1
|
Lu Y, Mu Y, Chen J, Guan X, Guo L, Wu C. CLP36 promotes p53 deficient sarcoma progression through suppression of atrophin-1 interacting protein-4 (AIP-4)-dependent degradation of YAP1. Am J Cancer Res 2022; 12:5051-5068. [PMID: 35836803 PMCID: PMC9274740 DOI: 10.7150/thno.72365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022] Open
Abstract
Background: p53 deficiency is a key causal factor for tumor development and progression. p53 acts in this process through, at least in part, cooperation with YAP1 but the underlying molecular mechanism is incompletely understood. In this paper, we show that CLP36, an actinin-binding cytoskeletal protein, links p53 deficiency to up-regulation of YAP1 expression and sarcoma progression. Methods: Immunohistochemical staining and Western blotting were used to investigate the effect of p53 deficiency on CLP36 expression in sarcoma tissues and cells. Furthermore, molecular, cellular, and genetic knockout and knockdown approaches were employed to investigate the functions of CLP36 in regulation of sarcoma cell behavior in culture and tumor growth in mice. Finally, biochemical approaches were used to investigate the molecular mechanism by which CLP36 regulates the malignant behavior of p53 deficient sarcoma cells. Results: We have found that the expression of CLP36 is up-regulated in response to loss of p53 in sarcoma tissues and cells. Depletion of CLP36 inhibited malignant behavior of p53 deficient sarcoma cells. Furthermore, knockout of CLP36 in mice markedly inhibited p53 deficiency-induced tumorigenesis and improved the survival of the p53 deficient mice. Mechanistically, CLP36 promoted p53 deficiency-induced tumorigenesis through inhibition of E3 ligase atrophin-1 interacting protein-4 (AIP-4)-dependent proteasomal degradation of YAP1 and consequently increase of YAP1 expression. Conclusions: Our results reveal a crucial role of CLP36 in linking p53 deficiency to up-regulation of YAP1 expression and sarcoma progression. Our findings suggest that therapeutic targeting the CLP36/YAP1 signaling axis may provide an effective strategy for alleviation of p53 deficient sarcoma progression.
Collapse
Affiliation(s)
- Yixuan Lu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China.,Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Yongxin Mu
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ju Chen
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xinyuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Ling Guo
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chuanyue Wu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261 USA
| |
Collapse
|
2
|
Zhou JK, Fan X, Cheng J, Liu W, Peng Y. PDLIM1: Structure, function and implication in cancer. Cell Stress 2021; 5:119-127. [PMID: 34396044 PMCID: PMC8335553 DOI: 10.15698/cst2021.08.254] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 02/05/2023] Open
Abstract
PDLIM1, a member of the PDZ-LIM family, is a cytoskeletal protein and functions as a platform to form distinct protein complexes, thus participating in multiple physiological processes such as cytoskeleton regulation and synapse formation. Emerging evidence demonstrates that PDLIM1 is dysregualted in a variety of tumors and plays essential roles in tumor initiation and progression. In this review, we summarize the structure and function of PDLIM1, as well as its important roles in human cancers.
Collapse
Affiliation(s)
- Jian-Kang Zhou
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Fan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Cheng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenrong Liu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Dhanda AS, Yang D, Kooner A, Guttman JA. Distribution of PDLIM1 at actin-rich structures generated by invasive and adherent bacterial pathogens. Anat Rec (Hoboken) 2020; 304:919-938. [PMID: 33022122 DOI: 10.1002/ar.24523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/06/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022]
Abstract
The enteric bacterial pathogens Listeria monocytogenes (Listeria) and enteropathogenic Escherichia coli (EPEC) remodel the eukaryotic actin cytoskeleton during their disease processes. Listeria generate slender actin-rich comet/rocket tails to move intracellularly, and later, finger-like membrane protrusions to spread amongst host cells. EPEC remain extracellular, but generate similar actin-rich membranous protrusions (termed pedestals) to move atop the host epithelia. These structures are crucial for disease as diarrheal (and systemic) infections are significantly abrogated during infections with mutant strains that are unable to generate the structures. The current repertoire of host components enriched within these structures is vast and diverse. In this protein catalog, we and others have found that host actin crosslinkers, such as palladin and α-actinin-1, are routinely exploited. To expand on this list, we set out to investigate the distribution of PDLIM1, a scaffolding protein and binding partner of palladin and α-actinin-1, during bacterial infections. We show that PDLIM1 localizes to the site of initial Listeria entry into cells. Following this, PDLIM1 localizes to actin filament clouds surrounding immotile bacteria, and then colocalizes with actin once the comet/rocket tails are generated. Unlike palladin or α-actinin-1, PDLIM1 is maintained within the actin-rich core of membrane protrusions. Conversely, α-actinin-1, but not PDLIM1 (or palladin), is enriched at the membrane invagination that internalizes the Listeria-containing membrane protrusion. We also show that PDLIM1 is a component of the EPEC pedestal core and that its recruitment is dependent on the bacterial effector Tir. Our findings highlight PDLIM1 as another protein present within pathogen-induced actin-rich structures.
