1
|
Hu C, Mi W, Li F, Zhu L, Ou Q, Li M, Li T, Ma Y, Zhang Y, Xu Y. Optimizing drug combination and mechanism analysis based on risk pathway crosstalk in pan cancer. Sci Data 2024; 11:74. [PMID: 38228620 PMCID: PMC10791624 DOI: 10.1038/s41597-024-02915-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
Combination therapy can greatly improve the efficacy of cancer treatment, so identifying the most effective drug combination and interaction can accelerate the development of combination therapy. Here we developed a computational network biological approach to identify the effective drug which inhibition risk pathway crosstalk of cancer, and then filtrated and optimized the drug combination for cancer treatment. We integrated high-throughput data concerning pan-cancer and drugs to construct miRNA-mediated crosstalk networks among cancer pathways and further construct networks for therapeutic drug. Screening by drug combination method, we obtained 687 optimized drug combinations of 83 first-line anticancer drugs in pan-cancer. Next, we analyzed drug combination mechanism, and confirmed that the targets of cancer-specific crosstalk network in drug combination were closely related to cancer prognosis by survival analysis. Finally, we save all the results to a webpage for query ( http://bio-bigdata.hrbmu.edu.cn/oDrugCP/ ). In conclusion, our study provided an effective method for screening precise drug combinations for various cancer treatments, which may have important scientific significance and clinical application value for tumor treatment.
Collapse
Affiliation(s)
- Congxue Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Wanqi Mi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Feng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Lun Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Qi Ou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Maohao Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Tengyue Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yuheng Ma
- Department of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, 010100, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yingqi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
- Department of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, 010100, China.
| |
Collapse
|
2
|
Cilleros-Rodríguez D, Toledo-Lobo MV, Martínez-Martínez D, Baquero P, Angulo JC, Chiloeches A, Iglesias T, Lasa M. Protein kinase D activity is a risk biomarker in prostate cancer that drives cell invasion by a Snail/ERK dependent mechanism. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166851. [PMID: 37611675 DOI: 10.1016/j.bbadis.2023.166851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/20/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Protein kinase D (PKD) family members play controversial roles in prostate cancer (PC). Thus, PKD1 is nearly absent in advanced tumours, where PKD2 and PKD3 are upregulated. Additionally, consequences of activation of these kinases on PC progression remain largely unclear. Here, we first investigated PKD function on PC cell motility, analysing the underlying molecular mechanisms. We find a striking decrease of Snail levels after PKD inhibition followed by cell migration and invasion impairment, demonstrating an unprecedented role of PKD activity on the regulation of this key transcription factor in PC progression. Specifically, we show that PKD2 activity mediates the effects of MEK/ERK pathway on Snail expression, establishing a joint function of ERK/PKD2/Snail cascade in PC cell invasion regulation. These results led us to address the clinical relevance of the correlation between PKD2 and ERK activities with Snail abundance in samples from PC patients at different stages, analysing its impact on tumour prognosis and patients´ survival. Importantly, this is the first study defining a direct correlation between active PKD2 and Snail levels, further linked to ERK activity. We also evidence that PKD2 activity is associated with important poor prognostic factors. Thus, PC patients with the expression pattern: active PKD2high/active ERKhigh/Snailhigh exhibit increased invasiveness and metastasis, and decreased survival. Our findings provide new insights for understanding the molecular mechanisms involved in PC progression, pinpointing the combination of active PKD2 and Snail levels, with the additional measurement of active ERK, as a confident biomarker to predict clinical outcome of patients with advanced PC.
Collapse
Affiliation(s)
- Darío Cilleros-Rodríguez
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - María Val Toledo-Lobo
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Madrid, Spain; IRYCIS, Instituto de Investigaciones Sanitarias Ramón y Cajal, Madrid, Spain
| | - Desirée Martínez-Martínez
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pablo Baquero
- Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | - Javier C Angulo
- Servicio de Urología, Hospital Universitario de Getafe, Madrid, Spain
| | - Antonio Chiloeches
- Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | - Teresa Iglesias
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain; CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neuro-degenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Marina Lasa
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| |
Collapse
|
3
|
Gutiérrez-Galindo E, Yilmaz ZH, Hausser A. Membrane trafficking in breast cancer progression: protein kinase D comes into play. Front Cell Dev Biol 2023; 11:1173387. [PMID: 37293129 PMCID: PMC10246754 DOI: 10.3389/fcell.2023.1173387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Protein kinase D (PKD) is a serine/threonine kinase family that controls important cellular functions, most notably playing a key role in the secretory pathway at the trans-Golgi network. Aberrant expression of PKD isoforms has been found mainly in breast cancer, where it promotes various cellular processes such as growth, invasion, survival and stem cell maintenance. In this review, we discuss the isoform-specific functions of PKD in breast cancer progression, with a particular focus on how the PKD controlled cellular processes might be linked to deregulated membrane trafficking and secretion. We further highlight the challenges of a therapeutic approach targeting PKD to prevent breast cancer progression.
Collapse
Affiliation(s)
| | - Zeynep Hazal Yilmaz
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
4
|
Potential role for protein kinase D inhibitors in prostate cancer. J Mol Med (Berl) 2023; 101:341-349. [PMID: 36843036 DOI: 10.1007/s00109-023-02298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/28/2023]
Abstract
Protein kinase D (PrKD), a novel serine-threonine kinase, belongs to a family of calcium calmodulin kinases that consists of three isoforms: PrKD1, PrKD2, and PrKD3. The PrKD isoforms play a major role in pathologic processes such as cardiac hypertrophy and cancer progression. The charter member of the family, PrKD1, is the most extensively studied isoform. PrKD play a dual role as both a proto-oncogene and a tumor suppressor depending on the cellular context. The duplicity of PrKD can be highlighted in advanced prostate cancer (PCa) where expression of PrKD1 is suppressed whereas the expressions of PrKD2 and PrKD3 are upregulated to aid in cancer progression. As understanding of the PrKD signaling pathways has been better elucidated, interest has been garnered in the development of PrKD inhibitors. The broad-spectrum kinase inhibitor staurosporine acts as a potent PrKD inhibitor and is the most well-known; however, several other novel and more specific PrKD inhibitors have been developed over the last two decades. While there is tremendous potential for PrKD inhibitors to be used in a clinical setting, none has progressed beyond preclinical trials due to a variety of challenges. In this review, we focus on PrKD signaling in PCa and the potential role of PrKD inhibitors therein, and explore the possible clinical outcomes based on known function and expression of PrKD isoforms at different stages of PCa.
Collapse
|
5
|
Legay C, Doublier S, Babajko S, Ricort JM. Protein kinase D1 overexpression potentiates epidermal growth factor signaling pathway in MCF-7 cells. Mol Biol Rep 2023; 50:3641-3651. [PMID: 36800056 DOI: 10.1007/s11033-023-08300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/20/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Protein kinase D1, PKD1, is a serine-threonine kinase implicated in cell proliferation, migration, invasion, and/or apoptosis and its activation by several growth factors sets this enzyme as a key regulator of tumorigenesis and tumor progression. Despite many studies, its role in the regulation of intracellular signaling pathways remains widely disparate and needs to be clarified. METHODS AND RESULTS By using human breast cancer cells MCF-7, overexpressing or not PKD1, we demonstrated that PKD1 expression level modulated the tumor growth-promoting epidermal growth factor (EGF) signaling pathway. We also showed that EGF acutely stimulated PKD1 phosphorylation with similar time courses both in control and PKD1-overexpressing cells. However, PKD1 overexpression specifically and markedly increased EGF-induced phosphorylation of Akt (onto T308 and S473 residues) and extracellular-regulated protein kinase (ERK1/2). Finally, pharmacological inhibition of PKD1 activity or lowering its expression level using specific siRNAs drastically reduced EGF-stimulated Akt and ERK phosphorylation in PKD1overexpressing cells, but not in control cells. CONCLUSIONS Overall, these results identified the level of PKD1 expression as a key determinant in the regulation of the EGF signaling pathway highlighting its crucial role in a tumorigenic setting.
Collapse
Affiliation(s)
- Christine Legay
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, 91290, Gif-Sur-Yvette, France
| | - Sophie Doublier
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, 75006, Paris, France
| | - Sylvie Babajko
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, 75006, Paris, France
- Biomedical Research in Odontology, Université Paris Cité, 92120, Montrouge, France
| | - Jean-Marc Ricort
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, 91290, Gif-Sur-Yvette, France.
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, 75006, Paris, France.
