compared with WT (wild-type) cells. Both Cav-1 KO and WT cells expressed the smooth muscle differentiation markers SM22 and calponin. Cell-cycle phase distribution analysis revealed a higher proportion of Cav-1 KO than WT cells in the S phase. Cav-1 KO cells were hyper-proliferative in the presence but not in the absence of extracellular polyamines, and, moreover, supplementation with exogenous polyamines promoted proliferation in Cav-1 KO but not in WT cells. Expression of the solute carrier transporters Slc7a1 and Slc43a1 was higher in Cav-1 KO than in WT cells. ODC (ornithine decarboxylase) protein and mRNA expression as well as ODC activity were similar in Cav-1 KO and WT cells showing unaltered synthesis of polyamines in Cav-1 KO cells. Cav-1 was reduced in migrating cells in vitro and in carotid lesions in vivo. Our data show that Cav-1 negatively regulates VSMC polyamine uptake and that the proliferative advantage of Cav-1 KO cells is critically dependent on polyamine uptake. We provide proof-of-principle for targeting Cav-1-regulated polyamine uptake as a strategy to fight unwanted VSMC proliferation as observed in restenosis.
Collapse
Key Words
- caveolin-1
- cell cycle
- ornithine decarboxylase
- polyamine transporter
- polyamine
- vascular smooth muscle cell
- asmc, aortic smooth muscle cell
- cav-1, caveolin-1
- cea, carotid endarterectomy
- dfmo, difluoromethylornithine
- dmem, dulbecco’s modified eagle’s medium
- hbss, hanks balanced salt solution
- [3h]put, [3h]putrescine
- hrp, horseradish peroxidise
- [3h]spd, [3h]spermidine
- hsp90, heat-shock protein 90
- ko, knockout
- odc, ornithine decarboxylase
- pi, propidium iodide
- qrt-pcr, quantitative real-time pcr
- vsmc, vascular smooth muscle cell
- wt, wild-type
Collapse
MESH Headings
- Amino Acid Transport Systems, Basic/genetics
- Amino Acid Transport Systems, Basic/metabolism
- Animals
- Blotting, Western
- Calcium-Binding Proteins/metabolism
- Carotid Arteries/metabolism
- Carotid Arteries/surgery
- Caveolin 1/genetics
- Caveolin 1/metabolism
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- DNA/biosynthesis
- Gene Expression
- Immunohistochemistry
- Mice, Inbred C57BL
- Mice, Knockout
- Microfilament Proteins/metabolism
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Ornithine Decarboxylase/genetics
- Ornithine Decarboxylase/metabolism
- Polyamines/metabolism
- Polyamines/pharmacokinetics
- Polyamines/pharmacology
- Rats, Wistar
- Reverse Transcriptase Polymerase Chain Reaction
- Calponins
Collapse
Affiliation(s)
- Mario Grossi
- *Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Catarina Rippe
- *Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ramasri Sathanoori
- †Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Karl Swärd
- *Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Amalia Forte
- ‡Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - David Erlinge
- †Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Lo Persson
- *Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Per Hellstrand
- *Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Bengt-Olof Nilsson
- *Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Grossi M, Persson L, Swärd K, Turczyńska KM, Forte A, Hellstrand P, Nilsson BO. Inhibition of polyamine formation antagonizes vascular smooth muscle cell proliferation and preserves the contractile phenotype. Basic Clin Pharmacol Toxicol 2014; 115:379-88. [PMID: 24666424 DOI: 10.1111/bcpt.12237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 03/13/2014] [Indexed: 02/04/2023]
Abstract
The polyamines putrescine, spermidine and spermine play essential roles in cell proliferation and migration, two processes involved in the development of vascular disease. Thus, intervention with polyamine formation may represent a way to inhibit unwanted vascular smooth muscle cell (VSMC) proliferation. The aim of the present study was to assess the importance of polyamines for VSMC proliferation and vascular contractility. The rate-limiting step in polyamine biosynthesis is catalysed by ornithine decarboxylase (ODC). Treatment with α-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC, reduced DNA synthesis in primary rat VSMCs in a concentration-dependent manner with an IC50 value of 100 μM. Moreover, DFMO reduced VSMC migration assessed in a scratch assay. The DFMO-induced attenuation of VSMC proliferation was associated with lowered cellular amount of polyamines. The antiproliferative effect of DFMO was specific because supplementation with polyamines reversed the effect of DFMO on proliferation and normalized cellular polyamine levels. Isometric force recordings in cultured rat tail artery rings showed that DFMO counteracts the decrease in contractility caused by culture with foetal bovine serum as growth stimulant. We conclude that inhibition of polyamine synthesis by DFMO may limit the first wave of cell proliferation and migration, which occurs in the acute phase after vascular injury. Besides its antiproliferative effect, DFMO may prevent loss of the smooth muscle contractile phenotype in vascular injury.
Collapse
Affiliation(s)
- Mario Grossi
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
18
|
Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells. Proc Natl Acad Sci U S A 2011; 108:13147-52. [PMID: 21788507 DOI: 10.1073/pnas.1104261108] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Highly malignant tumors, such as glioblastomas, are characterized by hypoxia, endothelial cell (EC) hyperplasia, and hypercoagulation. However, how these phenomena of the tumor microenvironment may be linked at the molecular level during tumor development remains ill-defined. Here, we provide evidence that hypoxia up-regulates protease-activated receptor 2 (PAR-2), i.e., a G-protein-coupled receptor of coagulation-dependent signaling, in ECs. Hypoxic induction of PAR-2 was found to elicit an angiogenic EC phenotype and to specifically up-regulate heparin-binding EGF-like growth factor (HB-EGF). Inhibition of HB-EGF by antibody neutralization or heparin treatment efficiently counteracted PAR-2-mediated activation of hypoxic ECs. We show that PAR-2-dependent HB-EGF induction was associated with increased phosphorylation of ERK1/2, and inhibition of ERK1/2 phosphorylation attenuated PAR-2-dependent HB-EGF induction as well as EC activation. Tissue factor (TF), i.e., the major initiator of coagulation-dependent PAR signaling, was substantially induced by hypoxia in several types of cancer cells, including glioblastoma; however, TF was undetectable in ECs even at prolonged hypoxia, which precludes cell-autonomous PAR-2 activation through TF. Interestingly, hypoxic cancer cells were shown to release substantial amounts of TF that was mainly associated with secreted microvesicles with exosome-like characteristics. Vesicles derived from glioblastoma cells were found to trigger TF/VIIa-dependent activation of hypoxic ECs in a paracrine manner. We provide evidence of a hypoxia-induced signaling axis that links coagulation activation in cancer cells to PAR-2-mediated activation of ECs. The identified pathway may constitute an interesting target for the development of additional strategies to treat aggressive brain tumors.
Collapse
|
19
|
Chaotic neovascularization induced by aggressive fibrosarcoma cells overexpressing S-adenosylmethionine decarboxylase. Int J Biochem Cell Biol 2011; 43:441-54. [DOI: 10.1016/j.biocel.2010.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/25/2010] [Accepted: 11/30/2010] [Indexed: 12/29/2022]
|