1
|
Silvaroli JA, Martinez GV, Vanichapol T, Davidson AJ, Zepeda-Orozco D, Pabla NS, Kim JY. Role of the CDKL1-SOX11 signaling axis in acute kidney injury. Am J Physiol Renal Physiol 2024; 327:F426-F434. [PMID: 38991010 PMCID: PMC11460330 DOI: 10.1152/ajprenal.00147.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024] Open
Abstract
The biology of the cyclin-dependent kinase-like (CDKL) kinase family remains enigmatic. Contrary to their nomenclature, CDKLs do not rely on cyclins for activation and are not involved in cell cycle regulation. Instead, they share structural similarities with mitogen-activated protein kinases and glycogen synthase kinase-3, although their specific functions and associated signaling pathways are still unknown. Previous studies have shown that the activation of CDKL5 kinase contributes to the development of acute kidney injury (AKI) by suppressing the protective SOX9-dependent transcriptional program in tubular epithelial cells. In the current study, we measured the functional activity of all five CDKL kinases and discovered that, in addition to CDKL5, CDKL1 is also activated in tubular epithelial cells during AKI. To explore the role of CDKL1, we generated a germline knockout mouse that exhibited no abnormalities under normal conditions. Notably, when these mice were challenged with bilateral ischemia-reperfusion and rhabdomyolysis, they were found to be protected from AKI. Further mechanistic investigations revealed that CDKL1 phosphorylates and destabilizes SOX11, contributing to tubular dysfunction. In summary, this study has unveiled a previously unknown CDKL1-SOX11 axis that drives tubular dysfunction during AKI.NEW & NOTEWORTHY Identifying and targeting pathogenic protein kinases holds potential for drug discovery in treating acute kidney injury. Our study, using novel germline knockout mice, revealed that Cdkl1 kinase deficiency does not affect mouse viability but provides protection against acute kidney injury. This underscores the importance of Cdkl1 kinase in kidney injury and supports the development of targeted small-molecule inhibitors as potential therapeutics.
Collapse
Affiliation(s)
- Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States
| | - Gabriela V Martinez
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Thitinee Vanichapol
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Navjot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
2
|
Torban E, Goodyer P. Wilms' tumor gene 1: lessons from the interface between kidney development and cancer. Am J Physiol Renal Physiol 2024; 326:F3-F19. [PMID: 37916284 DOI: 10.1152/ajprenal.00248.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
In 1990, mutations of the Wilms' tumor-1 gene (WT1), encoding a transcription factor in the embryonic kidney, were found in 10-15% of Wilms' tumors; germline WT1 mutations were associated with hereditary syndromes involving glomerular and reproductive tract dysplasia. For more than three decades, these discoveries prompted investigators to explore the embryonic role of WT1 and the mechanisms by which loss of WT1 leads to malignant transformation. Here, we discuss how alternative splicing of WT1 generates isoforms that act in a context-specific manner to activate or repress target gene transcription. WT1 also regulates posttranscriptional regulation, alters the epigenetic landscape, and activates miRNA expression. WT1 functions at multiple stages of kidney development, including the transition from resting stem cells to committed nephron progenitor, which it primes to respond to WNT9b signals from the ureteric bud. WT1 then drives nephrogenesis by activating WNT4 expression and directing the development of glomerular podocytes. We review the WT1 mutations that account for Denys-Drash syndrome, Frasier syndrome, and WAGR syndrome. Although the WT1 story began with Wilms' tumors, an understanding of the pathways that link aberrant kidney development to malignant transformation still has some important gaps. Loss of WT1 in nephrogenic rests may leave these premalignant clones with inadequate DNA repair enzymes and may disturb the epigenetic landscape. Yet none of these observations provide a complete picture of Wilms' tumor pathogenesis. It appears that the WT1 odyssey is unfinished and still holds a great deal of untilled ground to be explored.
Collapse
Affiliation(s)
- Elena Torban
- Department of Medicine, McGill University and Research Institute of McGill University Health Center, Montreal, Quebec, Canada
| | - Paul Goodyer
- Department of Human Genetics, Montreal Children's Hospital and McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, Montreal Children's Hospital and McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Tsang SM, Oliemuller E, Howard BA. Regulatory roles for SOX11 in development, stem cells and cancer. Semin Cancer Biol 2020; 67:3-11. [DOI: 10.1016/j.semcancer.2020.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/29/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022]
|
4
|
Blackburn ATM, Miller RK. Modeling congenital kidney diseases in Xenopus laevis. Dis Model Mech 2019; 12:12/4/dmm038604. [PMID: 30967415 PMCID: PMC6505484 DOI: 10.1242/dmm.038604] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) occur in ∼1/500 live births and are a leading cause of pediatric kidney failure. With an average wait time of 3-5 years for a kidney transplant, the need is high for the development of new strategies aimed at reducing the incidence of CAKUT and preserving renal function. Next-generation sequencing has uncovered a significant number of putative causal genes, but a simple and efficient model system to examine the function of CAKUT genes is needed. Xenopus laevis (frog) embryos are well-suited to model congenital kidney diseases and to explore the mechanisms that cause these developmental defects. Xenopus has many advantages for studying the kidney: the embryos develop externally and are easily manipulated with microinjections, they have a functional kidney in ∼2 days, and 79% of identified human disease genes have a verified ortholog in Xenopus. This facilitates high-throughput screening of candidate CAKUT-causing genes. In this Review, we present the similarities between Xenopus and mammalian kidneys, highlight studies of CAKUT-causing genes in Xenopus and describe how common kidney diseases have been modeled successfully in this model organism. Additionally, we discuss several molecular pathways associated with kidney disease that have been studied in Xenopus and demonstrate why it is a useful model for studying human kidney diseases. Summary: Understanding how congenital kidney diseases arise is imperative to their treatment. Using Xenopus as a model will aid in elucidating kidney development and congenital kidney diseases.