- Biomedical Research in Odontology, Université Paris Cité, 92120, Montrouge, France.
| |
Collapse
|
6
|
Li C, Wang Y, Wu C, Zhou J, Zhou Y, Jiao Y, Li Y, Zhao L. Ebracteolatain A exerts anti-proliferation of breast cancer by inhibiting Protein kinase D 1 in MEK/ERK and PI3K/AKT signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154588. [PMID: 36610131 DOI: 10.1016/j.phymed.2022.154588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ebracteolatain A (EA) is an acetyl-phloroglucinol compound extracted from Euphorbiae Ebracteolatae Radix, which has been shown to have antitumor activity. PURPOSE Current research addressed the antitumor activity of EA in breast cancer and further clarified its mechanism. STUDY DESIGN Based on the pharmacodynamic evaluation in breast cancer cells and animal models, the antitumor effects of EA will be validated in vitro and in vivo. METHODS Breast cancer cells were processed with increasing concentrations of EA. CCK-8 and colony formation assays were employed to examine the effects of EA on proliferation and survival. Flow cytometry detected the blocking function of EA on the cell cycle. The specific mechanism of EA in breast cancer was studied by transfection experiments and Western Blot analysis. Finally, a nude mice xenograft tumor model was constructed to assess the therapeutic and potential mechanism of EA. RESULTS We proved that EA caused a dose-dependent inhibition on MCF-7 and MDA-MB-415 cells with IC50 of 6.164 and 6.623 μmol/l, respectively. While EA reduced cell proliferation and clone formation, and markedly arrested cells in the G0/G1 phase. In vivo, EA remarkably suppressed the tumor weight and volume in xenograft nude mice. Besides, PKD1 reversed the inhibition of EA on breast cancer cell proliferation, clone formation, and cycle arrest, and restored tumor growth in xenograft nude mice. Western Blot confirmed that EA regulates breast cancer by suppressing PKD1 in MEK/ERK and PI3K/AKT signaling pathways. CONCLUSION Herein, we first confirmed EA exerts anti-proliferation by inhibiting PKD1 in MEK/ERK and PI3K/AKT signaling pathways, indicating that EA is a prodigious breast cancer drug candidate.
Collapse
Affiliation(s)
- Chengjian Li
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Luoxi 121 Road, Shanghai, 201908, China; Luodian Clinical Drug Research Center, Institute for Translational Medicine Research, Shanghai University, Shanghai, 200444, China
| | - Ying Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Chenxi Wu
- College of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021, China; Luodian Clinical Drug Research Center, Institute for Translational Medicine Research, Shanghai University, Shanghai, 200444, China
| | - Jin Zhou
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Luoxi 121 Road, Shanghai, 201908, China; Luodian Clinical Drug Research Center, Institute for Translational Medicine Research, Shanghai University, Shanghai, 200444, China
| | - Yanqing Zhou
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Luoxi 121 Road, Shanghai, 201908, China; Luodian Clinical Drug Research Center, Institute for Translational Medicine Research, Shanghai University, Shanghai, 200444, China
| | - Yang Jiao
- College of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021, China
| | - Yamei Li
- Luodian Clinical Drug Research Center, Institute for Translational Medicine Research, Shanghai University, Shanghai, 200444, China.
| | - Liang Zhao
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Luoxi 121 Road, Shanghai, 201908, China; Luodian Clinical Drug Research Center, Institute for Translational Medicine Research, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
7
|
Cheng Y, Zhang S, Qiang Y, Dong L, Li Y. Integrated bioinformatics data analysis reveals a risk signature and PKD1 induced progression in endometrial cancer patients with postmenopausal status. Aging (Albany NY) 2022; 14:5554-5570. [PMID: 35816294 PMCID: PMC9320543 DOI: 10.18632/aging.204168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
Abstract
Background: Endometrial cancer (EC) is one of the most common type of female genital malignancies. The purpose of the present study was to reveal the underlying oncogene and mechanism that played a pivotal role in postmenopausal EC patients. Methods: Weighted gene co-expression network analysis (WGCNA) was conducted using the microarray dataset and clinical data of EC patients from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to identify significant gene modules and hub genes associated with postmenopausal status in EC patients. LASSO regression was conducted to build and validate the risk model. Finally, expression of hub gene was validated in pre- and post-menopausal EC patients in our center. Results: 1240 common genes were used to construct the WGCNA model. According to the WGCNA results, we identified a brown module with 471 genes which was significantly associated with postmenopausal status in EC patients. Furthermore, we constructed an 11-gene risk signature to predict the overall survival of EC patients. The Kaplan–Meier curve and area under the ROC curve (AUC) of this model showed high accuracy in prediction. We also validate the risk model in patients in our center and it also has a high accuracy. Among the 11 genes, PKD1 was recognized as a potential biomarker in the progression of EC patients with postmenopausal status. Conclusion: Taken together, we uncovered a common PKD1-mediated mechanism underlying postmenopausal EC patients’ progression by integrated analyses. This finding may improve targeted therapy for EC patients.
Collapse
Affiliation(s)
- Yun Cheng
- Department of Gynecology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Suyun Zhang
- Department of Gynecology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Yan Qiang
- Department of Gynecology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Lingyan Dong
- Department of Gynecology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Yujuan Li
- Department of Gynecology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| |
Collapse
|
8
|
Spano D, Colanzi A. Golgi Complex: A Signaling Hub in Cancer. Cells 2022; 11:1990. [PMID: 35805075 PMCID: PMC9265605 DOI: 10.3390/cells11131990] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 02/01/2023] Open
Abstract
The Golgi Complex is the central hub in the endomembrane system and serves not only as a biosynthetic and processing center but also as a trafficking and sorting station for glycoproteins and lipids. In addition, it is an active signaling hub involved in the regulation of multiple cellular processes, including cell polarity, motility, growth, autophagy, apoptosis, inflammation, DNA repair and stress responses. As such, the dysregulation of the Golgi Complex-centered signaling cascades contributes to the onset of several pathological conditions, including cancer. This review summarizes the current knowledge on the signaling pathways regulated by the Golgi Complex and implicated in promoting cancer hallmarks and tumor progression.
Collapse
Affiliation(s)
- Daniela Spano
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Antonino Colanzi
- Institute for Endocrinology and Experimental Oncology “G. Salvatore”, National Research Council, 80131 Naples, Italy;
| |
Collapse
|
9
|
Higher tumor protein kinase D1 correlates with increased tumor size, BCLC stage, CA199 level, AFP level and worse overall survival in hepatocellular carcinoma patients. Clin Res Hepatol Gastroenterol 2021; 45:101573. [PMID: 33281070 DOI: 10.1016/j.clinre.2020.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Protein kinase D1 (PKD1) is recognized as a key regulator in the progression in several solid cancers, while its clinical role in HCC is unclear. This study aimed to evaluate the correlation of PKD1 with clinical features and prognosis in HCC patients. METHODS A total of 218 HCC patients who underwent resection were retrospectively enrolled. PKD1 expression in tumor (N = 218) and adjacent (N = 110) tissues was detected by immunohistochemical staining, scored by a semi-quantitative scoring method ranging from 0 to 12, and further classified as PKD1-, PKD1+, PKD1++ and PKD1+++ for analysis. Meanwhile, patients' clinical features and survival data were acquired from the database. RESULTS PKD1 was elevated in tumor tissues compared with adjacent tissues. Meanwhile, higher tumor PKD1 was correlated with elevated tumor size, Barcelona Clinic Liver Cancer (BCLC) stage, carbohydrate antigen 199 (CA199) level and alpha fetoprotein (AFP) level; while no correlation was found in tumor PKD1 with patients' basic features or liver function indexes. Moreover, higher tumor PKD1 was correlated with worse overall survival (OS) in HCC patients, then further validated as an independent predictive factor for worse OS by multivariate Cox's regression model analysis. Additionally, in Child-Pugh stage A, Child-Pugh stage B, BCLC stage 0/A, and BCLC stage B subgroups, higher tumor PKD1 was also correlated with worse OS. CONCLUSION Higher PKD1 in tumor tissues correlates with elevated BCLC stage, bigger tumor size, increased CA199 level, higher AFP level and worse OS in HCC patients.
Collapse
|
10
|
Inhibition of the lncRNA Coded within Transglutaminase 2 Gene Impacts Several Relevant Networks in MCF-7 Breast Cancer Cells. Noncoding RNA 2021; 7:ncrna7030049. [PMID: 34449674 PMCID: PMC8395837 DOI: 10.3390/ncrna7030049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs are nucleotide molecules that regulate transcription in numerous cellular processes and are related to the occurrence of many diseases, including cancer. In this regard, we recently discovered a polyadenylated long non-coding RNA (named TG2-lncRNA) encoded within the first intron of the Transglutaminase type 2 gene (TGM2), which is related to tumour proliferation in human cancer cell lines. To better characterize this new biological player, we investigated the effects of its suppression in MCF-7 breast cancer cells, using siRNA treatment and RNA-sequencing. In this way, we found modifications in several networks associated to biological functions relevant for tumorigenesis (apoptosis, chronic inflammation, angiogenesis, immunomodulation, cell mobility, and epithelial–mesenchymal transition) that were originally attributed only to Transglutaminase type 2 protein but that could be regulated also by TG2-lncRNA. Moreover, our experiments strongly suggest the ability of TG2-lncRNA to directly interact with important transcription factors, such as RXRα and TP53, paving the way for several regulatory loops that can potentially influence the phenotypic behaviour of MCF-7 cells. These considerations imply the need to further investigate the relative relevance of the TG2 protein itself and/or other gene products as key regulators in the organization of breast cancer program.
