1
|
Farini A, Tripodi L, Villa C, Strati F, Facoetti A, Baselli G, Troisi J, Landolfi A, Lonati C, Molinaro D, Wintzinger M, Gatti S, Cassani B, Caprioli F, Facciotti F, Quattrocelli M, Torrente Y. Microbiota dysbiosis influences immune system and muscle pathophysiology of dystrophin-deficient mice. EMBO Mol Med 2023; 15:e16244. [PMID: 36533294 PMCID: PMC9994487 DOI: 10.15252/emmm.202216244] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive severe muscle-wasting disease caused by mutations in DMD, encoding dystrophin, that leads to loss of muscle function with cardiac/respiratory failure and premature death. Since dystrophic muscles are sensed by infiltrating inflammatory cells and gut microbial communities can cause immune dysregulation and metabolic syndrome, we sought to investigate whether intestinal bacteria support the muscle immune response in mdx dystrophic murine model. We highlighted a strong correlation between DMD disease features and the relative abundance of Prevotella. Furthermore, the absence of gut microbes through the generation of mdx germ-free animal model, as well as modulation of the microbial community structure by antibiotic treatment, influenced muscle immunity and fibrosis. Intestinal colonization of mdx mice with eubiotic microbiota was sufficient to reduce inflammation and improve muscle pathology and function. This work identifies a potential role for the gut microbiota in the pathogenesis of DMD.
Collapse
Affiliation(s)
- Andrea Farini
- Neurology UnitFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Luana Tripodi
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari CenterUniversity of MilanMilanItaly
| | - Chiara Villa
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari CenterUniversity of MilanMilanItaly
| | - Francesco Strati
- Mucosal Immunology Lab, Department of Experimental OncologyIEO‐European Institute of OncologyMilanItaly
| | - Amanda Facoetti
- Humanitas UniversityMilanItaly
- Humanitas Clinical and Research Center IRCCSMilanItaly
| | - Guido Baselli
- Translational Medicine – Department of Transfusion Medicine and HematologyFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Present address:
SciLifeLab, Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetSolnaSweden
| | - Jacopo Troisi
- Department of Medicine, Surgery and Dentistry, Scuola Medica SalernitanaUniversity of SalernoBaronissiItaly
- Theoreo Srl, Spinoff Company of the University of SalernoMontecorvino PuglianoItaly
| | - Annamaria Landolfi
- Department of Medicine, Surgery and Dentistry, Scuola Medica SalernitanaUniversity of SalernoBaronissiItaly
- Theoreo Srl, Spinoff Company of the University of SalernoMontecorvino PuglianoItaly
| | - Caterina Lonati
- Center for Surgical ResearchFondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
| | - Davide Molinaro
- Neurology UnitFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari CenterUniversity of MilanMilanItaly
| | - Michelle Wintzinger
- Molecular Cardiovascular Biology Division, Heart InstituteCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOHUSA
| | - Stefano Gatti
- Center for Surgical ResearchFondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
| | - Barbara Cassani
- Humanitas Clinical and Research Center IRCCSMilanItaly
- Department of Medical Biotechnologies and Translational MedicineUniversità Degli Studi di MilanoMilanItaly
| | - Flavio Caprioli
- Unit of Gastroenterology and Endoscopy, Department of Pathophysiology and TransplantationUniversità degli Studi di Milano, Fondazione IRCCS Ca' Granda, Ospedale Policlinico di MilanoMilanItaly
| | - Federica Facciotti
- Unit of Gastroenterology and Endoscopy, Department of Pathophysiology and TransplantationUniversità degli Studi di Milano, Fondazione IRCCS Ca' Granda, Ospedale Policlinico di MilanoMilanItaly
| | - Mattia Quattrocelli
- Molecular Cardiovascular Biology Division, Heart InstituteCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOHUSA
| | - Yvan Torrente
- Neurology UnitFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari CenterUniversity of MilanMilanItaly
| |
Collapse
|
2
|
Inhibition of the immunoproteasome modulates innate immunity to ameliorate muscle pathology of dysferlin-deficient BlAJ mice. Cell Death Dis 2022; 13:975. [PMID: 36402750 PMCID: PMC9675822 DOI: 10.1038/s41419-022-05416-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
Muscle repair in dysferlinopathies is defective. Although macrophage (Mø)-rich infiltrates are prominent in damaged skeletal muscles of patients with dysferlinopathy, the contribution of the immune system to the disease pathology remains to be fully explored. Numbers of both pro-inflammatory M1 Mø and effector T cells are increased in muscle of dysferlin-deficient BlAJ mice. In addition, symptomatic BlAJ mice have increased muscle production of immunoproteasome. In vitro analyses using bone marrow-derived Mø of BlAJ mice show that immunoproteasome inhibition results in C3aR1 and C5aR1 downregulation and upregulation of M2-associated signaling. Administration of immunoproteasome inhibitor ONX-0914 to BlAJ mice rescues muscle function by reducing muscle infiltrates and fibro-adipogenesis. These findings reveal an important role of immunoproteasome in the progression of muscular dystrophy in BlAJ mouse and suggest that inhibition of immunoproteasome may produce therapeutic benefit in dysferlinopathy.
