1
|
Chen P, Ye M, Chen Y, Wang Q, Wang Q, Zhong M. Dual-transgenic BiFC vector systems for protein-protein interaction analysis in plants. Front Genet 2024; 15:1355568. [PMID: 38525241 PMCID: PMC10957565 DOI: 10.3389/fgene.2024.1355568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Protein-protein interaction (PPI) play a pivotal role in cellular signal transduction. The bimolecular fluorescence complementation (BiFC) assay offers a rapid and intuitive means to ascertain the localization and interactions of target proteins within living cells. BiFC is based on fluorescence complementation by reconstitution of a functional fluorescent protein by co-expression of N- and C-terminal fragments of this protein. When fusion proteins interact, the N- and C-terminal fragments come into close proximity, leading to the reconstitution of the fluorescent protein. In the conventional approach, the N-terminal and C-terminal fragments of the fluorescent protein are typically expressed using two separate vectors, which largely relies on the efficiency of the transformation of the two vectors in the same cells. Furthermore, issues of vector incompatibility can often result in loss of one plasmid. To address these challenges, we have developed novel dual-transgenic BiFC vectors, designed as pDTQs, derived from the previously published pDT1 vector. This set of BiFC vectors offers the following advantages: 1) Both fluorescent fusion proteins are expressed sequentially within a single vector, enhancing expression efficiency; 2) Independent promoters and terminators regulate the expression of the two proteins potentially mitigating vector compatibility issues; 3) A long linker is inserted between the fluorescent protein fragment and the gene of interest, facilitating the recombination of the fused fluorescent protein into an active form; 4) Four distinct types of fluorescent proteins, namely, EYFP, mVenus, mRFP1Q66T and mCherry are available for BiFC analysis. We assessed the efficiency of the pDTQs system by investigating the oligomerization of Arabidopsis CRY2 and CRY2-BIC2 interactions in N. benthamiana. Notably, the pDTQs were found to be applicable in rice, underscoring their potential utility across various plant species.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming Zhong
- College of Agriculture, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Galigniana NM, Ruiz MC, Piwien-Pilipuk G. FK506 binding protein 51: Its role in the adipose organ and beyond. J Cell Biochem 2022. [PMID: 36502528 DOI: 10.1002/jcb.30351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 02/17/2024]
Abstract
There is a great body of evidence that the adipose organ plays a central role in the control not only of energy balance, but importantly, in the maintenance of metabolic homeostasis. Interest in the study of different aspects of its physiology grew in the last decades due to the pandemic of obesity and the consequences of metabolic syndrome. It was not until recently that the first evidence for the role of the high molecular weight immunophilin FK506 binding protein (FKBP) 51 in the process of adipocyte differentiation have been described. Since then, many new facets have been discovered of this stress-responsive FKBP51 as a central node for precise coordination of many cell functions, as shown for nuclear steroid receptors, autophagy, signaling pathways as Akt, p38 MAPK, and GSK3, as well as for insulin signaling and the control of glucose homeostasis. Thus, the aim of this review is to integrate and discuss the recent advances in the understanding of the many roles of FKBP51 in the adipose organ.
Collapse
Affiliation(s)
- Natalia M Galigniana
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marina C Ruiz
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| | - Graciela Piwien-Pilipuk
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| |
Collapse
|
3
|
Funk MI, Conde MA, Piwien-Pilipuk G, Uranga RM. Novel antiadipogenic effect of menadione in 3T3-L1 cells. Chem Biol Interact 2021; 343:109491. [PMID: 33945810 DOI: 10.1016/j.cbi.2021.109491] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 12/30/2022]
Abstract
Inhibition of adipocyte differentiation can be used as a strategy for preventing adipose tissue expansion and, consequently, for obesity management. Since reactive oxygen species (ROS) have emerged as key modulators of adipogenesis, the effect of menadione (a synthetic form of vitamin K known to induce the increase of intracellular ROS) on 3T3-L1 preadipocyte differentiation was studied. Menadione (15 μM) increased ROS and lipid peroxidation, generating mild oxidative stress without affecting cell viability. Menadione drastically inhibited adipogenesis, accompanied by decreased intracellular lipid accumulation and diminished expression of the lipo/adipogenic markers peroxisome proliferator-activated receptor (PPAR)γ, fatty acid synthase (FAS), CCAAT/enhancer-binding protein (C/EBP) α, fatty acid binding protein (FABP) 4, and perilipin. Menadione treatment also increased lipolysis, as indicated by augmented glycerol release and reinforced by the increased expression of hormone-sensitive lipase (HSL). Additionally, menadione increased the inhibitory phosphorylation of acetyl-CoA-carboxylase (ACC), which results in the inhibition of fatty acid synthesis. As a consequence, triglyceride content was decreased. Menadione also inhibited the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Further, treatment with increased concentration of insulin, a potent physiological activator of the PI3K/Akt pathway, rescued the normal level of expression of PPARγ, the master regulator of adipogenesis, and overcame the restraining effect of menadione on the differentiation capacity of 3T3-L1 preadipocytes. Our study reveals novel antiadipogenic action for menadione, which is, at least in part, mediated by the PI3K/Akt pathway signaling and raises its potential as a therapeutic agent in the treatment or prevention of adiposity.