Collapse
|
11
|
Zhang X, Connelly J, Chao Y, Wang QJ. Multifaceted Functions of Protein Kinase D in Pathological Processes and Human Diseases. Biomolecules 2021; 11:biom11030483. [PMID: 33807058 PMCID: PMC8005150 DOI: 10.3390/biom11030483] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Protein kinase D (PKD) is a family of serine/threonine protein kinases operating in the signaling network of the second messenger diacylglycerol. The three family members, PKD1, PKD2, and PKD3, are activated by a variety of extracellular stimuli and transduce cell signals affecting many aspects of basic cell functions including secretion, migration, proliferation, survival, angiogenesis, and immune response. Dysregulation of PKD in expression and activity has been detected in many human diseases. Further loss- or gain-of-function studies at cellular levels and in animal models provide strong support for crucial roles of PKD in many pathological conditions, including cancer, metabolic disorders, cardiac diseases, central nervous system disorders, inflammatory diseases, and immune dysregulation. Complexity in enzymatic regulation and function is evident as PKD isoforms may act differently in different biological systems and disease models, and understanding the molecular mechanisms underlying these differences and their biological significance in vivo is essential for the development of safer and more effective PKD-targeted therapies. In this review, to provide a global understanding of PKD function, we present an overview of the PKD family in several major human diseases with more focus on cancer-associated biological processes.
Collapse
|
12
|
Liang Y, Su Y, Xu C, Zhang N, Liu D, Li G, Tong T, Chen J. Protein kinase D1 phosphorylation of KAT7 enhances its protein stability and promotes replication licensing and cell proliferation. Cell Death Discov 2020; 6:89. [PMID: 33014433 PMCID: PMC7501302 DOI: 10.1038/s41420-020-00323-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/09/2020] [Accepted: 09/02/2020] [Indexed: 01/24/2023] Open
Abstract
The histone acetyltransferase (HAT) KAT7/HBO1/MYST2 plays a crucial role in the pre-replication complex (pre-RC) formation, DNA replication and cell proliferation via acetylation of histone H4 and H3. In a search for protein kinase D1 (PKD1)-interacting proteins, we have identified KAT7 as a potential PKD1 substrate. We show that PKD1 directly interacts and phosphorylates KAT7 at Thr97 and Thr331 in vitro and in vivo. PKD1-mediated phosphorylation of KAT7 enhances its expression levels and stability by reducing its ubiquitination-mediated degradation. Significantly, the phospho-defective mutant KAT7-Thr97/331A attenuates histone H4 acetylation levels, MCM2/6 loading on the chromatin, DNA replication and cell proliferation. Similarly, PKD1 knockdown decreases, whereas the constitutive active mutant PKD1-CA increases histone H4 acetylation levels and MCM2/6 loading on the chromatin. Overall, these results suggest that PKD1-mediated phosphorylation of KAT7 may be required for pre-RC formation and DNA replication.
Collapse
Affiliation(s)
- Yao Liang
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191 China
| | - Yuanyuan Su
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191 China
| | - Chenzhong Xu
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191 China
| | - Na Zhang
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191 China
| | - Doudou Liu
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191 China
| | - Guodong Li
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191 China
| | - Tanjun Tong
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191 China
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191 China
| |
Collapse
|
13
|
Merzoug-Larabi M, Youssef I, Bui AT, Legay C, Loiodice S, Lognon S, Babajko S, Ricort JM. Protein Kinase D1 (PKD1) Is a New Functional Non-Genomic Target of Bisphenol A in Breast Cancer Cells. Front Pharmacol 2020; 10:1683. [PMID: 32082170 PMCID: PMC7006487 DOI: 10.3389/fphar.2019.01683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 12/24/2019] [Indexed: 01/01/2023] Open
Abstract
Exposure to bisphenol A (BPA), one of the most widespread endocrine disruptors present in our environment, has been associated with the recent increased prevalence and severity of several diseases such as diabetes, obesity, autism, reproductive and neurological defects, oral diseases, and cancers such as breast tumors. BPA is suspected to act through genomic and non-genomic pathways. However, its precise molecular mechanisms are still largely unknown. Our goal was to identify and characterize a new molecular target of BPA in breast cancer cells in order to better understand how this compound may affect breast tumor growth and development. By using in vitro (MCF-7, T47D, Hs578t, and MDA-MB231 cell lines) and in vivo models, we demonstrated that PKD1 is a functional non-genomic target of BPA. PKD1 specifically mediates BPA-induced cell proliferation, clonogenicity, and anchorage-independent growth of breast tumor cells. Additionally, low-doses of BPA (≤10- 8 M) induced the phosphorylation of PKD1, a key signature of its activation state. Moreover, PKD1 overexpression increased the growth of BPA-exposed breast tumor xenografts in vivo in athymic female Swiss nude (Foxn1nu/nu ) mice. These findings further our understanding of the molecular mechanisms of BPA. By defining PKD1 as a functional target of BPA in breast cancer cell proliferation and tumor development, they provide new insights into the pathogenesis related to the exposure to BPA and other endocrine disruptors acting similarly.
Collapse
Affiliation(s)
- Messaouda Merzoug-Larabi
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Ilige Youssef
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Ai Thu Bui
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire de Physiopathologie Orale Moléculaire, Paris, France
| | - Christine Legay
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Sophia Loiodice
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire de Physiopathologie Orale Moléculaire, Paris, France
| | - Sophie Lognon
- École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Sylvie Babajko
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire de Physiopathologie Orale Moléculaire, Paris, France
| | - Jean-Marc Ricort
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| |
Collapse
|
14
|
Yao J, Jiang Y, Geng S, Sun L. Protein Kinase D1 Is Increased in Tumor Tissue, Correlates With Advanced Tumor Features and Worse Prognosis of Non-Small Cell Lung Cancer. Technol Cancer Res Treat 2020; 19:1533033820934129. [PMID: 32985371 PMCID: PMC7534063 DOI: 10.1177/1533033820934129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE This study aimed to assess protein kinase D1 expression and its association with tumor characteristics as well as prognosis in patients with non-small cell lung cancer. METHODS Protein kinase D1 expression in tumor tissues and adjacent tissues from 172 patients with non-small cell lung cancer who underwent surgical resection were analyzed by immunohistochemical staining. Based on the total immunohistochemical score, protein kinase D1 expression was classified as protein kinase D1 high expression (further divided into protein kinase D1 high+++, protein kinase D1 high++, and protein kinase D1 high+ expressions) and protein kinase D1 low expression. Clinical characteristics of patients with non-small cell lung cancer were acquired from the database. Accumulating disease-free survival and overall survival were calculated based on patients' relapse/survival status. RESULTS Protein kinase D1 expression was increased in tumor tissues compared to adjacent tissues (P < .001). Tumor protein kinase D1 high expression correlated with poorer pathological differentiation (P = .041), increased tumor size (P = .003), the presence of lymph node metastasis (P = .001), and elevated tumor, nodes and metastases stage (P < .001). Besides, both accumulating disease-free survival and overall survival were decreased in patients with tumor protein kinase D1 high expression compared to patients with tumor protein kinase D1 low expression (P = .010 for disease-free survival and P = 0.005 for overall survival). Moreover, they were lowest in patients with tumor protein kinase D1 high+++ expression, followed by patients with tumor protein kinase D1 high++ expression, then patients with tumor protein kinase D1 high+ expression, and highest in patients with tumor protein kinase D1 low expression (P < .001 for disease-free survival and P = .001 for overall survival). Notably, higher tumor protein kinase D1 expression was an independent predictive factor for decreased disease-free survival (P = .001) and overall survival (P = .004). CONCLUSIONS Protein kinase D1 might be a potential marker to identify patients with non-small cell lung cancer with worse tumor features and prognosis.
Collapse
Affiliation(s)
- Jing Yao
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Jiang
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Geng
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Sun
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Wang JN, Fan YP, Chen J, Feng Y, Cui BM, Li XY, Wang LW, Chen HL, Zhang P, Wu HK. [Role of protein kinase D1 in regulating the growth, apoptosis and drug sensitivity of oral squamous carcinoma cells]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:583-588. [PMID: 31875434 DOI: 10.7518/hxkq.2019.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study aimed to investigate the role of protein kinase D (PKD)1 in regulating the growth, apop-tosis, and drug sensitivity of the squamous carcinoma cell line SCC-25. METHODS The SCC-25 cell line was transfected with either the control-shRNA or PKD1-shRNA plasmids. The stable transfected cells were selected, and the efficiency of PKD1 knockdown was detected by Western blot. The growth and apoptosis of SCC-25 were analyzed with a cell counting kit-8 (CCK8) and flow cytometry. The 50% inhibitory concentrations (IC50) of paclitaxel in the control and PKD1 knockdown cell lines were detected by CCK-8. The expression levels of Bax, Bcl-2, and P-gp were detected by Western blot. RESULTS PKD1 was constitutively expressed and phosphorylated in various cancer cell lines. Inhibiting the expression of PKD1 in SCC-25 cells by RNA interference could inhibit the growth and promote the apoptosis of SCC-25 cells via downregulating Bcl-2 expression. Additionally, inhibiting PKD1 expression could downregulate the expression of P-gp, thereby decreasing both the IC50 and resistance index of paclitaxel. CONCLUSIONS PKD1 plays an important role in regulating the biobehavior of SCC-25. It is a potential therapeutic target for oral squamous carcinoma.