Collapse
Affiliation(s)
- Alexandria T M Blackburn
- Pediatric Research Center, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX 77030, USA
| | - Rachel K Miller
- Pediatric Research Center, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA .,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX 77030, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Biochemistry and Cell Biology Houston, Houston, TX 77030, USA.,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
5
|
Shan T, Uyar DS, Wang LS, Mutch DG, Huang THM, Rader JS, Sheng X, Huang YW. SOX11 hypermethylation as a tumor biomarker in endometrial cancer. Biochimie 2019; 162:8-14. [PMID: 30935961 DOI: 10.1016/j.biochi.2019.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 01/24/2023]
Abstract
We previously reported that SOX4 is overexpressed in endometrial cancer and that it partially contributes to hypermethylation of miR-129-2 and miR-203. The current study seeks to identify methylation and expression levels of the SOX gene family in endometrial carcinomas. Methylation levels of the 16 SOX gene family members were measured by combining bisulfite restriction analysis (COBRA), MassARRAY, and pyrosequencing assays of cell lines and endometrial cancer samples. Gene expression was determined by RT-qPCR. The methylation level of the SOX11 locus was correlated with clinicopathologic factors in primary endometrial tumors and in TCGA endometrial cohort. It was also examined in DNA of serum and endometrial specimens from a longitudinal cohort of early stage endometrial cancer patients. COBRA assays indicated that hypermethylation of SOX1, SOX2, SOX11, SOX14, SOX15, SOX17, and SOX18 was present in endometrial cancer cell lines and not in the normal control. SOX11 expression was reactivated only by a DNA methylation inhibitor. Moreover, aberrant DNA methylation of SOX11 was detected in the majority of endometrioid endometrial carcinomas (n=114) and none of the 22 adjacent normal endometrial samples (P<0.0001). The methylation status of SOX11 associated significantly with microsatellite instability and MLH1 methylation in endometrial tumors (P<0.0001), and this finding was validated in TCGA endometrial cohort. Furthermore, SOX11 was not hypermethylated in serum DNA from early stage endometrial cancer patients. This study found that hypermethylation of SOX11 is common in endometrial carcinomas and strongly associates with microsatellite instability and MLH1 methylation.
Collapse
Affiliation(s)
- Tianjiao Shan
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Shandong Cancer Hospital Affiliated to Shandong University, Jinan, 250117, Shandong, China
| | - Denise S Uyar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - David G Mutch
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tim H-M Huang
- Department of Molecular Medicine and Cancer Therapy & Research Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Janet S Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Xiugui Sheng
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, 250117, Shandong, China; National Cancer Center, National Clinical Research Center for Cancer and Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China.
| | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
6
|
Tan Z, Shan J, Rak-Raszewska A, Vainio SJ. Embryonic Stem Cells Derived Kidney Organoids as Faithful Models to Target Programmed Nephrogenesis. Sci Rep 2018; 8:16618. [PMID: 30413738 PMCID: PMC6226521 DOI: 10.1038/s41598-018-34995-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
The kidney is a complex organ that is comprised of thousands of nephrons developing through reciprocal inductive interactions between metanephric mesenchyme (MM) and ureteric bud (UB). The MM undergoes mesenchymal to epithelial transition (MET) in response to the signaling from the UB. The secreted protein Wnt4, one of the Wnt family members, is critical for nephrogenesis as mouse Wnt4−/− mutants fail to form pretubular aggregates (PTA) and therefore lack functional nephrons. Here, we generated mouse embryonic stem cell (mESC) line lacking Wnt4 by applying the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems 9 (Cas9). We describe here, differentiation of the wild type and Wnt4 knockout mESCs into kidney progenitors, and such cells induced to undergo nephrogenesis by the mouse E11.5 UB mediated induction. The wild type three-dimensional (3D) self-organized organoids depict appropriately segmented nephron structures, while the Wnt4-deficient organoids fail to undergo the MET, as is the case in the phenotype of the Wnt4 knockout mouse model in vivo. In summary, we have established a platform that combine CRISPR/Cas9 and kidney organoid technologies to model kidney development in vitro and confirmed that mutant organoids are able to present similar actions as in the in vivo studies.