Collapse
|
3
|
Bittel DC, Sreetama SC, Chandra G, Ziegler R, Nagaraju K, Van der Meulen JH, Jaiswal JK. Secreted acid sphingomyelinase as a potential gene therapy for limb girdle muscular dystrophy 2B. J Clin Invest 2022; 132:e141295. [PMID: 34981776 PMCID: PMC8718136 DOI: 10.1172/jci141295] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Efficient sarcolemmal repair is required for muscle cell survival, with deficits in this process leading to muscle degeneration. Lack of the sarcolemmal protein dysferlin impairs sarcolemmal repair by reducing secretion of the enzyme acid sphingomyelinase (ASM), and causes limb girdle muscular dystrophy 2B (LGMD2B). The large size of the dysferlin gene poses a challenge for LGMD2B gene therapy efforts aimed at restoring dysferlin expression in skeletal muscle fibers. Here, we present an alternative gene therapy approach targeting reduced ASM secretion, the consequence of dysferlin deficit. We showed that the bulk endocytic ability is compromised in LGMD2B patient cells, which was addressed by extracellularly treating cells with ASM. Expression of secreted human ASM (hASM) using a liver-specific adeno-associated virus (AAV) vector restored membrane repair capacity of patient cells to healthy levels. A single in vivo dose of hASM-AAV in the LGMD2B mouse model restored myofiber repair capacity, enabling efficient recovery of myofibers from focal or lengthening contraction-induced injury. hASM-AAV treatment was safe, attenuated fibro-fatty muscle degeneration, increased myofiber size, and restored muscle strength, similar to dysferlin gene therapy. These findings elucidate the role of ASM in dysferlin-mediated plasma membrane repair and to our knowledge offer the first non-muscle-targeted gene therapy for LGMD2B.
Collapse
Affiliation(s)
- Daniel C. Bittel
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Sen Chandra Sreetama
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Goutam Chandra
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Robin Ziegler
- Rare and Neurologic Diseases Research, Sanofi, Framingham, Massachusetts, USA
| | - Kanneboyina Nagaraju
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Binghamton, New York, USA
| | | | - Jyoti K. Jaiswal
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
4
|
Farini A, Villa C, Tripodi L, Legato M, Torrente Y. Role of Immunoglobulins in Muscular Dystrophies and Inflammatory Myopathies. Front Immunol 2021; 12:666879. [PMID: 34335568 PMCID: PMC8316973 DOI: 10.3389/fimmu.2021.666879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/25/2021] [Indexed: 01/15/2023] Open
Abstract
Muscular dystrophies and inflammatory myopathies are heterogeneous muscular disorders characterized by progressive muscle weakness and mass loss. Despite the high variability of etiology, inflammation and involvement of both innate and adaptive immune response are shared features. The best understood immune mechanisms involved in these pathologies include complement cascade activation, auto-antibodies directed against muscular proteins or de-novo expressed antigens in myofibers, MHC-I overexpression in myofibers, and lymphocytes-mediated cytotoxicity. Intravenous immunoglobulins (IVIGs) administration could represent a suitable immunomodulator with this respect. Here we focus on mechanisms of action of immunoglobulins in muscular dystrophies and inflammatory myopathies highlighting results of IVIGs from pre-clinical and case reports evidences.
Collapse
Affiliation(s)
- Andrea Farini
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, University of Milan, Dino Ferrari Center, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | - Yvan Torrente
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, University of Milan, Dino Ferrari Center, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
5
|
Ziemkiewicz N, Hilliard G, Pullen NA, Garg K. The Role of Innate and Adaptive Immune Cells in Skeletal Muscle Regeneration. Int J Mol Sci 2021; 22:3265. [PMID: 33806895 PMCID: PMC8005179 DOI: 10.3390/ijms22063265] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle regeneration is highly dependent on the inflammatory response. A wide variety of innate and adaptive immune cells orchestrate the complex process of muscle repair. This review provides information about the various types of immune cells and biomolecules that have been shown to mediate muscle regeneration following injury and degenerative diseases. Recently developed cell and drug-based immunomodulatory strategies are highlighted. An improved understanding of the immune response to injured and diseased skeletal muscle will be essential for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Natalia Ziemkiewicz
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, 3507 Lindell Blvd, St. Louis, MO 63103, USA;
| | - Genevieve Hilliard
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA;
| | - Nicholas A. Pullen
- School of Biological Sciences, College of Natural and Health Sciences, University of Northern Colorado, Greeley, Colorado, CO 80639, USA;
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, 3507 Lindell Blvd, St. Louis, MO 63103, USA;
| |
Collapse
|
6
|
Blockade of Hemichannels Normalizes the Differentiation Fate of Myoblasts and Features of Skeletal Muscles from Dysferlin-Deficient Mice. Int J Mol Sci 2020; 21:ijms21176025. [PMID: 32825681 PMCID: PMC7503700 DOI: 10.3390/ijms21176025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 01/18/2023] Open
Abstract
Dysferlinopathies are muscle dystrophies caused by mutations in the gene encoding dysferlin, a relevant protein for membrane repair and trafficking. These diseases are untreatable, possibly due to the poor knowledge of relevant molecular targets. Previously, we have shown that human myofibers from patient biopsies as well as myotubes derived from immortalized human myoblasts carrying a mutated form of dysferlin express connexin proteins, but their relevance in myoblasts fate and function remained unknown. In the present work, we found that numerous myoblasts bearing a mutated dysferlin when induced to acquire myogenic commitment express PPARγ, revealing adipogenic instead of myogenic commitment. These cell cultures presented many mononucleated cells with fat accumulation and within 48 h of differentiation formed fewer multinucleated cells. In contrast, dysferlin deficient myoblasts treated with boldine, a connexin hemichannels blocker, neither expressed PPARγ, nor accumulated fat and formed similar amount of multinucleated cells as wild type precursor cells. We recently demonstrated that myofibers of skeletal muscles from blAJ mice (an animal model of dysferlinopathies) express three connexins (Cx39, Cx43, and Cx45) that form functional hemichannels (HCs) in the sarcolemma. In symptomatic blAJ mice, we now show that eight-week treatment with a daily dose of boldine showed a progressive recovery of motor activity reaching normality. At the end of this treatment, skeletal muscles were comparable to those of wild type mice and presented normal CK activity in serum. Myofibers of boldine-treated blAJ mice also showed strong dysferlin-like immunoreactivity. These findings reveal that muscle dysfunction results from a pathophysiologic mechanism triggered by mutated dysferlin and downstream connexin hemichannels expressed de novo lead to a drastic reduction of myogenesis and favor muscle damage. Thus, boldine could represent a therapeutic opportunity to treat dysfernilopathies.