Collapse
Affiliation(s)
- Jing-Nan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ya-Ping Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiao Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yun Feng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bo-Miao Cui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiao-Ying Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li-Wei Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hong-Li Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hong-Kun Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Georgess D, Padmanaban V, Sirka OK, Coutinho K, Choi A, Frid G, Neumann NM, Inoue T, Ewald AJ. Twist1-Induced Epithelial Dissemination Requires Prkd1 Signaling. Cancer Res 2019; 80:204-218. [PMID: 31676574 DOI: 10.1158/0008-5472.can-18-3241] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 08/02/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
Dissemination is an essential early step in metastasis but its molecular basis remains incompletely understood. To define the essential targetable effectors of this process, we developed a 3D mammary epithelial culture model, in which dissemination is induced by overexpression of the transcription factor Twist1. Transcriptomic analysis and ChIP-PCR together demonstrated that protein kinase D1 (Prkd1) is a direct transcriptional target of Twist1 and is not expressed in the normal mammary epithelium. Pharmacologic and genetic inhibition of Prkd1 in the Twist1-induced dissemination model demonstrated that Prkd1 was required for cells to initiate extracellular matrix (ECM)-directed protrusions, release from the epithelium, and migrate through the ECM. Antibody-based protein profiling revealed that Prkd1 induced broad phosphorylation changes, including an inactivating phosphorylation of β-catenin and two microtubule depolymerizing phosphorylations of Tau, potentially explaining the release of cell-cell contacts and persistent activation of Prkd1. In patients with breast cancer, TWIST1 and PRKD1 expression correlated with metastatic recurrence, particularly in basal breast cancer. Prkd1 knockdown was sufficient to block dissemination of both murine and human mammary tumor organoids. Finally, Prkd1 knockdown in vivo blocked primary tumor invasion and distant metastasis in a mouse model of basal breast cancer. Collectively, these data identify Prkd1 as a novel and targetable signaling node downstream of Twist1 that is required for epithelial invasion and dissemination. SIGNIFICANCE: Twist1 is a known regulator of metastatic cell behaviors but not directly targetable. This study provides a molecular explanation for how Twist1-induced dissemination works and demonstrates that it can be targeted. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/2/204/F1.large.jpg.
Collapse
Affiliation(s)
- Dan Georgess
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Veena Padmanaban
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Orit Katarina Sirka
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kester Coutinho
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alex Choi
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gabriela Frid
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Neil M Neumann
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Takanari Inoue
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew J Ewald
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cancer Invasion and Metastasis Program, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
17
|
Youssef I, Ricort JM. Deciphering the Role of Protein Kinase D1 (PKD1) in Cellular Proliferation. Mol Cancer Res 2019; 17:1961-1974. [PMID: 31311827 DOI: 10.1158/1541-7786.mcr-19-0125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/05/2019] [Accepted: 07/11/2019] [Indexed: 11/16/2022]
Abstract
Protein kinase D1 (PKD1) is a serine/threonine kinase that belongs to the calcium/calmodulin-dependent kinase family, and is involved in multiple mechanisms implicated in tumor progression such as cell motility, invasion, proliferation, protein transport, and apoptosis. While it is expressed in most tissues in the normal state, PKD1 expression may increase or decrease during tumorigenesis, and its role in proliferation is context-dependent and poorly understood. In this review, we present and discuss the current landscape of studies investigating the role of PKD1 in the proliferation of both cancerous and normal cells. Indeed, as a potential therapeutic target, deciphering whether PKD1 exerts a pro- or antiproliferative effect, and under what conditions, is of paramount importance.
Collapse
Affiliation(s)
- Ilige Youssef
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Jean-Marc Ricort
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France. .,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France.,Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| |
Collapse
|
18
|
Durand N, Borges S, Hall T, Bastea L, Döppler H, Edenfield BH, Thompson EA, Geiger X, Storz P. The phosphorylation status of PIP5K1C at serine 448 can be predictive for invasive ductal carcinoma of the breast. Oncotarget 2018; 9:36358-36370. [PMID: 30555634 PMCID: PMC6284740 DOI: 10.18632/oncotarget.26357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/31/2018] [Indexed: 11/25/2022] Open
Abstract
Phosphatidylinositol-4-phosphate 5-kinase type-1C (PIP5K1C) is a lipid kinase that regulates focal adhesion dynamics and cell attachment through site-specific formation of phosphatidylinositol-4,5-bisphosphate (PI4,5P2). By comparing normal breast tissue to carcinoma in situ and invasive ductal carcinoma subtypes, we here show that the phosphorylation status of PIP5K1C at serine residue 448 (S448) can be predictive for breast cancer progression to an aggressive phenotype, while PIP5K1C expression levels are not indicative for this event. PIP5K1C phosphorylation at S448 is downregulated in invasive ductal carcinoma, and similarly, the expression levels of PKD1, the kinase that phosphorylates PIP5K1C at this site, are decreased. Overall, since PKD1 is a negative regulator of cell migration and invasion in breast cancer, the phosphorylation status of this residue may serve as an indicator of aggressiveness of breast tumors.
Collapse
Affiliation(s)
- Nisha Durand
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sahra Borges
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tavia Hall
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ligia Bastea
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Heike Döppler
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Brandy H Edenfield
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - E Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
19
|
Spasojevic C, Marangoni E, Vacher S, Assayag F, Meseure D, Château-Joubert S, Humbert M, Karam M, Ricort JM, Auclair C, Regairaz M, Bièche I. PKD1 is a potential biomarker and therapeutic target in triple-negative breast cancer. Oncotarget 2018; 9:23208-23219. [PMID: 29796183 PMCID: PMC5955414 DOI: 10.18632/oncotarget.25292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/03/2018] [Indexed: 01/06/2023] Open
Abstract
Protein Kinase D1 (PKD1) is a serine/threonine kinase encoded by the PRKD1 gene. PKD1 has been previously shown to be a prognostic factor in ERα+ tamoxifen-resistant breast tumors and PKD1 overexpression confers estrogen independence to ERα+ MCF7 cells. In the present study, our goal was to determine whether PKD1 is a prognostic factor and/or a relevant therapeutic target in breast cancer. We analyzed PRKD1 mRNA levels in 527 primary breast tumors. We found that high PRKD1 mRNA levels were significantly and independently associated with a low metastasis-free survival in the whole breast cancer population and in the triple-negative breast cancer (TNBC) subtype specifically. High PRKD1 mRNA levels were also associated with a low overall survival in TNBC. We identified novel PKD1 inhibitors and assessed their antitumor activity in vitro in TNBC cell lines and in vivo in a TNBC patient-derived xenograft (PDX) model. Pharmacological inhibition and siRNA-mediated depletion of PKD1 reduced colony formation in MDA-MB-436 TNBC cells. PKD1 inhibition also reduced tumor growth in vivo in a TNBC PDX model. Together, these results establish PKD1 as a poor prognostic factor and a potential therapeutic target in TNBC.
Collapse
Affiliation(s)
- Caroline Spasojevic
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, Paris, France.,LBPA, CNRS UMR8113, ENS Paris-Saclay, Paris-Saclay University, Cachan, France
| | - Elisabetta Marangoni
- Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | - Sophie Vacher
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, Paris, France
| | - Franck Assayag
- Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | | | | | | | - Manale Karam
- LBPA, CNRS UMR8113, ENS Paris-Saclay, Paris-Saclay University, Cachan, France.,Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Jean Marc Ricort
- LBPA, CNRS UMR8113, ENS Paris-Saclay, Paris-Saclay University, Cachan, France
| | - Christian Auclair
- AB Science SA, Paris, France.,Biology Department, ENS Paris-Saclay, Paris-Saclay University, Cachan, France
| | - Marie Regairaz
- LBPA, CNRS UMR8113, ENS Paris-Saclay, Paris-Saclay University, Cachan, France
| | - Ivan Bièche
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, Paris, France
| |
Collapse
|
20
|
Zhang L, Zhao Z, Xu S, Tandon M, LaValle CR, Deng F, Wang QJ. Androgen suppresses protein kinase D1 expression through fibroblast growth factor receptor substrate 2 in prostate cancer cells. Oncotarget 2017; 8:12800-12811. [PMID: 28077787 PMCID: PMC5355056 DOI: 10.18632/oncotarget.14536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 12/27/2016] [Indexed: 01/08/2023] Open
Abstract
In prostate cancer, androgen/androgen receptor (AR) and their downstream targets play key roles in all stages of disease progression. The protein kinase D (PKD) family, particularly PKD1, has been implicated in prostate cancer biology. Here, we examined the cross-regulation of PKD1 by androgen signaling in prostate cancer cells. Our data showed that the transcription of PKD1 was repressed by androgen in androgen-sensitive prostate cancer cells. Steroid depletion caused up regulation of PKD1 transcript and protein, an effect that was reversed by the AR agonist R1881 in a time- and concentration-dependent manner, thus identifying PKD1 as a novel androgen-repressed gene. Kinetic analysis indicated that the repression of PKD1 by androgen required the induction of a repressor protein. Furthermore, inhibition or knockdown of AR reversed AR agonist-induced PKD1 repression, indicating that AR was required for the suppression of PKD1 expression by androgen. Downstream of AR, we identified fibroblast growth factor receptor substrate 2 (FRS2) and its downstream MEK/ERK pathway as mediators of androgen-induced PKD1 repression. In summary, PKD1 was identified as a novel androgen-suppressed gene and could be downregulated by androgen through a novel AR/FRS2/MEK/ERK pathway. The upregulation of prosurvival PKD1 by anti-androgens may contribute to therapeutic resistance in prostate cancer treatment.