Collapse
Affiliation(s)
- Melania Iara Funk
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional Del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina. Departamento de Biología, Bioquímica y Farmacia, UNS, Bahía Blanca, Argentina
| | - Melisa Ailén Conde
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional Del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina. Departamento de Biología, Bioquímica y Farmacia, UNS, Bahía Blanca, Argentina
| | | | - Romina María Uranga
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional Del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina. Departamento de Biología, Bioquímica y Farmacia, UNS, Bahía Blanca, Argentina.
| |
Collapse
|
4
|
Galigniana NM, Charó NL, Uranga R, Cabanillas AM, Piwien-Pilipuk G. Oxidative stress induces transcription of telomeric repeat-containing RNA (TERRA) by engaging PKA signaling and cytoskeleton dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118643. [DOI: 10.1016/j.bbamcr.2020.118643] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
|
5
|
Charó NL, Galigniana NM, Piwien-Pilipuk G. Heterochromatin protein (HP)1γ is not only in the nucleus but also in the cytoplasm interacting with actin in both cell compartments. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:432-443. [PMID: 29208528 DOI: 10.1016/j.bbamcr.2017.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/07/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022]
Abstract
Confocal and electron microscopy images, and WB analysis of cellular fractions revealed that HP1γ is in the nucleus but also in the cytoplasm of C2C12 myoblasts, myotubes, skeletal and cardiac muscles, N2a, HeLa and HEK293T cells. Signal specificity was tested with different antibodies and by HP1γ knockdown. Leptomycin B treatment of myoblasts increased nuclear HP1γ, suggesting that its nuclear export is Crm-1-dependent. HP1γ exhibited a filamentous pattern of staining partially co-localizing with actin in the cytoplasm of myotubes and myofibrils. Immunoelectron microscopic analysis showed high-density immunogold particles that correspond to HP1γ localized to the Z-disk and A-band of the sarcomere of skeletal muscle. HP1γ partially co-localized with actin in C2C12 myotubes and murine myofibrils. Importantly, actin co-immunoprecipitated with HP1γ in the nuclear and cytosolic fractions of myoblasts. Actin co-immunoprecipitated with HP1γ in myoblasts incubated in the absence or presence of the actin depolymerizing agent cytochalasin D, suggesting that HP1γ may interact with G-and F-actin. In the cytoplasm, HP1γ was associated to the perinuclear actin cap that controls nuclear shape and position. In the nucleus, re-ChIP assays showed that HP1γ-actin associates to the promoter and transcribed regions of the house keeping gene GAPDH, suggesting that HP1γ may function as a scaffold protein for the recruitment of actin to control gene expression. When HP1γ was knocked-down, myoblasts were unable to differentiate or originated thin myotubes. In summary, HP1γ is present in the nucleus and the cytoplasm interacting with actin, a protein complex that may exert different functions depending on its subcellular localization.