Collapse
|
7
|
Deyhle MR, Hyldahl RD. The Role of T Lymphocytes in Skeletal Muscle Repair From Traumatic and Contraction-Induced Injury. Front Physiol 2018; 9:768. [PMID: 29973887 PMCID: PMC6019499 DOI: 10.3389/fphys.2018.00768] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/31/2018] [Indexed: 11/23/2022] Open
Abstract
Skeletal muscle is prone to damage from a range of stimuli, and initiates a robust repair process that requires the participation of immune cells. Among the more well characterized immune cells involved in muscle repair are those of the myeloid lineage, including neutrophils, macrophages, monocytes, and eosinophils. More recently, studies have begun to elucidate the role of the lymphoid-derived immune cells, most notably T lymphocytes (T-cells), in the complex processes of muscle repair. Though T-cells have been traditionally been associated with pathological degeneration of skeletal muscle in disease, recent studies show that T-cells are instrumental in the repair/regeneration process following severe muscle damage in mice. Furthermore, a few studies using basic immunohistochemical assays have shown that T-cells accumulate in human skeletal muscle in the days following contraction-induced muscle damage. The functional significance of T-cells in the repair and adaptation process following contraction-induce muscle damage remains uncertain, and is an active area of intense investigation. This mini-review summarizes recent findings on the involvement of T-cells in skeletal muscle repair.
Collapse
Affiliation(s)
- Michael R Deyhle
- Department of Exercise Sciences, Brigham Young University, Provo, UT, United States
| | - Robert D Hyldahl
- Department of Exercise Sciences, Brigham Young University, Provo, UT, United States
| |
Collapse
|
8
|
Defour A, Medikayala S, Van der Meulen JH, Hogarth MW, Holdreith N, Malatras A, Duddy W, Boehler J, Nagaraju K, Jaiswal JK. Annexin A2 links poor myofiber repair with inflammation and adipogenic replacement of the injured muscle. Hum Mol Genet 2017; 26:1979-1991. [PMID: 28334824 DOI: 10.1093/hmg/ddx065] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/17/2017] [Indexed: 01/12/2023] Open
Abstract
Repair of skeletal muscle after sarcolemmal damage involves dysferlin and dysferlin-interacting proteins such as annexins. Mice and patient lacking dysferlin exhibit chronic muscle inflammation and adipogenic replacement of the myofibers. Here, we show that similar to dysferlin, lack of annexin A2 (AnxA2) also results in poor myofiber repair and progressive muscle weakening with age. By longitudinal analysis of AnxA2-deficient muscle we find that poor myofiber repair due to the lack of AnxA2 does not result in chronic inflammation or adipogenic replacement of the myofibers. Further, deletion of AnxA2 in dysferlin deficient mice reduced muscle inflammation, adipogenic replacement of myofibers, and improved muscle function. These results identify multiple roles of AnxA2 in muscle repair, which includes facilitating myofiber repair, chronic muscle inflammation and adipogenic replacement of dysferlinopathic muscle. It also identifies inhibition of AnxA2-mediated inflammation as a novel therapeutic avenue for treating muscle loss in dysferlinopathy.