Collapse
Affiliation(s)
- Zenglai Tan
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5A, 90220, Oulu, Finland.
| | - Jingdong Shan
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Aleksandra Rak-Raszewska
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Seppo J Vainio
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5A, 90220, Oulu, Finland.
| |
Collapse
|
7
|
Neirijnck Y, Reginensi A, Renkema KY, Massa F, Kozlov VM, Dhib H, Bongers EMHF, Feitz WF, van Eerde AM, Lefebvre V, Knoers NVAM, Tabatabaei M, Schulz H, McNeill H, Schaefer F, Wegner M, Sock E, Schedl A. Sox11 gene disruption causes congenital anomalies of the kidney and urinary tract (CAKUT). Kidney Int 2018; 93:1142-1153. [PMID: 29459093 DOI: 10.1016/j.kint.2017.11.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 11/26/2017] [Accepted: 11/30/2017] [Indexed: 12/24/2022]
Abstract
Congenital abnormalities of the kidney and the urinary tract (CAKUT) belong to the most common birth defects in human, but the molecular basis for the majority of CAKUT patients remains unknown. Here we show that the transcription factor SOX11 is a crucial regulator of kidney development. SOX11 is expressed in both mesenchymal and epithelial components of the early kidney anlagen. Deletion of Sox11 in mice causes an extension of the domain expressing Gdnf within rostral regions of the nephrogenic cord and results in duplex kidney formation. On the molecular level SOX11 directly binds and regulates a locus control region of the protocadherin B cluster. At later stages of kidney development, SOX11 becomes restricted to the intermediate segment of the developing nephron where it is required for the elongation of Henle's loop. Finally, mutation analysis in a cohort of patients suffering from CAKUT identified a series of rare SOX11 variants, one of which interferes with the transactivation capacity of the SOX11 protein. Taken together these data demonstrate a key role for SOX11 in normal kidney development and may suggest that variants in this gene predispose to CAKUT in humans.
Collapse
Affiliation(s)
| | | | - Kirsten Y Renkema
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Filippo Massa
- Université Nice Sophia Antipolis, Inserm, CNRS, iBV, Nice, France
| | | | - Haroun Dhib
- Université Nice Sophia Antipolis, Inserm, CNRS, iBV, Nice, France
| | - Ernie M H F Bongers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wout F Feitz
- Department of Urology, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Albertien M van Eerde
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Veronique Lefebvre
- Department of Cellular and Molecular Medicine, Cleveland Clinic-Lerner Research Institute, Cleveland, Ohio, USA
| | - Nine V A M Knoers
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mansoureh Tabatabaei
- Division of Pediatric Nephrology, Heidelberg University Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| | - Herbert Schulz
- University of Cologne, Cologne Center for Genomics, Cologne, Germany
| | - Helen McNeill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Franz Schaefer
- Division of Pediatric Nephrology, Heidelberg University Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| | - Michael Wegner
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Elisabeth Sock
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Andreas Schedl
- Université Nice Sophia Antipolis, Inserm, CNRS, iBV, Nice, France.
| |
Collapse
|
8
|
Xu Q, Junttila S, Scherer A, Giri KR, Kivelä O, Skovorodkin I, Röning J, Quaggin SE, Marti HP, Shan J, Samoylenko A, Vainio SJ. Renal carcinoma/kidney progenitor cell chimera organoid as a novel tumorigenesis gene discovery model. Dis Model Mech 2017; 10:1503-1515. [PMID: 29084770 PMCID: PMC5769601 DOI: 10.1242/dmm.028332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional (3D) organoids provide a new way to model various diseases, including cancer. We made use of recently developed kidney-organ-primordia tissue-engineering technologies to create novel renal organoids for cancer gene discovery. We then tested whether our novel assays can be used to examine kidney cancer development. First, we identified the transcriptomic profiles of quiescent embryonic mouse metanephric mesenchyme (MM) and of MM in which the nephrogenesis program had been induced ex vivo. The transcriptome profiles were then compared to the profiles of tumor biopsies from renal cell carcinoma (RCC) patients, and control samples from the same kidneys. Certain signature genes were identified that correlated in the developmentally induced MM and RCC, including components of the caveolar-mediated endocytosis signaling pathway. An efficient siRNA-mediated knockdown (KD) of Bnip3, Gsn, Lgals3, Pax8, Cav1, Egfr or Itgb2 gene expression was achieved in mouse RCC (Renca) cells. The live-cell imaging analysis revealed inhibition of cell migration and cell viability in the gene-KD Renca cells in comparison to Renca controls. Upon siRNA treatment, the transwell invasion capacity of Renca cells was also inhibited. Finally, we mixed E11.5 MM with yellow fluorescent protein (YFP)-expressing Renca cells to establish chimera organoids. Strikingly, we found that the Bnip3-, Cav1- and Gsn-KD Renca-YFP+ cells as a chimera with the MM in 3D organoid rescued, in part, the RCC-mediated inhibition of the nephrogenesis program during epithelial tubules formation. Altogether, our research indicates that comparing renal ontogenesis control genes to the genes involved in kidney cancer may provide new growth-associated gene screens and that 3D RCC-MM chimera organoids can serve as a novel model with which to investigate the behavioral roles of cancer cells within the context of emergent complex tissue structures. Editor’s Choice: Chimeras between embryonic kidney cells and renal carcinoma cells serve as a novel model to assay the roles of co-regulated genes in kidney development and renal carcinogenesis.