Collapse
Affiliation(s)
- Liyong Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhenlong Zhao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuping Xu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Manuj Tandon
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Courtney R LaValle
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Q Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Merzoug-Larabi M, Spasojevic C, Eymard M, Hugonin C, Auclair C, Karam M. Protein kinase C inhibitor Gö6976 but not Gö6983 induces the reversion of E- to N-cadherin switch and metastatic phenotype in melanoma: identification of the role of protein kinase D1. BMC Cancer 2017; 17:12. [PMID: 28056869 PMCID: PMC5217271 DOI: 10.1186/s12885-016-3007-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/15/2016] [Indexed: 12/12/2022] Open
Abstract
Background Melanoma is a highly metastatic type of cancer that is resistant to all standard anticancer therapies and thus has a poor prognosis. Therefore, metastatic melanoma represents a significant clinical problem and requires novel and effective targeted therapies. The protein kinase C (PKC) family comprises multiple isoforms of serine/threonine kinases that possess distinct roles in cancer development and progression. In this study, we determined whether inhibition of PKC could revert a major process required for melanoma progression and metastasis; i.e. the E- to N-cadherin switch. Methods The cadherin switch was analyzed in different patient-derived primary tumors and their respective metastatic melanoma cells to determine the appropriate cellular model (aggressive E-cadherin-negative/N-cadherin-positive metastasis-derived melanoma cells). Next, PKC inhibition in two selected metastatic melanoma cell lines, was performed by using either pharmacological inhibitors (Gö6976 and Gö6983) or stable lentiviral shRNA transduction. The expression of E-cadherin and N-cadherin was determined by western blot. The consequences of cadherin switch reversion were analyzed: cell morphology, intercellular interactions, and β-catenin subcellular localization were analyzed by immunofluorescence labeling and confocal microscopy; cyclin D1 expression was analyzed by western blot; cell metastatic potential was determined by anchorage-independent growth assay using methylcellulose as semi-solid medium and cell migration potential by wound healing and transwell assays. Results Gö6976 but not Gö6983 reversed the E- to N-cadherin switch and as a consequence induced intercellular interactions, profound morphological changes from elongated mesenchymal-like to cuboidal epithelial-like shape, β-catenin translocation from the nucleus to the plasma membrane inhibiting its oncogenic function, and reverting the metastatic potential of the aggressive melanoma cells. Comparison of the target spectrum of these inhibitors indicated that these observations were not the consequence of the inhibition of conventional PKCs (cPKCs), but allowed the identification of a novel serine/threonine kinase, i.e. protein kinase Cμ, also known as protein kinase D1 (PKD1), whose specific inhibition allows the reversion of the metastatic phenotype in aggressive melanoma. Conclusion In conclusion, our study suggests, for the first time, that while cPKCs don’t embody a pertinent therapeutic target, inhibition of PKD1 represents a novel attractive approach for the treatment of metastatic melanoma. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-3007-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Caroline Spasojevic
- LBPA, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, 94235, France.,Département de Génétique, Institut Curie, Unité de Pharmacogénomique, Paris, 75248, France
| | - Marianne Eymard
- LBPA, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, 94235, France
| | - Caroline Hugonin
- LBPA, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, 94235, France
| | - Christian Auclair
- LBPA, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, 94235, France
| | - Manale Karam
- LBPA, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, 94235, France. .,Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, 5825, Qatar.
| |
Collapse
|
22
|
Wang Y, Kang W, Wang X, Chen M, Qin Q, Guo M, Ge Z. Functional Role and Mechanism of microRNA-28b in Atrial Myocyte in a Persistent Atrial Fibrillation Rat Model. Med Sci Monit 2016; 22:3073-8. [PMID: 27574952 PMCID: PMC5008747 DOI: 10.12659/msm.896780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background Persistent atrial fibrillation has been indicated to be related with microRNA-28b. However, the exact role of microRNA-28b in persistent atrial fibrillation needs to be further elucidated. Therefore, this study aimed to establish a rat model of persistent atrial fibrillation to investigate the level of microRNA-28b in atrial myocytes and to explore the molecular mechanism involved. Material/Methods A persistent atrial fibrillation model was established in rats by using chronic rapid atrial pacing induction. The size of the heart was measured by ultrasonic method. The expression of microRNA-28b in left atrial myocytes was quantified by RT-PCR. Cardiomyocytes were isolated and cultured to detect cell proliferation and apoptosis by MTT and flow cytometry, respectively. The specific inhibitor of ERK signaling pathway, PD98059, was used to further illustrate the role of ERK signaling pathway in the modulation of cardiomyocytes in persistent atrial fibrillation. Results MicroRNA-28b was up-regulated in the experimental rat model with persistent atrial fibrillation. The proliferation of cardiomyocytes was significantly inhibited with potentiated apoptosis. Blockage of the ERK pathway suppressed the microRNA-28b expression and inhibited cell apoptosis. Conclusions microRNA-28b-induced growth inhibition and cell apoptosis of atrial myocytes was observed in the rat model with persistent atrial fibrillation, via activation of the ERK signaling pathway.
Collapse
Affiliation(s)
- Yongbin Wang
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Weiqiang Kang
- Department of Cardiology, Qingdao Municipal hospital, Qingdao, Shandong, China (mainland)
| | - Xu Wang
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Meina Chen
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Qiaoji Qin
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Minglei Guo
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Zhiming Ge
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
23
|
Lee SH, Jaganath IB, Atiya N, Manikam R, Sekaran SD. Suppression of ERK1/2 and hypoxia pathways by four Phyllanthus species inhibits metastasis of human breast cancer cells. J Food Drug Anal 2016; 24:855-865. [PMID: 28911625 PMCID: PMC9337293 DOI: 10.1016/j.jfda.2016.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 03/14/2016] [Accepted: 03/23/2016] [Indexed: 12/20/2022] Open
Abstract
Chemotherapies remain far from ideal due to drug resistance; therefore, novel chemotherapeutic agents with higher effectiveness are crucial. The extracts of four Phyllanthus species, namely Phyllanthus niruri, Phyllanthus urinaria, Phyllanthus watsonii, and Phyllanthus amarus, were shown to induce apoptosis and inhibit metastasis of breast carcinoma cells (MCF-7). The main objective of this study was to determine the pathways utilized by these four Phyllanthus species to exert anti-metastatic activities. A cancer 10-pathway reporter was used to investigate the pathways affected by the four Phyllanthus species. Results indicated that these Phyllanthus species suppressed breast carcinoma metastasis and proliferation by suppressing matrix metalloprotein 2 and 9 expression via inhibition of the extracellular signal-related kinase (ERK) pathway. Additionally, inhibition of hypoxia-inducible factor 1-α in the hypoxia pathway caused reduced vascular endothelial growth factor and inducible nitric oxide synthase expression, resulting in anti-angiogenic effects and eventually anti-metastasis. Two-dimensional gel electrophoresis identified numerous proteins suppressed by these Phyllanthus species, including invasion proteins, anti-apoptotic protein, protein-synthesis proteins, angiogenic and mobility proteins, and various glycolytic enzymes. Our results indicated that ERK and hypoxia pathways are the most likely targets of the four Phyllanthus species for the inhibition of MCF-7 metastasis.