Collapse
Affiliation(s)
- Aurelia Defour
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Sushma Medikayala
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Jack H Van der Meulen
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Marshall W Hogarth
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Nicholas Holdreith
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Apostolos Malatras
- Center for Research in Myology 75013, Sorbonne Universités, UPMC University Paris 06, INSERM UMRS975, CNRS FRE3617, GH Pitié Salpêtrière, Paris 13, Paris, France
| | - William Duddy
- Center for Research in Myology 75013, Sorbonne Universités, UPMC University Paris 06, INSERM UMRS975, CNRS FRE3617, GH Pitié Salpêtrière, Paris 13, Paris, France
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry, Northern Ireland, BT52 1SJ UK
| | - Jessica Boehler
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20052 USA
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20052 USA
| |
Collapse
|
9
|
Lukyanenko V, Muriel JM, Bloch RJ. Coupling of excitation to Ca 2+ release is modulated by dysferlin. J Physiol 2017; 595:5191-5207. [PMID: 28568606 DOI: 10.1113/jp274515] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/16/2017] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Dysferlin, the protein missing in limb girdle muscular dystrophy 2B and Miyoshi myopathy, concentrates in transverse tubules of skeletal muscle, where it stabilizes voltage-induced Ca2+ transients against loss after osmotic shock injury (OSI). Local expression of dysferlin in dysferlin-null myofibres increases transient amplitude to control levels and protects them from loss after OSI. Inhibitors of ryanodine receptors (RyR1) and L-type Ca2+ channels protect voltage-induced Ca2+ transients from loss; thus both proteins play a role in injury in dysferlin's absence. Effects of Ca2+ -free medium and S107, which inhibits SR Ca2+ leak, suggest the SR as the primary source of Ca2+ responsible for the loss of the Ca2+ transient upon injury. Ca2+ waves were induced by OSI and suppressed by exogenous dysferlin. We conclude that dysferlin prevents injury-induced SR Ca2+ leak. ABSTRACT Dysferlin concentrates in the transverse tubules of skeletal muscle and stabilizes Ca2+ transients when muscle fibres are subjected to osmotic shock injury (OSI). We show here that voltage-induced Ca2+ transients elicited in dysferlin-null A/J myofibres were smaller than control A/WySnJ fibres. Regional expression of Venus-dysferlin chimeras in A/J fibres restored the full amplitude of the Ca2+ transients and protected against OSI. We also show that drugs that target ryanodine receptors (RyR1: dantrolene, tetracaine, S107) and L-type Ca2+ channels (LTCCs: nifedipine, verapamil, diltiazem) prevented the decrease in Ca2+ transients in A/J fibres following OSI. Diltiazem specifically increased transients by ∼20% in uninjured A/J fibres, restoring them to control values. The fact that both RyR1s and LTCCs were involved in OSI-induced damage suggests that damage is mediated by increased Ca2+ leak from the sarcoplasmic reticulum (SR) through the RyR1. Congruent with this, injured A/J fibres produced Ca2+ sparks and Ca2+ waves. S107 (a stabilizer of RyR1-FK506 binding protein coupling that reduces Ca2+ leak) or local expression of Venus-dysferlin prevented OSI-induced Ca2+ waves. Our data suggest that dysferlin modulates SR Ca2+ release in skeletal muscle, and that in its absence OSI causes increased RyR1-mediated Ca2+ leak from the SR into the cytoplasm.
Collapse
Affiliation(s)
- Valeriy Lukyanenko
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joaquin M Muriel
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Escobar H, Schöwel V, Spuler S, Marg A, Izsvák Z. Full-length Dysferlin Transfer by the Hyperactive Sleeping Beauty Transposase Restores Dysferlin-deficient Muscle. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e277. [PMID: 26784637 PMCID: PMC5012550 DOI: 10.1038/mtna.2015.52] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 12/18/2022]
Abstract
Dysferlin-deficient muscular dystrophy is a progressive disease characterized by muscle weakness and wasting for which there is no treatment. It is caused by mutations in DYSF, a large, multiexonic gene that forms a coding sequence of 6.2 kb. Sleeping Beauty (SB) transposon is a nonviral gene transfer vector, already used in clinical trials. The hyperactive SB system consists of a transposon DNA sequence and a transposase protein, SB100X, that can integrate DNA over 10 kb into the target genome. We constructed an SB transposon-based vector to deliver full-length human DYSF cDNA into dysferlin-deficient H2K A/J myoblasts. We demonstrate proper dysferlin expression as well as highly efficient engraftment (>1,100 donor-derived fibers) of the engineered myoblasts in the skeletal muscle of dysferlin- and immunodeficient B6.Cg-Dysf(prmd) Prkdc(scid)/J (Scid/BLA/J) mice. Nonviral gene delivery of full-length human dysferlin into muscle cells, along with a successful and efficient transplantation into skeletal muscle are important advances towards successful gene therapy of dysferlin-deficient muscular dystrophy.
Collapse
Affiliation(s)
- Helena Escobar
- Mobile DNA, Max Delbrück Center for Molecular Medicine of the Helmholtz Society, Berlin, Germany
| | - Verena Schöwel
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité, Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité, Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Andreas Marg
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité, Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Zsuzsanna Izsvák
- Mobile DNA, Max Delbrück Center for Molecular Medicine of the Helmholtz Society, Berlin, Germany
| |
Collapse
|
11
|
Deyhle MR, Gier AM, Evans KC, Eggett DL, Nelson WB, Parcell AC, Hyldahl RD. Skeletal Muscle Inflammation Following Repeated Bouts of Lengthening Contractions in Humans. Front Physiol 2016; 6:424. [PMID: 26793125 PMCID: PMC4709832 DOI: 10.3389/fphys.2015.00424] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/24/2015] [Indexed: 11/29/2022] Open
Abstract
Skeletal muscle responds to exercise-induced damage by orchestrating an adaptive process that protects the muscle from damage by subsequent bouts of exercise, a phenomenon called the repeated bout effect (RBE). The mechanisms underlying the RBE are not understood. We hypothesized that an attenuated inflammation response following a repeated bout of lengthening contractions (LC) would be coincidental with a RBE, suggesting a potential relationship. Fourteen men (n = 7) and women (n = 7) completed two bouts of lengthening contractions (LC) separated by 28 days. Muscle biopsies were taken before the first bout (B1) from the non-exercised leg, and from the exercised leg 2- and 27-d post-B1 and 2-d following the second bout (B2). A 29-plex cytokine array identified alterations in inflammatory cytokines. Immunohistochemistry quantified inflammatory cell infiltration and major histocompatibility complex class 1 (MHC-1). Muscle soreness was attenuated in the days following B2 relative to B1, indicating a RBE. Intramuscular monocyte chemoattractant protein (MCP1) and interferon gamma-induced protein 10 (IP10) increased following B2 relative to the pre-exercise sample (7–52 and 11–36 pg/ml, respectively p < 0.05). Interleukin 4 (IL4) decreased (26–13 pg/ml, p < 0.05) following B2 relative to the pre-exercise sample. Infiltration of CD68+ macrophages and CD8+ T-cells were evident following B2, but not B1. Moreover, CD8+ T-cells were observed infiltrating apparently necrotic muscle fibers. No changes in MHC-1 were found. We conclude that inflammation is not attenuated following a repeated bout of LC and that CD8+ T-cells may play a role in muscle adaptation following LC. Moreover, it appears that the muscle or the immune system becomes sensitized to an initial bout of damaging exercise such that inflammatory cell infiltration into the muscle is enhanced upon a repeated bout of damaging exercise.