Collapse
Affiliation(s)
- Nancy L Charó
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia M Galigniana
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Graciela Piwien-Pilipuk
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
6
|
Charó NL, Rodríguez Ceschan MI, Galigniana NM, Toneatto J, Piwien-Pilipuk G. Organization of nuclear architecture during adipocyte differentiation. Nucleus 2017; 7:249-69. [PMID: 27416359 DOI: 10.1080/19491034.2016.1197442] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Obesity is a serious health problem worldwide since it is a major risk factor for chronic diseases such as type II diabetes. Obesity is the result of hyperplasia (associated with increased adipogenesis) and hypertrophy (associated with decreased adipogenesis) of the adipose tissue. Therefore, understanding the molecular mechanisms underlying the process of adipocyte differentiation is relevant to delineate new therapeutic strategies for treatment of obesity. As in all differentiation processes, temporal patterns of transcription are exquisitely controlled, allowing the acquisition and maintenance of the adipocyte phenotype. The genome is spatially organized; therefore decoding local features of the chromatin language alone does not suffice to understand how cell type-specific gene expression patterns are generated. Elucidating how nuclear architecture is built during the process of adipogenesis is thus an indispensable step to gain insight in how gene expression is regulated to achieve the adipocyte phenotype. Here we will summarize the recent advances in our understanding of the organization of nuclear architecture as progenitor cells differentiate in adipocytes, and the questions that still remained to be answered.
Collapse
Affiliation(s)
- Nancy L Charó
- a Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET , Buenos Aires , Argentina
| | - María I Rodríguez Ceschan
- a Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET , Buenos Aires , Argentina
| | - Natalia M Galigniana
- a Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET , Buenos Aires , Argentina
| | - Judith Toneatto
- a Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET , Buenos Aires , Argentina
| | - Graciela Piwien-Pilipuk
- a Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET , Buenos Aires , Argentina
| |
Collapse
|
7
|
Toneatto J, Charó NL, Galigniana NM, Piwien-Pilipuk G. Adipogenesis is under surveillance of Hsp90 and the high molecular weight Immunophilin FKBP51. Adipocyte 2015; 4:239-47. [PMID: 26451279 DOI: 10.1080/21623945.2015.1049401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 01/21/2023] Open
Abstract
Adipose tissue plays a central role in the control of energy balance as well as in the maintenance of metabolic homeostasis. It was not until recently that the first evidences of the role of heat shock protein (Hsp) 90 and high molecular weight immunophilin FKBP51 have been described in the process of adipocyte differentiation. Recent reports describe their role in the regulation of PPARγ, a key transcription factor in the control of adipogenesis and the maintenance of the adipocyte phenotype. In addition, novel roles have been uncovered for FKBP51 in the organization of the architecture of the nucleus through its participation in the reorganization of the nuclear lamina. Therefore, the aim of this review is to integrate and discuss the recent advances in the field, with special emphasis on the roles of Hsp90 and FKBP51 in the process of adipocyte differentiation.
Collapse
|
8
|
Muratcioglu S, Presman DM, Pooley JR, Grøntved L, Hager GL, Nussinov R, Keskin O, Gursoy A. Structural Modeling of GR Interactions with the SWI/SNF Chromatin Remodeling Complex and C/EBP. Biophys J 2015; 109:1227-39. [PMID: 26278180 PMCID: PMC4576152 DOI: 10.1016/j.bpj.2015.06.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 11/23/2022] Open
Abstract
The glucocorticoid receptor (GR) is a steroid-hormone-activated transcription factor that modulates gene expression. Transcriptional regulation by the GR requires dynamic receptor binding to specific target sites located across the genome. This binding remodels the chromatin structure to allow interaction with other transcription factors. Thus, chromatin remodeling is an essential component of GR-mediated transcriptional regulation, and understanding the interactions between these molecules at the structural level provides insights into the mechanisms of how GR and chromatin remodeling cooperate to regulate gene expression. This study suggests models for the assembly of the SWI/SNF-A (SWItch/Sucrose-NonFermentable) complex and its interaction with the GR. We used the PRISM algorithm (PRotein Interactions by Structural Matching) to predict the three-dimensional complex structures of the target proteins. The structural models indicate that BAF57 and/or BAF250 mediate the interaction between the GR and the SWI/SNF-A complex, corroborating experimental data. They further suggest that a BAF60a/BAF155 and/or BAF60a/BAF170 interaction is critical for association between the core and variant subunits. Further, we model the interaction between GR and CCAAT-enhancer-binding proteins (C/EBPs), since the GR can regulate gene expression indirectly by interacting with other transcription factors like C/EBPs. We observe that GR can bind to bZip domains of the C/EBPα homodimer as both a monomer and dimer of the DNA-binding domain. In silico mutagenesis of the predicted interface residues confirm the importance of these residues in binding. In vivo analysis of the computationally suggested mutations reveals that double mutations of the leucine residues (L317D+L335D) may disrupt the interaction between GR and C/EBPα. Determination of the complex structures of the GR is of fundamental relevance to understanding its interactions and functions, since the function of a protein or a complex is dictated by its structure. In addition, it may help us estimate the effects of mutations on GR interactions and signaling.