Collapse
Affiliation(s)
- Sau H. Lee
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur,
Malaysia
| | - Indu B. Jaganath
- Biotechnology Centre, Malaysia Agricultural Research and Development Institute (MARDI), 43400, Serdang,
Malaysia
| | - Nadia Atiya
- Department of Trauma and Emergency Medicine, University Malaya Medical Centre, 50603, Kuala Lumpur,
Malaysia
| | - Rishya Manikam
- Department of Trauma and Emergency Medicine, University Malaya Medical Centre, 50603, Kuala Lumpur,
Malaysia
| | - Shamala D. Sekaran
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur,
Malaysia
- Corresponding author. Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia. E-mail address: (S.D. Sekaran)
| |
Collapse
|
24
|
Qin Y, Sundaram S, Essaid L, Chen X, Miller SM, Yan F, Darr DB, Galanko JA, Montgomery SA, Major MB, Johnson GL, Troester MA, Makowski L. Weight loss reduces basal-like breast cancer through kinome reprogramming. Cancer Cell Int 2016; 16:26. [PMID: 27042159 PMCID: PMC4818517 DOI: 10.1186/s12935-016-0300-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/22/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity is associated with an aggressive subtype of breast cancer called basal-like breast cancer (BBC). BBC has no targeted therapies, making the need for mechanistic insight urgent. Reducing adiposity in adulthood can lower incidence of BBC in humans. Thus, this study investigated whether a dietary intervention to reduce adiposity prior to tumor onset would reverse HFD-induced BBC. METHODS Adult C3(1)-Tag mice were fed a low or high fat diet (LFD, HFD), and an obese group initially exposed to HFD was then switched to LFD to induce weight loss. A subset of mice was sacrificed prior to average tumor latency to examine unaffected mammary gland. Latency, tumor burden and progression was evaluated for effect of diet exposure. Physiologic, histology and proteomic analysis was undertaken to determine mechanisms regulating obesity and weight loss in BBC risk. Statistical analysis included Kaplan-Meier and log rank analysis to investigate latency. Student's t tests or ANOVA compared variables. RESULTS Mice that lost weight displayed significantly delayed latency compared to mice fed HFD, with latency matching those on LFD. Plasma leptin concentrations significantly increased with adiposity, were reduced to control levels with weight loss, and negatively correlated with tumor latency. HFD increased atypical ductal hyperplasia and ductal carcinoma in situ in mammary gland isolated prior to mean latency-a phenomenon that was lost in mice induced to lose weight. Importantly, kinome analysis revealed that weight loss reversed HFD-upregulated activity of PKC-α, PKD1, PKA, and MEK3 and increased AMPKα activity in unaffected mammary glands isolated prior to tumor latency. CONCLUSIONS Weight loss prior to tumor onset protected against the effects of HFD on latency and pre-neoplastic lesions including atypical ductal hyperplasia and DCIS. Using innovative kinomics, multiple kinases upstream of MAPK/P38α were demonstrated to be activated by HFD-induced weight gain and reversed with weight loss, providing novel targets in obesity-associated BBC. Thus, the HFD-exposed microenvironment that promoted early tumor onset was reprogrammed by weight loss and the restoration of a lean phenotype. Our work contributes to an understanding of underlying mechanisms associated with tumor and normal mammary changes that occur with weight loss.
Collapse
Affiliation(s)
- Yuanyuan Qin
- />CB 7461, Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2203 McGavran Greenberg Hall, Chapel Hill, NC 27599-7461 USA
| | - Sneha Sundaram
- />CB 7461, Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2203 McGavran Greenberg Hall, Chapel Hill, NC 27599-7461 USA
| | - Luma Essaid
- />CB 7461, Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2203 McGavran Greenberg Hall, Chapel Hill, NC 27599-7461 USA
| | - Xin Chen
- />Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Samantha M. Miller
- />Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Feng Yan
- />Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - David B. Darr
- />Mouse Phase I Unit, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Joseph A. Galanko
- />Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Stephanie A. Montgomery
- />Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Michael B. Major
- />Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Gary L. Johnson
- />Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- />Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Melissa A. Troester
- />Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- />Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Liza Makowski
- />CB 7461, Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2203 McGavran Greenberg Hall, Chapel Hill, NC 27599-7461 USA
- />Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
25
|
Yang D, Okamura H, Teramachi J, Haneji T. Histone demethylase Jmjd3 regulates osteoblast apoptosis through targeting anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bim. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:650-9. [PMID: 26795455 DOI: 10.1016/j.bbamcr.2016.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 01/24/2023]
Abstract
Posttranslational modifications including histone methylation regulate gene transcription through directly affecting the structure of chromatin. Trimethylation of histone H3K27 (H3K27me3) contributes to gene silencing and the histone demethylase Jumonji domain-containing 3 (Jmjd3) specifically removes the methylation of H3K27me3, followed by the activation of gene expression. In the present study, we explored the roles of Jmjd3 in regulating osteoblast apoptosis. Knockdown of Jmjd3 promoted osteoblast apoptosis induced by serum deprivation with decreased mitochondrial membrane potential and increased levels of caspase-3 activation, PARP cleavage, and DNA fragmentation. B cell lymphoma-2 (Bcl-2), an anti-apoptotic protein, was down-regulated by knockdown of Jmjd3 through retaining H3K27me3 on its promoter region. Knockdown of Jmjd3 increased the pro-apoptotic activity of Bim through inhibiting ERK-dependent phosphorylation of Bim. Protein kinase D1 (PKD1), which stimulates ERK phosphorylation, decreased in the Jmjd3-knockdown cells and introduction of PKD1 relieved osteoblast apoptosis in the Jmjd3-knockdown cells through increasing ERK-regulated Bim phosphorylation. These results suggest that Jmjd3 regulates osteoblast apoptosis through targeting Bcl-2 expression and Bim phosphorylation.
Collapse
Affiliation(s)
- Di Yang
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, PR China; Department of Histology and Oral Histology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan.
| | - Hirohiko Okamura
- Department of Histology and Oral Histology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Jumpei Teramachi
- Department of Histology and Oral Histology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Tatsuji Haneji
- Department of Histology and Oral Histology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan.
| |
Collapse
|
26
|
Durand N, Borges S, Storz P. Functional and therapeutic significance of protein kinase D enzymes in invasive breast cancer. Cell Mol Life Sci 2015; 72:4369-82. [PMID: 26253275 DOI: 10.1007/s00018-015-2011-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022]
Abstract
The protein kinase D (PKD) family members, PKD1, PKD2 and PKD3 constitute a family of serine/threonine kinases that are essential regulators of cell migration, proliferation and protein transport. Multiple types of cancers are characterized by aberrant expression of PKD isoforms. In breast cancer PKD isoforms exhibit distinct expression patterns and regulate various oncogenic processes. In highly invasive breast cancer, the leading cause of cancer-associated deaths in females, the loss of PKD1 is thought to promote invasion and metastasis, while PKD2 and upregulated PKD3 have been shown to be positive regulators of proliferation, chemoresistance and metastasis. In this review, we examine the differential expression pattern, mechanisms of regulation and contributions made by each PKD isoform to the development and maintenance of invasive breast cancer. In addition, we discuss the potential therapeutic approaches for targeting PKD in this disease.
Collapse
Affiliation(s)
- Nisha Durand
- Department of Cancer Biology, Mayo Clinic, Griffin Room 306, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Sahra Borges
- Department of Cancer Biology, Mayo Clinic, Griffin Room 306, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Griffin Room 306, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
27
|
Borges S, Perez EA, Thompson EA, Radisky DC, Geiger XJ, Storz P. Effective Targeting of Estrogen Receptor-Negative Breast Cancers with the Protein Kinase D Inhibitor CRT0066101. Mol Cancer Ther 2015; 14:1306-16. [PMID: 25852060 DOI: 10.1158/1535-7163.mct-14-0945] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/02/2015] [Indexed: 12/11/2022]
Abstract
Invasive ductal carcinomas (IDC) of the breast are associated with altered expression of hormone receptors (HR), amplification or overexpression of HER2, or a triple-negative phenotype. The most aggressive cases of IDC are characterized by a high proliferation rate, a great propensity to metastasize, and their ability to resist to standard chemotherapy, hormone therapy, or HER2-targeted therapy. Using progression tissue microarrays, we here demonstrate that the serine/threonine kinase protein kinase D3 (PKD3) is highly upregulated in estrogen receptor (ER)-negative (ER(-)) tumors. We identify direct binding of the ER to the PRKD3 gene promoter as a mechanism of inhibition of PKD3 expression. Loss of ER results in upregulation of PKD3, leading to all hallmarks of aggressive IDC, including increased cell proliferation, migration, and invasion. This identifies ER(-) breast cancers as ideal for treatment with the PKD inhibitor CRT0066101. We show that similar to a knockdown of PKD3, treatment with this inhibitor targets all tumorigenic processes in vitro and decreases growth of primary tumors and metastasis in vivo. Our data strongly support the development of PKD inhibitors for clinical use for ER(-) breast cancers, including the triple-negative phenotype.