Collapse
Affiliation(s)
- Michael R Deyhle
- Department of Exercise Sciences, Brigham Young University Provo, UT, USA
| | - Amanda M Gier
- Department of Exercise Sciences, Brigham Young University Provo, UT, USA
| | - Kaitlyn C Evans
- Department of Exercise Sciences, Brigham Young University Provo, UT, USA
| | - Dennis L Eggett
- Department of Statistics, Brigham Young University Provo, UT, USA
| | - W Bradley Nelson
- Department of Natural Sciences, Ohio Dominican University Columbus, OH, USA
| | - Allen C Parcell
- Department of Exercise Sciences, Brigham Young University Provo, UT, USA
| | - Robert D Hyldahl
- Department of Exercise Sciences, Brigham Young University Provo, UT, USA
| |
Collapse
|
12
|
Grabowska I, Mazur MA, Kowalski K, Helinska A, Moraczewski J, Stremińska W, Hoser G, Kawiak J, Ciemerych MA, Brzoska E. Progression of inflammation during immunodeficient mouse skeletal muscle regeneration. J Muscle Res Cell Motil 2015; 36:395-404. [PMID: 26613733 PMCID: PMC4762921 DOI: 10.1007/s10974-015-9433-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/18/2015] [Indexed: 12/31/2022]
Abstract
The skeletal muscle injury triggers the inflammatory response which is crucial for damaged muscle fiber degradation and satellite cell activation. Immunodeficient mice are often used as a model to study the myogenic potential of transplanted human stem cells. Therefore, it is crucial to elucidate whether such model truly reflects processes occurring under physiological conditions. To answer this question we compared skeletal muscle regeneration of BALB/c, i.e. animals producing all types of inflammatory cells, and SCID mice. Results of our study documented that initial stages of muscles regeneration in both strains of mice were comparable. However, lower number of mononucleated cells was noticed in regenerating SCID mouse muscles. Significant differences in the number of CD14-/CD45+ and CD14+/CD45+ cells between BALB/c and SCID muscles were also observed. In addition, we found important differences in M1 and M2 macrophage levels of BALB/c and SCID mouse muscles identified by CD68 and CD163 markers. Thus, our data show that differences in inflammatory response during muscle regeneration, were not translated into significant modifications in muscle regeneration.
Collapse
Affiliation(s)
- Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St., 02-096, Warsaw, Poland
| | - Magdalena A Mazur
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St., 02-096, Warsaw, Poland
| | - K Kowalski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St., 02-096, Warsaw, Poland
| | - A Helinska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St., 02-096, Warsaw, Poland
| | - Jerzy Moraczewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St., 02-096, Warsaw, Poland
| | - Władysława Stremińska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St., 02-096, Warsaw, Poland
| | - Grażyna Hoser
- Laboratory of Flow Cytometry, Medical Center of Postgraduate Education, Marymoncka 99/103 St., 01-813, Warsaw, Poland
| | - Jerzy Kawiak
- Laboratory of Flow Cytometry, Medical Center of Postgraduate Education, Marymoncka 99/103 St., 01-813, Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St., 02-096, Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St., 02-096, Warsaw, Poland.
| |
Collapse
|
13
|
Boisgérault F, Mingozzi F. The Skeletal Muscle Environment and Its Role in Immunity and Tolerance to AAV Vector-Mediated Gene Transfer. Curr Gene Ther 2015; 15:381-94. [PMID: 26122097 PMCID: PMC4515578 DOI: 10.2174/1566523215666150630121750] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 02/08/2023]
Abstract
Since the early days of gene therapy, muscle has been one the most studied tissue targets for the correction of enzyme deficiencies and myopathies. Several preclinical and clinical studies have been conducted using adeno-associated virus (AAV) vectors. Exciting progress has been made in the gene delivery technologies, from the identification of novel AAV serotypes to the development of novel vector delivery techniques. In parallel, significant knowledge has been generated on the host immune system and its interaction with both the vector and the transgene at the muscle level. In particular, the role of underlying muscle inflammation, characteristic of several diseases affecting the muscle, has been defined in terms of its potential detrimental impact on gene transfer with AAV vectors. At the same time, feedback immunomodulatory mechanisms peculiar of skeletal muscle involving resident regulatory T cells have been identified, which seem to play an important role in maintaining, at least to some extent, muscle homeostasis during inflammation and regenerative processes. Devising strategies to tip this balance towards unresponsiveness may represent an avenue to improve the safety and efficacy of muscle gene transfer with AAV vectors.