Collapse
Affiliation(s)
- Serena Muratcioglu
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey; Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey
| | - Diego M Presman
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - John R Pooley
- Henry Wellcome Laboratories for Integrated Neuroscience and Endocrinology, University of Bristol, Bristol, United Kingdom
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ruth Nussinov
- Cancer and Inflammation Program, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey; Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey.
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey; Department of Computer Engineering, Koc University, Istanbul, Turkey.
| |
Collapse
|
9
|
Sahlberg AS, Ruuska M, Colbert RA, Granfors K, Penttinen MA. Altered PKR Signalling and C / EBPβ Expression is Associated with HLA-B27 Expression in Monocytic Cells. Scand J Immunol 2015; 75:184-92. [PMID: 21988375 DOI: 10.1111/j.1365-3083.2011.02648.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Infection caused by certain gram-negative bacteria, e.g. Salmonella, can trigger inflammatory joint disease reactive arthritis (ReA). It is suggested that the disease-triggering bacteria or bacterial components persist in patients for an abnormally long time. Development of ReA is strongly associated with tissue antigen HLA-B27. Previously, we reported an enhanced replication of Salmonella enteritidis and altered p38 MAP kinase signalling in HLA-B27-expressing monocytic cells. Here we aimed to investigate the role of HLA-B27 in regulation of double-stranded RNA-activated kinase (PKR)-related signalling in Salmonella-infected or Salmonella lipopolysaccharide (LPS)-stimulated human U937 monocytic cells, as PKR has been reported to modify p38 signalling in Salmonella-infected cells. In cells expressing HLA-B27, PKR is overexpressed and hypophosphorylated, and the expression of transcription factor CCAAT enhancer binding protein beta (C/EBPβ) is increased upon Salmonella infection and LPS stimulation. The expression of C/EBPβ is PKR-dependent in LPS-stimulated mock cells, whereas in LPS-stimulated B27 cells the majority of C/EBPβ is expressed in a PKR-independent manner. Our results show that the expression of HLA-B27 disturbs the PKR-mediated signalling pathway. Moreover, altered signalling is related to misfolding-linked Glu45 in the B pocket of the HLA-B27 heavy chain. We suggest that the expression of HLA-B27 HCs modulates the intracellular environment of monocyte/macrophages and the mechanisms that are important in eliminating intracellular S. enteritidis by altering the intracellular signalling. This phenomenon is at least partly dependent on the misfolding feature of the B27 molecule. These observations offer a novel mechanism by which HLA-B27 may modulate inflammatory response induced by ReA-triggering bacteria.