Collapse
Affiliation(s)
- Sahra Borges
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Edith A Perez
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida. Department of Hematology/Oncology, Mayo Clinic, Jacksonville, Florida
| | | | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | | | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida.
| |
Collapse
|
28
|
Abstract
In MCF-7 breast cancer cells epidermal growth factor (EGF) induces cell proliferation, whereas heregulin (HRG)/neuregulin (NRG) induces irreversible phenotypic changes accompanied by lipid accumulation. Although these changes in breast cancer cells resemble processes that take place in the tissue, there is no understanding of signalling mechanisms regulating it. To identify molecular mechanisms mediating this cell-fate decision process, we applied different perturbations to pathways activated by these growth factors. The results demonstrate that phosphoinositide 3 (PI3) kinase (PI3K) and mammalian target of rapamycin (mTOR) complex (mTORC)1 activation is necessary for lipid accumulation that can also be induced by insulin, whereas stimulation of the extracellular-signal-regulated kinase (ERK) pathway is surprisingly dispensable. Interestingly, insulin exposure, as short as 4 h, was sufficient for triggering the lipid accumulation, whereas much longer treatment with HRG was required for achieving similar cellular response. Further, activation patterns of ATP citrate lyase (ACLY), an enzyme playing a central role in linking glycolytic and lipogenic pathways, suggest that lipids accumulated within cells are produced de novo rather than absorbed from the environment. In the present study, we demonstrate that PI3K pathway regulates phenotypic changes in breast cancer cells, whereas signal intensity and duration is crucial for cell fate decisions and commitment. Our findings reveal that MCF-7 cell fate decisions are controlled by a network of positive and negative regulators of both signalling and metabolic pathways. Excessive production and accumulation of lipids is often observed in breast cancer tissue. In the current study, we investigate signalling mechanisms regulating this process using a model cell line.
Collapse
|
29
|
Alpsoy A, Gündüz U. Protein kinase D2 silencing reduced motility of doxorubicin-resistant MCF7 cells. Tumour Biol 2015; 36:4417-26. [PMID: 25874490 DOI: 10.1007/s13277-015-3081-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/08/2015] [Indexed: 11/26/2022] Open
Abstract
Success of chemotherapy is generally impaired by multidrug resistance, intrinsic resistance, or acquired resistance to functionally and structurally irrelevant drugs. Multidrug resistance emerges via distinct mechanisms: increased drug export, decreased drug internalization, dysfunctional apoptotic machinery, increased DNA damage repair, altered cell cycle regulation, and increased drug detoxification. Several reports demonstrated that multidrug resistance is a multifaceted problem such that multidrug resistance correlates with increased aggressiveness and metastatic potential. Here, we tested the involvement of protein kinase D2, a serine/threonine kinase that was previously implicated in proliferation, drug resistance, and motility in doxorubicin-resistant MCF7 (MCF7/DOX) cell line, which served as an in vitro model for drug resistance and invasiveness. We showed that basal level activity of protein kinase D2 (PKD2) was higher in MCF7/DOX cells than parental MCF7 cells. To elucidate the roles of PKD2 MCF7/DOX, PKD2 expression was reduced via small interfering RNA (siRNA)-mediated knockdown. Results showed that acquired resistance of MCF7/DOX to doxorubicin was not affected by PKD2 silencing, while motility of MCF7/DOX cells was reduced. The results implied that PKD2 silencing might inhibit migration of MCF7/DOX cells without affecting chemoresistance significantly.
Collapse
Affiliation(s)
- Aktan Alpsoy
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | | |
Collapse
|
30
|
PKD1 is downregulated in non-small cell lung cancer and mediates the feedback inhibition of mTORC1-S6K1 axis in response to phorbol ester. Int J Biochem Cell Biol 2015; 60:34-42. [PMID: 25578563 DOI: 10.1016/j.biocel.2014.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 11/05/2014] [Accepted: 12/25/2014] [Indexed: 12/27/2022]
Abstract
Protein kinase D1 (PKD1) is increasingly implicated in multiple biological and molecular events that regulate the proliferation or invasiveness in several cancers. However, little is known about the expression and functions of PKD1 in non-small cell lung cancer (NSCLC). In the present study, 34 pairs of human NSCLC and matched normal bronchiolar epitheliums were enrolled and evaluated for PKD1 expression by quantitative real-time PCR. We showed that PKD1 was downregulated in 26 of 34 cancer tissues in comparison with matched normal epitheliums. Moreover, patients with venous invasion or lymph node metastasis showed significant lower expression of PKD1. Exposure of NSCLC A549 and H520 cells to the PKD family inhibitor kb NB 142-70(Kb), at concentrations that inhibited PKD1 activation, strikingly potentiated S6K1 phosphorylation at Thr(389) and S6 phosphorylation at Ser(235/236) in response to phorbol ester (PMA). Knockdown of PKD1 with siRNAs strikingly enhanced S6K1 phosphorylation whereas constitutively active PKD1 resulted in the S6K1 activity inhibition. Furthermore, the PI3K inhibitors LY294002, BKM120 and MEK inhibitors U0126, PD0325901 blocked the enhanced S6K1 activity induced by Kb. Collectively, our results identify decreased expression of the PKD1 as a marker for NSCLC and the loss of PKD1 expression increases the malignant potential of NSCLC cells. This may be due to the function of PKD1 as a negative regulator of mTORC1-S6K1. Our results suggest that re-expression or activation of PKD1 might serve as a potential therapeutic target for NSCLC treatment.
Collapse
|
31
|
Chen SX, Hu CL, Liao YH, Zhao WJ. L1 modulates PKD1 phosphorylation in cerebellar granule neurons. Neurosci Lett 2015; 584:331-6. [PMID: 25445362 DOI: 10.1016/j.neulet.2014.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/16/2014] [Accepted: 11/10/2014] [Indexed: 02/05/2023]
Abstract
The neural cell adhesion molecule L1 (L1CAM) is crucial for the development of the nervous system, with an essential role in regulating multiple cellular activities. Protein kinase D1 (PKD1) serves as a key kinase given its diverse array of functions within the cell. Here, we investigated various aspects of the functional relationship between L1 and phosphorylated PKD1 (pPKD1) in cerebellar granule neurons. To study the relationship between L1 and PKD1 phosphorylation, human cerebellar tissue microarrays were subject to immunofluorescence staining. We observed a positive correlation between L1 protein levels and PKD1 phosphorylation. In addition, L1 also co-localized with pPKD1. To analyze the regulatory role of L1 on PKD1 phosphorylation, primary mouse cerebellar granule neurons were treated with various concentrations of rL1 for 48 h. Using Western blot, we revealed that L1 significantly increased PKD1 phosphorylation compared with vehicle control, with the maximal effect observed at 5 nM. ERK1/2 phosphorylation was significantly increased by 2.5 nM and 10nM L1, with no apparent change in SRC phosphorylation. However, SRC expression was markedly reduced by 10nM rL1. AKT1 expression and phosphorylation levels were significantly increased by rL1, with the maximal effect observed at 2.5 and 5 nM, respectively. Our combined data revealed a positive relationship between L1 and pPKD1 in both cultured cerebellar neurons and human cerebellar tissue, suggesting that L1 functions in the modulation of PKD1 phosphorylation.
Collapse
Affiliation(s)
- Shuang-xi Chen
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Rd, Jinping District, Shantou, Guangdong Province 515041, PR China
| | - Cheng-liang Hu
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Rd, Jinping District, Shantou, Guangdong Province 515041, PR China
| | - Yong-hong Liao
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Rd, Jinping District, Shantou, Guangdong Province 515041, PR China
| | - Wei-jiang Zhao
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Rd, Jinping District, Shantou, Guangdong Province 515041, PR China.