Collapse
Affiliation(s)
- Qi Xu
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| | - Sanna Junttila
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| | | | - Khem Raj Giri
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| | - Oona Kivelä
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland.,ValiFinn, FI-90220 Oulu, Finland
| | - Ilya Skovorodkin
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| | - Juha Röning
- Department of Computer Science and Engineering, University of Oulu, FI-90014 Oulu, Finland
| | - Susan E Quaggin
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland.,Feinberg Cardiovascular Research Institute, Division of Medicine-Nephrology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
| | - Jingdong Shan
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| | - Anatoly Samoylenko
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| | - Seppo J Vainio
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| |
Collapse
|
9
|
Krneta-Stankic V, DeLay BD, Miller RK. Xenopus: leaping forward in kidney organogenesis. Pediatr Nephrol 2017; 32:547-555. [PMID: 27099217 PMCID: PMC5074909 DOI: 10.1007/s00467-016-3372-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/17/2022]
Abstract
While kidney donations stagnate, the number of people in need of kidney transplants continues to grow. Although transplanting culture-grown organs is years away, pursuing the engineering of the kidney de novo is a valid means of closing the gap between the supply and demand of kidneys for transplantation. The structural organization of a mouse kidney is similar to that of humans. Therefore, mice have traditionally served as the primary model system for the study of kidney development. The mouse is an ideal model organism for understanding the complexity of the human kidney. Nonetheless, the elaborate structure of the mammalian kidney makes the discovery of new therapies based on de novo engineered kidneys more challenging. In contrast to mammals, amphibians have a kidney that is anatomically less complex and develops faster. Given that analogous genetic networks regulate the development of mammalian and amphibian nephric organs, using embryonic kidneys of Xenopus laevis (African clawed frog) to analyze inductive cell signaling events and morphogenesis has many advantages. Pioneering work that led to the ability to generate kidney organoids from embryonic cells was carried out in Xenopus. In this review, we discuss how Xenopus can be utilized to compliment the work performed in mammalian systems to understand kidney development.
Collapse
Affiliation(s)
- Vanja Krneta-Stankic
- Department of Pediatrics, Pediatric Research Center, University of Texas McGovern Medical School, 6431 Fannin Street, MSE R413, Houston, TX, 77030, USA
- Program in Genes and Development, University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Bridget D DeLay
- Department of Pediatrics, Pediatric Research Center, University of Texas McGovern Medical School, 6431 Fannin Street, MSE R413, Houston, TX, 77030, USA
| | - Rachel K Miller
- Department of Pediatrics, Pediatric Research Center, University of Texas McGovern Medical School, 6431 Fannin Street, MSE R413, Houston, TX, 77030, USA.
- Program in Genes and Development, University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA.
- Program in Cell and Regulatory Biology, University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA.
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Kawasaki K, Kawasaki M, Watanabe M, Idrus E, Nagai T, Oommen S, Maeda T, Hagiwara N, Que J, Sharpe PT, Ohazama A. Expression of Sox genes in tooth development. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2016; 59:471-8. [PMID: 26864488 DOI: 10.1387/ijdb.150192ao] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Members of the Sox gene family play roles in many biological processes including organogenesis. We carried out comparative in situ hybridization analysis of seventeen sox genes (Sox1-14, 17, 18, 21) during murine odontogenesis from the epithelial thickening to the cytodifferentiation stages. Localized expression of five Sox genes (Sox6, 9, 13, 14 and 21) was observed in tooth bud epithelium. Sox13 showed restricted expression in the primary enamel knots. At the early bell stage, three Sox genes (Sox8, 11, 17 and 21) were expressed in pre-ameloblasts, whereas two others (Sox5 and 18) showed expression in odontoblasts. Sox genes thus showed a dynamic spatio-temporal expression during tooth development.