Collapse
Affiliation(s)
- A S Sahlberg
- National Institute for Health and Welfare, Turku, FinlandNIAMS, National Institutes of Health, Bethesda, MD, USADepartment of Medical Microbiology, University of Turku, Turku, Finland
| | - M Ruuska
- National Institute for Health and Welfare, Turku, FinlandNIAMS, National Institutes of Health, Bethesda, MD, USADepartment of Medical Microbiology, University of Turku, Turku, Finland
| | - R A Colbert
- National Institute for Health and Welfare, Turku, FinlandNIAMS, National Institutes of Health, Bethesda, MD, USADepartment of Medical Microbiology, University of Turku, Turku, Finland
| | - K Granfors
- National Institute for Health and Welfare, Turku, FinlandNIAMS, National Institutes of Health, Bethesda, MD, USADepartment of Medical Microbiology, University of Turku, Turku, Finland
| | - M A Penttinen
- National Institute for Health and Welfare, Turku, FinlandNIAMS, National Institutes of Health, Bethesda, MD, USADepartment of Medical Microbiology, University of Turku, Turku, Finland
| |
Collapse
|
10
|
Pulido-Salgado M, Vidal-Taboada JM, Saura J. C/EBPβ and C/EBPδ transcription factors: Basic biology and roles in the CNS. Prog Neurobiol 2015; 132:1-33. [PMID: 26143335 DOI: 10.1016/j.pneurobio.2015.06.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/08/2015] [Accepted: 06/16/2015] [Indexed: 02/01/2023]
Abstract
CCAAT/enhancer binding protein (C/EBP) β and C/EBPδ are transcription factors of the basic-leucine zipper class which share phylogenetic, structural and functional features. In this review we first describe in depth their basic molecular biology which includes fascinating aspects such as the regulated use of alternative initiation codons in the C/EBPβ mRNA. The physical interactions with multiple transcription factors which greatly opens the number of potentially regulated genes or the presence of at least five different types of post-translational modifications are also remarkable molecular mechanisms that modulate C/EBPβ and C/EBPδ function. In the second part, we review the present knowledge on the localization, expression changes and physiological roles of C/EBPβ and C/EBPδ in neurons, astrocytes and microglia. We conclude that C/EBPβ and C/EBPδ share two unique features related to their role in the CNS: whereas in neurons they participate in memory formation and synaptic plasticity, in glial cells they regulate the pro-inflammatory program. Because of their role in neuroinflammation, C/EBPβ and C/EBPδ in microglia are potential targets for treatment of neurodegenerative disorders. Any strategy to reduce C/EBPβ and C/EBPδ activity in neuroinflammation needs to take into account its potential side-effects in neurons. Therefore, cell-specific treatments will be required for the successful application of this strategy.
Collapse
Affiliation(s)
- Marta Pulido-Salgado
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Jose M Vidal-Taboada
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain.
| |
Collapse
|
11
|
Golan Y, Berman B, Assaraf YG. Heterodimerization, altered subcellular localization, and function of multiple zinc transporters in viable cells using bimolecular fluorescence complementation. J Biol Chem 2015; 290:9050-63. [PMID: 25657003 DOI: 10.1074/jbc.m114.617332] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Indexed: 01/19/2023] Open
Abstract
Zinc plays a crucial role in numerous key physiological functions. Zinc transporters (ZnTs) mediate zinc efflux and compartmentalization in intracellular organelles; thus, ZnTs play a central role in zinc homeostasis. We have recently shown the in situ dimerization and function of multiple normal and mutant ZnTs using bimolecular fluorescence complementation (BiFC). Prompted by these findings, we here uncovered the heterodimerization, altered subcellular localization, and function of multiple ZnTs in live cells using this sensitive BiFC technique. We show that ZnT1, -2, -3, and -4 form stable heterodimers at distinct intracellular compartments, some of which are completely different from their homodimer localization. Specifically, unlike the plasma membrane (PM) localization of ZnT1 homodimers, ZnT1-ZnT3 heterodimers localized at intracellular vesicles. Furthermore, upon heterodimerization with ZnT1, the zinc transporters ZnT2 and ZnT4 surprisingly localized at the PM, as opposed to their vesicular homodimer localization. We further demonstrate the deleterious effect that the G87R-ZnT2 mutation, associated with transient neonatal zinc deficiency, has on ZnT1, ZnT3, and ZnT4 upon heterodimerization. The functionality of the various ZnTs was assessed by the dual BiFC-Zinquin assay. We also undertook a novel transfection competition assay with ZnT cDNAs to confirm that the driving force for heterodimer formation is the core structure of ZnTs and not the BiFC tags. These findings uncover a novel network of homo- and heterodimers of ZnTs with distinct subcellular localizations and function, hence highlighting their possible role in zinc homeostasis under physiological and pathological conditions.