| |
Collapse
|
32
|
Karam M, Bièche I, Legay C, Vacher S, Auclair C, Ricort JM. Protein kinase D1 regulates ERα-positive breast cancer cell growth response to 17β-estradiol and contributes to poor prognosis in patients. J Cell Mol Med 2014; 18:2536-52. [PMID: 25287328 PMCID: PMC4302658 DOI: 10.1111/jcmm.12322] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/07/2014] [Indexed: 12/21/2022] Open
Abstract
About 70% of human breast cancers express and are dependent for growth on estrogen receptor α (ERα), and therefore are sensitive to antiestrogen therapies. However, progression to an advanced, more aggressive phenotype is associated with acquisition of resistance to antiestrogens and/or invasive potential. In this study, we highlight the role of the serine/threonine-protein kinase D1 (PKD1) in ERα-positive breast cancers. Growth of ERα-positive MCF-7 and MDA-MB-415 human breast cancer cells was assayed in adherent or anchorage-independent conditions in cells overexpressing or depleted for PKD1. PKD1 induces cell growth through both an ERα-dependent manner, by increasing ERα expression and cell sensitivity to 17β-estradiol, and an ERα-independent manner, by reducing cell dependence to estrogens and conferring partial resistance to antiestrogen ICI 182,780. PKD1 knockdown in MDA-MB-415 cells strongly reduced estrogen-dependent and independent invasion. Quantification of PKD1 mRNA levels in 38 cancerous and non-cancerous breast cell lines and in 152 ERα-positive breast tumours from patients treated with adjuvant tamoxifen showed an association between PKD1 and ERα expression in 76.3% (29/38) of the breast cell lines tested and a strong correlation between PKD1 expression and invasiveness (P < 0.0001). In tamoxifen-treated patients, tumours with high PKD1 mRNA levels (n = 77, 50.66%) were significantly associated with less metastasis-free survival than tumours with low PKD1 mRNA expression (n = 75, 49.34%; P = 0.031). Moreover, PKD1 mRNA levels are strongly positively associated with EGFR and vimentin levels (P < 0.0000001). Thus, our study defines PKD1 as a novel attractive prognostic factor and a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Manale Karam
- Laboratoire de Biologie et de Pharmacologie Appliquée, UMR 8113 CNRS, Ecole Normale Supérieure de Cachan, Cachan, France
| | | | | | | | | | | |
Collapse
|
33
|
Identification and validation of a multigene predictor of recurrence in primary laryngeal cancer. PLoS One 2013; 8:e70429. [PMID: 23950933 PMCID: PMC3739775 DOI: 10.1371/journal.pone.0070429] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/18/2013] [Indexed: 11/30/2022] Open
Abstract
Purpose Local recurrence is the major manifestation of treatment failure in patients with operable laryngeal carcinoma. Established clinicopathological factors cannot sufficiently predict patients that are likely to recur after treatment. Additional tools are therefore required to accurately identify patients at high risk for recurrence. This study attempts to identify and independently validate gene expression models, prognostic of disease-free survival (DFS) in operable laryngeal cancer. Materials and Methods Using Affymetrix U133A Genechips, we profiled fresh-frozen tumor tissues from 66 patients with laryngeal cancer treated locally with surgery. We applied Cox regression proportional hazards modeling to identify multigene predictors of recurrence. Gene models were then validated in two independent cohorts of 54 and 187 patients (fresh-frozen and formalin-fixed tissue validation sets, respectively). Results We focused on genes univariately associated with DFS (p<0.01) in the training set. Among several models comprising different numbers of genes, a 30-probe set model demonstrated optimal performance in both the training (log-rank, p<0.001) and 1st validation (p = 0.010) sets. Specifically, in the 1st validation set, median DFS as predicted by the 30-probe set model, was 34 and 80 months for high- and low-risk patients, respectively. Hazard ratio (HR) for recurrence in the high-risk group was 3.87 (95% CI 1.28–11.73, Wald's p = 0.017). Testing the expression of selected genes from the above model in the 2nd validation set, with qPCR, revealed significant associations of single markers, such as ACE2, FLOT1 and PRKD1, with patient DFS. High PRKD1 remained an unfavorable prognostic marker upon multivariate analysis (HR = 2.00, 95% CI 1.28–3.14, p = 0.002) along with positive nodal status. Conclusions We have established and validated gene models that can successfully stratify patients with laryngeal cancer, based on their risk for recurrence. It seems worthy to prospectively validate PRKD1 expression as a laryngeal cancer prognostic marker, for routine clinical applications.
Collapse
|
34
|
Lian WJ, Liu G, Liu YJ, Zhao ZW, Yi T, Zhou HY. Downregulation of BMP6 enhances cell proliferation and chemoresistance via activation of the ERK signaling pathway in breast cancer. Oncol Rep 2013; 30:193-200. [PMID: 23674072 DOI: 10.3892/or.2013.2462] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/08/2013] [Indexed: 11/06/2022] Open
Abstract
Previous studies indicate that bone morphogenetic protein (BMP) 6 is involved in breast cancer development and progression. However, the mechanism underlying the role of BMP6 in breast cancer cell proliferation, differentiation and chemoresistance remains unknown. In this study, we confirmed that BMP6 expression was downregulated in breast cancer tissues compared with the adjacent normal breast tissues. We further demonstrated that the downregulation of BMP6 was correlated with the estrogen receptor (ER) and progesterone receptor (PR) status, tumor grade and enhanced proliferation (Ki67 proliferation index). In vitro functional experiments showed that the suppression of BMP6 expression by a specific small hairpin (sh)RNA vector led to increased proliferation in the MCF7 breast cancer cell line. Furthermore, knockdown of BMP6 in MCF7 cells enhanced the chemoresistance to doxorubicin by upregulation of mdr-1/P-gp expression and activation of the ERK signaling pathway. Taken together, our data suggest that BMP6 plays a critical role in breast cancer cell aberrant proliferation and chemoresistance and may serve as a novel diagnostic biomarker or therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Wen-Jing Lian
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | | | | | | | | | | |
Collapse
|
35
|
Bernhart E, Damm S, Wintersperger A, DeVaney T, Zimmer A, Raynham T, Ireson C, Sattler W. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro. Exp Cell Res 2013; 319:2037-2048. [PMID: 23562655 PMCID: PMC3715702 DOI: 10.1016/j.yexcr.2013.03.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 11/25/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-JunS73 phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Sphingosine-1-phosphate induces glioma cell migration and invasion. Part of the effects is mediated by protein kinase D2 (PRKD2) activation. Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK signaling. PRKD2 regulates transcription of gene products implicated in migration and invasion.
Collapse
Affiliation(s)
- Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Sabine Damm
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Andrea Wintersperger
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Trevor DeVaney
- Institute of Biophysics, Medical University of Graz, Austria
| | - Andreas Zimmer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens University, Graz, Austria
| | | | | | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.
| |
Collapse
|
36
|
Döppler H, Bastea LI, Eiseler T, Storz P. Neuregulin mediates F-actin-driven cell migration through inhibition of protein kinase D1 via Rac1 protein. J Biol Chem 2012; 288:455-65. [PMID: 23148218 DOI: 10.1074/jbc.m112.397448] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuregulin (NRG; heregulin) is overexpressed in ∼30% of breast cancers and mediates various processes involved in tumor progression, including tumor cell migration and invasion. Here, we show that NRG mediates its effects on tumor cell migration via PKD1. Downstream of RhoA, PKD1 can prevent directed cell migration through phosphorylation of its substrate SSH1L. NRG exerts its inhibitory effects on PKD1 through Rac1/NADPH oxidase, leading to decreased PKD1 activation loop phosphorylation and decreased activity toward SSH1L. The consequence of PKD1 inhibition by NRG is decreased binding of 14-3-3 to SSH1L, localization of SSH1L to F-actin at the leading edge, and increased cofilin activity, resulting in increased reorganization of the actin cytoskeleton and cell motility. Our data provide a mechanism through which the Rho GTPase Rac1 cross-talks with PKD1 signaling pathways to facilitate directed cell migration.
Collapse
Affiliation(s)
- Heike Döppler
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, Florida 32224, USA
| | | | | | | |
Collapse
|
37
|
Vorinostat, an HDAC inhibitor attenuates epidermoid squamous cell carcinoma growth by dampening mTOR signaling pathway in a human xenograft murine model. Toxicol Appl Pharmacol 2012; 266:233-44. [PMID: 23147569 DOI: 10.1016/j.taap.2012.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/01/2012] [Accepted: 11/02/2012] [Indexed: 01/16/2023]
Abstract
Histone deacetylase (HDAC) inhibitors are potent anticancer agents and show efficacy against various human neoplasms. Vorinostat is a potent HDAC inhibitor and has shown potential to inhibit growth of human xenograft tumors. However, its effect on the growth of skin neoplasm remains undefined. In this study, we show that vorinostat (2 μM) reduced expression of HDAC1, 2, 3, and 7 in epidermoid carcinoma A431 cells. Consistently, it increased acetylation of histone H3 and p53. Vorinostat (100mg/kg body weight, IP) treatment reduced human xenograft tumor growth in highly immunosuppressed nu/nu mice. Histologically, the vorinostat-treated tumor showed features of well-differentiation with large necrotic areas. Based on proliferating cell nuclear antigen (PCNA) staining and expression of cyclins D1, D2, E, and A, vorinostat seems to impair proliferation by down-regulating the expression of these proteins. However, it also induced apoptosis. The mechanism by which vorinostat blocks proliferation and makes tumor cells prone to apoptosis, involved inhibition of mTOR signaling which was accompanied by reduction in cell survival AKT and extracellular-signal regulated kinase (ERK) signaling pathways. Our data provide a novel mechanism-based therapeutic intervention for cutaneous squamous cell carcinoma (SCC). Vorinostat may be utilized to cure skin neoplasms in organ transplant recipient (OTR). These patients have high morbidity and surgical removal of these lesions which frequently develop in these patients, is difficult.
Collapse
|
38
|
An in vitro- in vivo model of epithelial mesenchymal transition in triple negative breast cancer. ACTA ACUST UNITED AC 2012; 9:e35-e40. [PMID: 23585768 DOI: 10.1016/j.ddmec.2012.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The loss of epithelial expression markers by neoplastic breast cancer cells in the primary tumor is believed to play a pivotal role during breast cancer metastasis. This phenomenon is the hallmark of the epithelial mesenchymal transition (EMT) process. Gene expression microarrays were performed to investigate key functional elements on an in vitro metastasis model derived from human breast epithelial cells (MCF10F) treated with 17 beta estradiol. We identified groups of SLUG associated genes modulated during EMT.
Collapse
|