Collapse
Affiliation(s)
| | - Federico Mingozzi
- Genethon, Evry, France
- University Pierre and Marie Curie, Paris, France
| |
Collapse
|
14
|
Zhang J, Xiao Z, Qu C, Cui W, Wang X, Du J. CD8 T cells are involved in skeletal muscle regeneration through facilitating MCP-1 secretion and Gr1(high) macrophage infiltration. THE JOURNAL OF IMMUNOLOGY 2014; 193:5149-60. [PMID: 25339660 DOI: 10.4049/jimmunol.1303486] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inflammatory microenvironments play a key role in skeletal muscle regeneration. The infiltration of CD8 T cells into injured muscle has been reported. However, the role of CD8 T cells during skeletal muscle regeneration remains unclear. In this study, we used cardiotoxin-induced mouse skeletal muscle injury/regeneration model to investigate the role of CD8 T cells. Muscle regeneration was impaired and matrix deposit was increased in CD8α-deficient mice compared with wild-type (WT) mice whose CD8 T cells were infiltrated into damaged muscle after cardiotoxin injection. Adoptive transfer of CD8 T cells to CD8α-deficient mice improved muscle regeneration and inhibited matrix remodeling. Compared with WT mice, CD8α deficiency limited the recruitment of Gr1(high) macrophages (MPs) into muscle, resulting in the reduction of satellite cell number. The expression of MCP-1 (MCP-1/CCL2), which regulates the migration of Gr1(high) MPs, was reduced in CD8α-deficient mice compared with WT mice. Coculture CD8 T cells with MPs promoted MCP-1 secretion. The i.m. injection of MCP-1 markedly promoted the recruitment of Gr1(high) MPs and improved muscle regeneration in CD8α-deficient mice. We conclude that CD8 T cells are involved in skeletal muscle regeneration by regulating the secretion of MCP-1 to recruit Gr1(high) MPs, which facilitate myoblast proliferation.
Collapse
Affiliation(s)
- Jing Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing 100029, China; and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Zhicheng Xiao
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing 100029, China; and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Chao Qu
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing 100029, China; and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Wei Cui
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing 100029, China; and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Xiaonan Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing 100029, China; and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing 100029, China; and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| |
Collapse
|
15
|
Vahidi Ferdousi L, Rocheteau P, Chayot R, Montagne B, Chaker Z, Flamant P, Tajbakhsh S, Ricchetti M. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny. Stem Cell Res 2014; 13:492-507. [PMID: 25262445 DOI: 10.1016/j.scr.2014.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 07/14/2014] [Accepted: 08/15/2014] [Indexed: 01/17/2023] Open
Abstract
The loss of genome integrity in adult stem cells results in accelerated tissue aging and is possibly cancerogenic. Adult stem cells in different tissues appear to react robustly to DNA damage. We report that adult skeletal stem (satellite) cells do not primarily respond to radiation-induced DNA double-strand breaks (DSBs) via differentiation and exhibit less apoptosis compared to other myogenic cells. Satellite cells repair these DNA lesions more efficiently than their committed progeny. Importantly, non-proliferating satellite cells and post-mitotic nuclei in the fiber exhibit dramatically distinct repair efficiencies. Altogether, reduction of the repair capacity appears to be more a function of differentiation than of the proliferation status of the muscle cell. Notably, satellite cells retain a high efficiency of DSB repair also when isolated from the natural niche. Finally, we show that repair of DSB substrates is not only very efficient but, surprisingly, also very accurate in satellite cells and that accurate repair depends on the key non-homologous end-joining factor DNA-PKcs.
Collapse
Affiliation(s)
- Leyla Vahidi Ferdousi
- Institut Pasteur, Yeast Molecular Genetics, Dept. of Genomes and Genetics, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR 3525, Team Stability of Nuclear and Mitochondrial DNA, Paris, France; Sorbonne Universités, UPMC, University of Paris 06, IFD-ED 515, Place Jussieu, Paris, 72252, France
| | - Pierre Rocheteau
- Institut Pasteur, Stem Cells & Development, Dept. of Developmental and Stem Cell Biology, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS URA 2578, Paris, France
| | - Romain Chayot
- Institut Pasteur, Yeast Molecular Genetics, Dept. of Genomes and Genetics, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR 3525, Team Stability of Nuclear and Mitochondrial DNA, Paris, France
| | - Benjamin Montagne
- Institut Pasteur, Yeast Molecular Genetics, Dept. of Genomes and Genetics, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR 3525, Team Stability of Nuclear and Mitochondrial DNA, Paris, France
| | - Zayna Chaker
- Institut Pasteur, Yeast Molecular Genetics, Dept. of Genomes and Genetics, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR 3525, Team Stability of Nuclear and Mitochondrial DNA, Paris, France
| | - Patricia Flamant
- Institut Pasteur, Stem Cells & Development, Dept. of Developmental and Stem Cell Biology, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS URA 2578, Paris, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Stem Cells & Development, Dept. of Developmental and Stem Cell Biology, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS URA 2578, Paris, France
| | - Miria Ricchetti
- Institut Pasteur, Yeast Molecular Genetics, Dept. of Genomes and Genetics, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR 3525, Team Stability of Nuclear and Mitochondrial DNA, Paris, France.