Collapse
Affiliation(s)
- Yarden Golan
- From the Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Bluma Berman
- From the Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yehuda G Assaraf
- From the Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
12
|
Toneatto J, Charó NL, Naselli A, Muñoz-Bernart M, Lombardi A, Piwien-Pilipuk G. Corticosteroid Receptors, Their Chaperones and Cochaperones: How Do They Modulate Adipogenesis? NUCLEAR RECEPTOR RESEARCH 2014. [DOI: 10.11131/2014/101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Erlejman AG, De Leo SA, Mazaira GI, Molinari AM, Camisay MF, Fontana V, Cox MB, Piwien-Pilipuk G, Galigniana MD. NF-κB transcriptional activity is modulated by FK506-binding proteins FKBP51 and FKBP52: a role for peptidyl-prolyl isomerase activity. J Biol Chem 2014; 289:26263-26276. [PMID: 25104352 DOI: 10.1074/jbc.m114.582882] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hsp90 binding immunophilins FKBP51 and FKBP52 modulate steroid receptor trafficking and hormone-dependent biological responses. With the purpose to expand this model to other nuclear factors that are also subject to nuclear-cytoplasmic shuttling, we analyzed whether these immunophilins modulate NF-κB signaling. It is demonstrated that FKBP51 impairs both the nuclear translocation rate of NF-κB and its transcriptional activity. The inhibitory action of FKBP51 requires neither the peptidylprolyl-isomerase activity of the immunophilin nor its association with Hsp90. The TPR domain of FKBP51 is essential. On the other hand, FKBP52 favors the nuclear retention time of RelA, its association to a DNA consensus binding sequence, and NF-κB transcriptional activity, the latter effect being strongly dependent on the peptidylprolyl-isomerase activity and also on the TPR domain of FKBP52, but its interaction with Hsp90 is not required. In unstimulated cells, FKBP51 forms endogenous complexes with cytoplasmic RelA. Upon cell stimulation with phorbol ester, the NF-κB soluble complex exchanges FKBP51 for FKBP52, and the NF-κB biological effect is triggered. Importantly, FKBP52 is functionally recruited to the promoter region of NF-κB target genes, whereas FKBP51 is released. Competition assays demonstrated that both immunophilins antagonize one another, and binding assays with purified proteins suggest that the association of RelA and immunophilins could be direct. These observations suggest that the biological action of NF-κB in different cell types could be positively regulated by a high FKBP52/FKBP51 expression ratio by favoring NF-κB nuclear retention, recruitment to the promoter regions of target genes, and transcriptional activity.
Collapse
Affiliation(s)
- Alejandra G Erlejman
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica de Ciencias Exactas y Naturales (IQUIBICEN)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428ADN Argentina
| | - Sonia A De Leo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica de Ciencias Exactas y Naturales (IQUIBICEN)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428ADN Argentina
| | - Gisela I Mazaira
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica de Ciencias Exactas y Naturales (IQUIBICEN)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428ADN Argentina
| | - Alejandro M Molinari
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica de Ciencias Exactas y Naturales (IQUIBICEN)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428ADN Argentina
| | - María Fernanda Camisay
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica de Ciencias Exactas y Naturales (IQUIBICEN)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428ADN Argentina
| | - Vanina Fontana
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica de Ciencias Exactas y Naturales (IQUIBICEN)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428ADN Argentina
| | - Marc B Cox
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas, El Paso, Texas 79968
| | - Graciela Piwien-Pilipuk
- Laboratorio de Arquitectura Nuclear, Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires C1428ADN, Argentina, and
| | - Mario D Galigniana
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica de Ciencias Exactas y Naturales (IQUIBICEN)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428ADN Argentina,; Laboratorio de Receptores Nucleares, Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires C1428ADN, Argentina.