Collapse
Affiliation(s)
- Katsushige Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sikora MJ, Jacobsen BM, Levine K, Chen J, Davidson NE, Lee AV, Alexander CM, Oesterreich S. WNT4 mediates estrogen receptor signaling and endocrine resistance in invasive lobular carcinoma cell lines. Breast Cancer Res 2016; 18:92. [PMID: 27650553 PMCID: PMC5028957 DOI: 10.1186/s13058-016-0748-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/24/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Invasive lobular carcinoma (ILC) of the breast typically presents with clinical biomarkers consistent with a favorable response to endocrine therapies, and over 90 % of ILC cases express the estrogen receptor (ER). However, a subset of ILC cases may be resistant to endocrine therapies, suggesting that ER biology is unique in ILC. Using ILC cell lines, we previously demonstrated that ER regulates a distinct gene expression program in ILC cells, and we hypothesized that these ER-driven pathways modulate the endocrine response in ILC. One potential novel pathway is via the Wnt ligand WNT4, a critical signaling molecule in mammary gland development regulated by the progesterone receptor. METHODS The ILC cell lines MDA-MB-134-VI, SUM44PE, and BCK4 were used to assess WNT4 gene expression and regulation, as well as the role of WNT4 in estrogen-regulated proliferation. To assess these mechanisms in the context of endocrine resistance, we developed novel ILC endocrine-resistant long-term estrogen-deprived (ILC-LTED) models. ILC and ILC-LTED cell lines were used to identify upstream regulators and downstream signaling effectors of WNT4 signaling. RESULTS ILC cells co-opted WNT4 signaling by placing it under direct ER control. We observed that ER regulation of WNT4 correlated with use of an ER binding site at the WNT4 locus, specifically in ILC cells. Further, WNT4 was required for endocrine response in ILC cells, as WNT4 knockdown blocked estrogen-induced proliferation. ILC-LTED cells remained dependent on WNT4 for proliferation, by either maintaining ER function and WNT4 regulation or uncoupling WNT4 from ER and upregulating WNT4 expression. In the latter case, WNT4 expression was driven by activated nuclear factor kappa-B signaling in ILC-LTED cells. In ILC and ILC-LTED cells, WNT4 led to suppression of CDKN1A/p21, which is critical for ILC cell proliferation. CDKN1A knockdown partially reversed the effects of WNT4 knockdown. CONCLUSIONS WNT4 drives a novel signaling pathway in ILC cells, with a critical role in estrogen-induced growth that may also mediate endocrine resistance. WNT4 signaling may represent a novel target to modulate endocrine response specifically for patients with ILC.
Collapse
Affiliation(s)
- Matthew J Sikora
- Women's Cancer Research Center, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA. .,Present address: Department of Pathology, University of Colorado - Anschutz Medical Campus, Mail Stop 8104, Research Complex 1 South, Room 5117, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
| | - Britta M Jacobsen
- Department of Pathology, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Kevin Levine
- Women's Cancer Research Center, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jian Chen
- Women's Cancer Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nancy E Davidson
- Women's Cancer Research Center, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian V Lee
- Women's Cancer Research Center, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Lienkamp SS. Using Xenopus to study genetic kidney diseases. Semin Cell Dev Biol 2016; 51:117-24. [PMID: 26851624 DOI: 10.1016/j.semcdb.2016.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Modern sequencing technology is revolutionizing our knowledge of inherited kidney disease. However, the molecular role of genes affected by the rapidly rising number of identified mutations is lagging behind. Xenopus is a highly useful, but underutilized model organism with unique properties excellently suited to decipher the molecular mechanisms of kidney development and disease. The embryonic kidney (pronephros) can be manipulated on only one side of the animal and its formation observed directly through the translucent skin. The moderate evolutionary distance between Xenopus and humans is a huge advantage for studying basic principles of kidney development, but still allows us to analyze the function of disease related genes. Optogenetic manipulations and genome editing by CRISPR/Cas are exciting additions to the toolbox for disease modelling and will facilitate the use of Xenopus in translational research. Therefore, the future of Xenopus in kidney research is bright.
Collapse
Affiliation(s)
- Soeren S Lienkamp
- Renal Division, Department of Medicine, University of Freiburg Medical Center, Hugstetter Straße 55, 79106 Freiburg, Germany; Center for Biological Signaling Studies (BIOSS), Albertstraße 19, 79104 Freiburg, Germany.
| |
Collapse
|
13
|
Abstract
The Wilms' tumor suppressor gene 1 (Wt1) is critically involved in a number of developmental processes in vertebrates, including cell differentiation, control of the epithelial/mesenchymal phenotype, proliferation, and apoptosis. Wt1 proteins act as transcriptional and post-transcriptional regulators, in mRNA splicing and in protein-protein interactions. Furthermore, Wt1 is involved in adult tissue homeostasis, kidney function, and cancer. For these reasons, Wt1 function has been extensively studied in a number of animal models to establish its spatiotemporal expression pattern and the developmental fate of the cells expressing this gene. In this chapter, we review the developmental anatomy of Wt1, collecting information about its dynamic expression in mesothelium, kidney, gonads, cardiovascular system, spleen, nervous system, lung, and liver. We also describe the adult expression of Wt1 in kidney podocytes, gonads, mesothelia, visceral adipose tissue, and a small fraction of bone marrow cells. We have reviewed the available animal models for Wt1-expressing cell lineage analysis, including direct Wt1 expression reporters and systems for permanent Wt1 lineage tracing, based on constitutive or inducible Cre recombinase expression under control of a Wt1 promoter. Finally we provide a number of laboratory protocols to be used with these animal models in order to assess reporter expression.