| |
Collapse
|
16
|
From innate to adaptive immune response in muscular dystrophies and skeletal muscle regeneration: the role of lymphocytes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:438675. [PMID: 25028653 PMCID: PMC4083765 DOI: 10.1155/2014/438675] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 05/02/2014] [Indexed: 12/04/2022]
Abstract
Skeletal muscle is able to restore contractile functionality after injury thanks to its ability to regenerate. Following muscle necrosis, debris is removed by macrophages, and muscle satellite cells (MuSCs), the muscle stem cells, are activated and subsequently proliferate, migrate, and form muscle fibers restoring muscle functionality. In most muscle dystrophies (MDs), MuSCs fail to properly proliferate, differentiate, or replenish the stem cell compartment, leading to fibrotic deposition. However, besides MuSCs, interstitial nonmyogenic cells and inflammatory cells also play a key role in orchestrating muscle repair. A complete understanding of the complexity of these mechanisms should allow the design of interventions to attenuate MDs pathology without disrupting regenerative processes. In this review we will focus on the contribution of immune cells in the onset and progression of MDs, with particular emphasis on Duchenne muscular dystrophy (DMD). We will briefly summarize the current knowledge and recent advances made in our understanding of the involvement of different innate immune cells in MDs and will move on to critically evaluate the possible role of cell populations within the acquired immune response. Revisiting previous observations in the light of recent evidence will likely change our current view of the onset and progression of the disease.
Collapse
|
17
|
Influence of immune responses in gene/stem cell therapies for muscular dystrophies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:818107. [PMID: 24959590 PMCID: PMC4052166 DOI: 10.1155/2014/818107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/07/2014] [Accepted: 04/30/2014] [Indexed: 02/06/2023]
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of diseases, caused by mutations in different components of sarcolemma, extracellular matrix, or enzymes. Inflammation and innate or adaptive immune response activation are prominent features of MDs. Various therapies under development are directed toward rescuing the dystrophic muscle damage using gene transfer or cell therapy. Here we discussed current knowledge about involvement of immune system responses to experimental therapies in MDs.
Collapse
|
18
|
Uaesoontrachoon K, Cha HJ, Ampong B, Sali A, Vandermeulen J, Wei B, Creeden B, Huynh T, Quinn J, Tatem K, Rayavarapu S, Hoffman EP, Nagaraju K. The effects of MyD88 deficiency on disease phenotype in dysferlin-deficient A/J mice: role of endogenous TLR ligands. J Pathol 2013; 231:199-209. [PMID: 23857504 DOI: 10.1002/path.4207] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 04/02/2013] [Accepted: 04/22/2013] [Indexed: 12/13/2022]
Abstract
An absence of dysferlin leads to activation of innate immune receptors such as Toll-like receptors (TLRs) and skeletal muscle inflammation. Myeloid differentiation primary response gene 88 (MyD88) is a key mediator of TLR-dependent innate immune signalling. We hypothesized that endogenous TLR ligands released from the leaking dysferlin-deficient muscle fibres engage TLRs on muscle and immune cells and contribute to disease progression. To test this hypothesis, we generated and characterized dysferlin and MyD88 double-deficient mice. Double-deficient mice exhibited improved body weight, grip strength, and maximum muscle contractile force at 6-8 months of age when compared to MyD88-sufficient, dysferlin-deficient A/J mice. Double-deficient mice also showed a decrease in total fibre number, which contributed to the observed increase in the number of central nuclei/fibres. These results indicate that there was less regeneration in the double-deficient mice. We next tested the hypothesis that endogenous ligands, such as single-stranded ribonucleic acids (ssRNAs), released from damaged muscle cells bind to TLR-7/8 and perpetuate the disease progression. We found that injection of ssRNA into the skeletal muscle of pre-symptomatic mice (2 months old) resulted in a significant increase in degenerative fibres, inflammation, and regenerating fibres in A/J mice. In contrast, characteristic histological features were significantly decreased in double-deficient mice. These data point to a clear role for the TLR pathway in the pathogenesis of dysferlin deficiency and suggest that TLR-7/8 antagonists may have therapeutic value in this disease.
Collapse
|
19
|
Meregalli M, Navarro C, Sitzia C, Farini A, Montani E, Wein N, Razini P, Beley C, Cassinelli L, Parolini D, Belicchi M, Parazzoli D, Garcia L, Torrente Y. Full-length dysferlin expression driven by engineered human dystrophic blood derived CD133+ stem cells. FEBS J 2013; 280:6045-60. [PMID: 24028392 DOI: 10.1111/febs.12523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 12/12/2022]
Abstract
The protein dysferlin is abundantly expressed in skeletal and cardiac muscles, where its main function is membrane repair. Mutations in the dysferlin gene are involved in two autosomal recessive muscular dystrophies: Miyoshi myopathy and limb-girdle muscular dystrophy type 2B. Development of effective therapies remains a great challenge. Strategies to repair the dysferlin gene by skipping mutated exons, using antisense oligonucleotides (AONs), may be suitable only for a subset of mutations, while cell and gene therapy can be extended to all mutations. AON-treated blood-derived CD133+ stem cells isolated from patients with Miyoshi myopathy led to partial dysferlin reconstitution in vitro but failed to express dysferlin after intramuscular transplantation into scid/blAJ dysferlin null mice. We thus extended these experiments producing the full-length dysferlin mediated by a lentiviral vector in blood-derived CD133+ stem cells isolated from the same patients. Transplantation of engineered blood-derived CD133+ stem cells into scid/blAJ mice resulted in sufficient dysferlin expression to correct functional deficits in skeletal muscle membrane repair. Our data suggest for the first time that lentivirus-mediated delivery of full-length dysferlin in stem cells isolated from Miyoshi myopathy patients could represent an alternative therapeutic approach for treatment of dysferlinopathies.