| |
Collapse
|
14
|
Toneatto J, Guber S, Charó NL, Susperreguy S, Schwartz J, Galigniana MD, Piwien-Pilipuk G. Dynamic mitochondrial-nuclear redistribution of the immunophilin FKBP51 is regulated by the PKA signaling pathway to control gene expression during adipocyte differentiation. J Cell Sci 2013; 126:5357-68. [PMID: 24101724 DOI: 10.1242/jcs.125799] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glucocorticoids play an important role in adipogenesis through the glucocorticoid receptor (GR) that forms a heterocomplex with Hsp90•Hsp70 and one high molecular weight immunophilin, either FKBP51 or FKBP52. When 3T3-L1 preadipocytes are induced to differentiate, FKBP51 expression progressively increases, whereas FKBP52 decreases, and Hsp90, Hsp70, p23 and Cyp40 remain unchanged. Interestingly, FKBP51 rapidly translocates from mitochondria to the nucleus where it is retained upon its interaction with chromatin and the nuclear matrix. FKBP51 nuclear localization is transient, and after 48 hours it cycles back to mitochondria. Importantly, this dynamic FKBP51 mitochondrial-nuclear shuttling depends on PKA signaling, because its inhibition by PKI or knockdown of PKA-cα by siRNA, prevented FKBP51 nuclear translocation induced by IBMX. In addition, the electrophoretic pattern of migration of FKBP51 is altered by treatment of cells with PKI or knockdown of PKA-cα, suggesting that FKBP51 is a PKA substrate. In preadipocytes, FKBP51 colocalizes with PKA-cα in mitochondria. When adipogenesis is triggered, PKA-cα also moves to the nucleus colocalizing with FKBP51 mainly in the nuclear lamina. Moreover, FKBP51 and GR interaction increases when preadipocytes are induced to differentiate. GR transcriptional capacity is reduced when cells are incubated in the presence of IBMX, forskolin or dibutyryl-cAMP, compounds that induced FKBP51 nuclear translocation, but not by a specific activator of EPAC. FKBP51 knockdown facilitates adipogenesis, whereas ectopic expression of FKBP51 blocks adipogenesis. These findings indicate that the dynamic mitochondrial-nuclear shuttling of FKBP51 regulated by PKA may be key in fine-tuning the transcriptional control of GR target genes required for the acquisition of adipocyte phenotype.
Collapse
Affiliation(s)
- Judith Toneatto
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires C1428ADN, Argentina
| | | | | | | | | | | | | |
Collapse
|
15
|
Gaya M, Repetto V, Toneatto J, Anesini C, Piwien-Pilipuk G, Moreno S. Antiadipogenic effect of carnosic acid, a natural compound present in Rosmarinus officinalis, is exerted through the C/EBPs and PPARγ pathways at the onset of the differentiation program. Biochim Biophys Acta Gen Subj 2013; 1830:3796-806. [DOI: 10.1016/j.bbagen.2013.03.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 02/21/2013] [Accepted: 03/20/2013] [Indexed: 01/24/2023]
|
16
|
Siegel AP, Hays NM, Day RN. Unraveling transcription factor interactions with heterochromatin protein 1 using fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:25002. [PMID: 23392382 PMCID: PMC3747855 DOI: 10.1117/1.jbo.18.2.025002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/14/2012] [Accepted: 01/11/2013] [Indexed: 06/01/2023]
Abstract
The epigenetic control of heterochromatin deposition is achieved through a network of protein interactions mediated by the heterochromatin protein 1 (HP1). In earlier studies, we showed that the CCAAT/enhancer-binding protein alpha (C/EBPα), a transcription factor that controls cell differentiation, localizes to heterochromatin, and interacts with HP1α. Here, deletion and mutagenesis are combined with live-cell imaging approaches to characterize these protein interactions. The results demonstrate that the basic region and leucine zipper (BZip) domain of C/EBPα is sufficient for the interaction with HP1α in regions of heterochromatin. Fluorescence correlation spectroscopy and cross-correlation (FCS and FCCS) revealed very different diffusion profiles for HP1α and the BZip protein, and co-expression studies indicated that the mobile fractions of these nuclear proteins diffuse independently of one another. The steady-state interactions of these proteins in regions of heterochromatin were monitored using Förster resonance energy transfer (FRET). A point mutation in HP1α, W174A, which disrupts the interactions with proteins containing the common PxVxL motif did not affect the interaction with the BZip protein. In contrast, the HP1α W41A mutation, which prevents binding to methylated histones, exhibited greatly reduced FRET efficiency when compared to the wild type HP1α or HP1αW174A. The functional significance of these interactions is discussed.
Collapse
Affiliation(s)
- Amanda P. Siegel
- Indiana University School of Medicine, Department of Cellular and Integrative Physiology, 635 Barnhill Drive, Indianapolis, Indiana 46202
| | - Nicole M. Hays
- Indiana University School of Medicine, Department of Cellular and Integrative Physiology, 635 Barnhill Drive, Indianapolis, Indiana 46202
| | - Richard N. Day
- Indiana University School of Medicine, Department of Cellular and Integrative Physiology, 635 Barnhill Drive, Indianapolis, Indiana 46202
| |
Collapse
|