Collapse
|
14
|
Aberrant SOX11 promoter methylation is associated with poor prognosis in gastric cancer. Cell Oncol (Dordr) 2015; 38:183-94. [PMID: 25801783 DOI: 10.1007/s13402-015-0219-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is the second most common cause of cancer mortality world-wide. In recent years, aberrant SOX11 expression has been observed in various solid and hematopoietic malignancies, including GC. In addition, it has been reported that SOX11 expression may serve as an independent prognostic factor for the survival of GC patients. Here, we assessed the SOX11 gene promoter methylation status in various GC cell lines and primary GC tissues, and evaluated its clinical significance. METHODS Five GC cell lines were used to assess SOX11 expression by qRT-PCR. The effect of SOX11 expression restoration after 5-aza-2'-deoxycytidine (5-Aza-dC) treatment on GC growth was evaluated in GC cell line MKN45. Subsequently, 89 paired GC-normal gastric tissues were evaluated for their SOX11 gene promoter methylation status using methylation-specific PCR (MSP), and 20 paired GC-normal gastric tissues were evaluated for their SOX11 expression in relation to SOX11 gene promoter methylation. GC patient survival was assessed by Kaplan-Meier analyses and a Cox proportional hazard model was employed for multivariate analyses. RESULTS Down-regulation of SOX11 mRNA expression was observed in both GC cell lines and primary GC tissues. MSP revealed hyper-methylation of the SOX11 gene promoter in 55.1% (49/89) of the primary GC tissues tested and in 7.9% (7/89) of its corresponding non-malignant tissues. The SOX11 gene promoter methylation status was found to be related to the depth of GC tumor invasion, Borrmann classification and GC differentiation status. Upon 5-Aza-dC treatment, SOX11 expression was found to be up-regulated in MKN45 cells, in conjunction with proliferation inhibition. SOX11 gene promoter hyper-methylation was found to be significantly associated with a poor prognosis and to serve as an independent marker for survival using multivariate Cox regression analysis. CONCLUSIONS Our results indicate that aberrant SOX11 gene promoter methylation may underlie its down-regulation in GC. SOX11 gene promoter hyper-methylation may serve as a biomarker to predict the clinical outcome of GC.
Collapse
|
15
|
Roisman A, Stanganelli C, Nagore VP, Richardson GV, Scassa ME, Bezares RF, Cabrejo M, Slavutsky I. SOX11 expression in chronic lymphocytic leukemia correlates with adverse prognostic markers. Tumour Biol 2015; 36:4433-40. [DOI: 10.1007/s13277-015-3083-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/08/2015] [Indexed: 11/28/2022] Open
|
16
|
Tian F, Yourek G, Shi X, Yang Y. The development of Wilms tumor: from WT1 and microRNA to animal models. Biochim Biophys Acta Rev Cancer 2014; 1846:180-7. [PMID: 25018051 DOI: 10.1016/j.bbcan.2014.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 01/01/2023]
Abstract
Wilms tumor recapitulates the development of the kidney and represents a unique opportunity to understand the relationship between normal and tumor development. This has been illustrated by the findings that mutations of Wnt/β-catenin pathway-related WT1, β-catenin, and WTX together account for about one-third of Wilms tumor cases. While intense efforts are being made to explore the genetic basis of the other two-thirds of tumor cases, it is worth noting that, epigenetic changes, particularly the loss of imprinting of the DNA region encoding the major fetal growth factor IGF2, which results in its biallelic over-expression, are closely associated with the development of many Wilms tumors. Recent investigations also revealed that mutations of Drosha and Dicer, the RNases required for miRNA generation, and Dis3L2, the 3'-5' exonuclease that normally degrades miRNAs and mRNAs, could cause predisposition to Wilms tumors, demonstrating that miRNA can play a pivotal role in Wilms tumor development. Interestingly, Lin28, a direct target of miRNA let-7 and potent regulator of stem cell self-renewal and differentiation, is significantly elevated in some Wilms tumors, and enforced expression of Lin28 during kidney development could induce Wilms tumor. With the success in establishing mice nephroblastoma models through over-expressing IGF2 and deleting WT1, and advances in understanding the ENU-induced rat model, we are now able to explore the molecular and cellular mechanisms induced by these genetic, epigenetic, and miRNA alterations in animal models to understand the development of Wilms tumor. These animal models may also serve as valuable systems to assess new treatment targets and strategies for Wilms tumor.