Collapse
Affiliation(s)
- Mirella Meregalli
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ieronimakis N, Pantoja M, Hays AL, Dosey TL, Qi J, Fischer KA, Hoofnagle AN, Sadilek M, Chamberlain JS, Ruohola-Baker H, Reyes M. Increased sphingosine-1-phosphate improves muscle regeneration in acutely injured mdx mice. Skelet Muscle 2013; 3:20. [PMID: 23915702 PMCID: PMC3750760 DOI: 10.1186/2044-5040-3-20] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 05/22/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Presently, there is no effective treatment for the lethal muscle wasting disease Duchenne muscular dystrophy (DMD). Here we show that increased sphingosine-1-phoshate (S1P) through direct injection or via the administration of the small molecule 2-acetyl-4(5)-tetrahydroxybutyl imidazole (THI), an S1P lyase inhibitor, has beneficial effects in acutely injured dystrophic muscles of mdx mice. METHODS We treated mdx mice with and without acute injury and characterized the histopathological and functional effects of increasing S1P levels. We also tested exogenous and direct administration of S1P on mdx muscles to examine the molecular pathways under which S1P promotes regeneration in dystrophic muscles. RESULTS Short-term treatment with THI significantly increased muscle fiber size and extensor digitorum longus (EDL) muscle specific force in acutely injured mdx limb muscles. In addition, the accumulation of fibrosis and fat deposition, hallmarks of DMD pathology and impaired muscle regeneration, were lower in the injured muscles of THI-treated mdx mice. Furthermore, increased muscle force was observed in uninjured EDL muscles with a longer-term treatment of THI. Such regenerative effects were linked to the response of myogenic cells, since intramuscular injection of S1P increased the number of Myf5nlacz/+ positive myogenic cells and newly regenerated myofibers in injured mdx muscles. Intramuscular injection of biotinylated-S1P localized to muscle fibers, including newly regenerated fibers, which also stained positive for S1P receptor 1 (S1PR1). Importantly, plasma membrane and perinuclear localization of phosphorylated S1PR1 was observed in regenerating muscle fibers of mdx muscles. Intramuscular increases of S1P levels, S1PR1 and phosphorylated ribosomal protein S6 (P-rpS6), and elevated EDL muscle specific force, suggest S1P promoted the upregulation of anabolic pathways that mediate skeletal muscle mass and function. CONCLUSIONS These data show that S1P is beneficial for muscle regeneration and functional gain in dystrophic mice, and that THI, or other pharmacological agents that raise S1P levels systemically, may be developed into an effective treatment for improving muscle function and reducing the pathology of DMD.
Collapse
Affiliation(s)
- Nicholas Ieronimakis
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mariano A, Henning A, Han R. Dysferlin-deficient muscular dystrophy and innate immune activation. FEBS J 2013; 280:4165-76. [PMID: 23527661 DOI: 10.1111/febs.12261] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/06/2013] [Accepted: 03/20/2013] [Indexed: 11/27/2022]
Abstract
Cells encounter many physical, chemical and biological stresses that perturb plasma membrane integrity, warranting an immediate membrane repair response to regain cell homeostasis. Failure to respond properly to such perturbation leads to individual cell death, which may also produce systemic influence by triggering sterile immunological responses. In this review, we discuss recent progress on understanding the mechanisms underlying muscle cell membrane repair and the potential mediators of innate immune activation when the membrane repair system is defective, specifically focusing on pathology associated with dysferlin deficiency.
Collapse
Affiliation(s)
- Andrew Mariano
- Department of Cell and Molecular Physiology, Loyola University Chicago Health Science Division, Maywood, IL 60153, USA
| | | | | |
Collapse
|
22
|
Macrophage plasticity and the role of inflammation in skeletal muscle repair. Mediators Inflamm 2013; 2013:491497. [PMID: 23509419 PMCID: PMC3572642 DOI: 10.1155/2013/491497] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/03/2013] [Indexed: 12/24/2022] Open
Abstract
Effective repair of damaged tissues and organs requires the coordinated action of several cell types, including infiltrating inflammatory cells and resident cells. Recent findings have uncovered a central role for macrophages in the repair of skeletal muscle after acute damage. If damage persists, as in skeletal muscle pathologies such as Duchenne muscular dystrophy (DMD), macrophage infiltration perpetuates and leads to progressive fibrosis, thus exacerbating disease severity. Here we discuss how dynamic changes in macrophage populations and activation states in the damaged muscle tissue contribute to its efficient regeneration. We describe how ordered changes in macrophage polarization, from M1 to M2 subtypes, can differently affect muscle stem cell (satellite cell) functions. Finally, we also highlight some of the new mechanisms underlying macrophage plasticity and briefly discuss the emerging implications of lymphocytes and other inflammatory cell types in normal versus pathological muscle repair.
Collapse
|