Collapse
Affiliation(s)
- Fang Tian
- Department of Pathophysiology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, PR China
| | | | - Xiaolei Shi
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Yili Yang
- Center for Translational Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, PR China.
| |
Collapse
|
17
|
Kuo PY, Leshchenko VV, Fazzari MJ, Perumal D, Gellen T, He T, Iqbal J, Baumgartner-Wennerholm S, Nygren L, Zhang F, Zhang W, Suh KS, Goy A, Yang DT, Chan WC, Kahl BS, Verma AK, Gascoyne RD, Kimby E, Sander B, Ye BH, Melnick AM, Parekh S. High-resolution chromatin immunoprecipitation (ChIP) sequencing reveals novel binding targets and prognostic role for SOX11 in mantle cell lymphoma. Oncogene 2014; 34:1231-40. [PMID: 24681958 DOI: 10.1038/onc.2014.44] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 01/07/2014] [Accepted: 01/19/2014] [Indexed: 12/18/2022]
Abstract
Sex determining region Y-box 11 (SOX11) expression is specific for mantle cell lymphoma (MCL) as compared with other non-Hodgkin's lymphomas. However, the function and direct-binding targets of SOX11 in MCL are largely unknown. We used high-resolution chromatin immunoprecipitation sequencing to identify the direct target genes of SOX11 in a genome-wide, unbiased manner and elucidate its functional significance. Pathway analysis identified WNT, PKA and TGF-beta signaling pathways as significantly enriched by SOX11-target genes. Quantitative chromatin immunoprecipitation sequencing and promoter reporter assays confirmed that SOX11 directly binds to individual genes and modulates their transcription activities in these pathways in MCL. Functional studies using RNA interference demonstrate that SOX11 directly regulates WNT in MCL. We analyzed SOX11 expression in three independent well-annotated tissue microarrays from the University of Wisconsin (UW), Karolinska Institute and British Columbia Cancer Agency. Our findings suggest that high SOX11 expression is associated with improved survival in a subset of MCL patients, particularly those treated with intensive chemotherapy. Transcriptional regulation of WNT and other biological pathways affected by SOX11-target genes may help explain the impact of SOX11 expression on patient outcomes.
Collapse
Affiliation(s)
- P-Y Kuo
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - V V Leshchenko
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M J Fazzari
- 1] Department of Population Health, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA [2] Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - D Perumal
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - T Gellen
- Albert Einstein Cancer Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - T He
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - S Baumgartner-Wennerholm
- Department of Medicine, Center for Haematology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - L Nygren
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - F Zhang
- Bioinformatics Laboratory, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - W Zhang
- Bioinformatics Laboratory, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - K S Suh
- Genomics and Biomarkers Program, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - A Goy
- Genomics and Biomarkers Program, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - D T Yang
- Department of Pathology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - W-C Chan
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - B S Kahl
- Department of Medicine, School of Medicine and Public Health, and The UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - A K Verma
- Albert Einstein Cancer Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - R D Gascoyne
- Department of Pathology and Experimental Therapeutics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - E Kimby
- Department of Medicine, Center for Haematology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - B Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - B H Ye
- Department of Cell Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - A M Melnick
- 1] Hematology and Oncology Division, Weill Cornell Medical College, New York, NY, USA [2] Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - S Parekh
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
18
|
Gardet A, Zheng TS, Viney JL. Genetic architecture of human fibrotic diseases: disease risk and disease progression. Front Pharmacol 2013; 4:159. [PMID: 24391588 PMCID: PMC3866586 DOI: 10.3389/fphar.2013.00159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022] Open
Abstract
Genetic studies of human diseases have identified multiple genetic risk loci for various fibrotic diseases. This has provided insights into the myriad of biological pathways potentially involved in disease pathogenesis. These discoveries suggest that alterations in immune responses, barrier function, metabolism and telomerase activity may be implicated in the genetic risks for fibrotic diseases. In addition to genetic disease-risks, the identification of genetic disease-modifiers associated with disease complications, severity or prognosis provides crucial insights into the biological processes implicated in disease progression. Understanding the biological processes driving disease progression may be critical to delineate more effective strategies for therapeutic interventions. This review provides an overview of current knowledge and gaps regarding genetic disease-risks and genetic disease-modifiers in human fibrotic diseases.
Collapse
|
19
|
Kamachi Y, Kondoh H. Sox proteins: regulators of cell fate specification and differentiation. Development 2013; 140:4129-44. [PMID: 24086078 DOI: 10.1242/dev.091793] [Citation(s) in RCA: 422] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sox transcription factors play widespread roles during development; however, their versatile funtions have a relatively simple basis: the binding of a Sox protein alone to DNA does not elicit transcriptional activation or repression, but requires binding of a partner transcription factor to an adjacent site on the DNA. Thus, the activity of a Sox protein is dependent upon the identity of its partner factor and the context of the DNA sequence to which it binds. In this Primer, we provide an mechanistic overview of how Sox family proteins function, as a paradigm for transcriptional regulation of development involving multi-transcription factor complexes, and we discuss how Sox factors can thus regulate diverse processes during development.
Collapse
Affiliation(s)
- Yusuke Kamachi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
20
|
Lu TX, Li JY, Xu W. The role of SOX11 in mantle cell lymphoma. Leuk Res 2013; 37:1412-9. [DOI: 10.1016/j.leukres.2013.07.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 12/14/2022]
|
21
|
Cizelsky W, Hempel A, Metzig M, Tao S, Hollemann T, Kühl M, Kühl SJ. sox4 and sox11 function during Xenopus laevis eye development. PLoS One 2013; 8:e69372. [PMID: 23874955 PMCID: PMC3715537 DOI: 10.1371/journal.pone.0069372] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/08/2013] [Indexed: 11/18/2022] Open
Abstract
SoxC genes are involved in many developmental processes such as cardiac, lymphoid, and bone development. The SoxC gene family is represented by Sox4, Sox11, and Sox12. Loss of either Sox4 or Sox11 function is lethal during mouse embryogenesis. Here, we demonstrate that sox4 and sox11 are strongly expressed in the developing eye, heart as well as brain in Xenopus laevis. Morpholino oligonucleotide mediated knock-down approaches in anterior neural tissue revealed that interference with either Sox4 or Sox11 function affects eye development. A detailed analysis demonstrated strong effects on eye size and retinal lamination. Neural induction was unaffected upon Sox4 or Sox11 MO injection and early eye field differentiation and cell proliferation were only mildly affected. Depletion of both genes, however, led independently to a significant increase in cell apoptosis in the eye. In summary, Sox4 and Sox11 are required for Xenopus visual system development.
Collapse
Affiliation(s)
- Wiebke Cizelsky
- Institute for Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, Ulm University, Ulm, Germany
| | - Annemarie Hempel
- Institute for Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, Ulm University, Ulm, Germany
| | - Marlen Metzig
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Si Tao
- Institute for Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, Ulm University, Ulm, Germany
| | - Thomas Hollemann
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Michael Kühl
- Institute for Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Susanne J. Kühl
- Institute for Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
- * E-mail:
| |
Collapse
|
22
|
Tréguer K, Faucheux C, Veschambre P, Fédou S, Thézé N, Thiébaud P. Comparative functional analysis of ZFP36 genes during Xenopus development. PLoS One 2013; 8:e54550. [PMID: 23342169 PMCID: PMC3546996 DOI: 10.1371/journal.pone.0054550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 12/14/2012] [Indexed: 01/12/2023] Open
Abstract
ZFP36 constitutes a small family of RNA binding proteins (formerly known as the TIS11 family) that target mRNA and promote their degradation. In mammals, ZFP36 proteins are encoded by four genes and, although they show similar activities in a cellular RNA destabilization assay, there is still a limited knowledge of their mRNA targets and it is not known whether or not they have redundant functions. In the present work, we have used the Xenopus embryo, a model system allowing gain- and loss-of-function studies, to investigate, whether individual ZFP36 proteins had distinct or redundant functions. We show that overexpression of individual amphibian zfp36 proteins leads to embryos having the same defects, with alteration in somites segmentation and pronephros formation. In these embryos, members of the Notch signalling pathway such as hairy2a or esr5 mRNA are down-regulated, suggesting common targets for the different proteins. We also show that mouse Zfp36 protein overexpression gives the same phenotype, indicating an evolutionary conserved property among ZFP36 vertebrate proteins. Morpholino oligonucleotide-induced loss-of-function leads to defects in pronephros formation, reduction in tubule size and duct coiling alterations for both zfp36 and zfp36l1, indicating no functional redundancy between these two genes. Given the conservation in gene structure and function between the amphibian and mammalian proteins and the conserved mechanisms for pronephros development, our study highlights a potential and hitherto unreported role of ZFP36 gene in kidney morphogenesis.
Collapse
|
23
|
The role of Wt1 in regulating mesenchyme in cancer, development, and tissue homeostasis. Trends Genet 2012; 28:515-24. [PMID: 22658804 DOI: 10.1016/j.tig.2012.04.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/17/2012] [Accepted: 04/30/2012] [Indexed: 12/17/2022]
Abstract
From both the fundamental and clinical perspectives, there is growing interest in mesenchymal cells and the mechanisms that regulate the two-way switch between mesenchymal and epithelial states. Here, we review recent findings showing that the Wilms' tumor gene (Wt1) is a key regulator of mesenchyme maintenance and the mesenchyme to epithelial balance in the development of certain mesodermal organs. We summarize recent experiments demonstrating, unexpectedly, that Wt1 is also essential for the integrity or function of multiple adult tissues, mainly, we argue, through regulating mesenchymal cells. We also discuss growing evidence that implicates Wt1 in tissue repair and regeneration. Drawing on these findings, we highlight the similarities between Wt1-expressing cells in different tissues. We believe that future studies aimed at elucidating the mechanisms underlying the functions of Wt1 in adult cells will reveal key cell types, pathways, and molecules regulating adult tissue homeostasis and repair.
Collapse
|