Collapse
Affiliation(s)
- Aaron S Dhanda
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Diana Yang
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Avneen Kooner
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Julian A Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
4
|
Huang Z, Zhou JK, Wang K, Chen H, Qin S, Liu J, Luo M, Chen Y, Jiang J, Zhou L, Zhu L, He J, Li J, Pu W, Gong Y, Li J, Ye Q, Dong D, Hu H, Zhou Z, Dai L, Huang C, Wei X, Peng Y. PDLIM1 Inhibits Tumor Metastasis Through Activating Hippo Signaling in Hepatocellular Carcinoma. Hepatology 2020; 71:1643-1659. [PMID: 31509262 DOI: 10.1002/hep.30930] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/02/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Tumor metastasis is a major factor of high recurrence and mortality in hepatocellular carcinoma (HCC), but its underlying mechanism remains elusive. We report that PDZ and LIM domain protein 1 (PDLIM1) is significantly down-regulated in metastatic human HCC tissues, which predicts unfavorable prognosis, suggesting that PDLIM1 may play an important inhibitory role during HCC metastasis. APPROACH AND RESULTS Functional studies indicate that PDLIM1 knockdown induces epithelial-to-mesenchymal transition (EMT) of HCC cells, elevates their invasive capacity, and promotes metastasis in vitro and in vivo, whereas overexpression of PDLIM1 exhibits opposite phenotypes. Mechanistically, PDLIM1 competitively binds to the cytoskeleton cross-linking protein alpha-actinin 4 (ACTN4), leading to the disassociation of ACTN4 from F-actin, thus preventing F-actin overgrowth. In contrast, loss of PDLIM1 induces excessive F-actin formation, resulting in dephosphorylation of large tumor suppressor kinase 1 and activation of Yes-associated protein, thereby promoting HCC metastasis. Moreover, Asn145 (N145) of PDLIM1 is critical for its interaction with ACTN4, and N145A mutation abolishes its regulatory function in Hippo signaling and HCC metastasis. CONCLUSIONS Our findings indicate that PDLIM1 suppresses HCC metastasis by modulating Hippo signaling, suggesting that PDLIM1 may be a potential prognostic marker for metastatic HCC.
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jian-Kang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Kui Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Haining Chen
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jiayang Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lei Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Juan He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jiao Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wenchen Pu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yanqiu Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jianbo Li
- Department of Liver Surgery and Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Ye
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dandan Dong
- Department of Pathology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Hongbo Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
5
|
Ríos H, Paganelli AR, Fosser NS. The role of PDLIM1, a PDZ-LIM domain protein, at the ribbon synapses in the chicken retina. J Comp Neurol 2020; 528:1820-1832. [PMID: 31930728 DOI: 10.1002/cne.24855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/29/2023]
Abstract
PDLIM's protein family is involved in the rearrangement of the actin cytoskeleton. In the present study, we describe the localization of PDLIM1 in chicken photoreceptors. This study provides evidence that this protein is present at the cone pedicles, as well as in other synapses of the chicken retina. Here, we demonstrate the expression pattern of PDLIM1 through immunofluorescence staining, immunoblots, subcellular fractionation, and immunoprecipitation experiments. Also, we consider the possibility that PDLIM1 may be involved in the synaptic vesicle endocytosis and/or the presynaptic trafficking of synaptic vesicles back to the nonready releasable pool. This endocytotic/exocytotic coupling requires a tight link between exocytic vesicle fusion at defined release sites and endocytic retrieval of synaptic vesicle membranes. In turn, photoreceptor ribbon synaptic structure depends on the cytoskeleton arrangement, both at the active zone-related with exocytosis-as well as at the endocytic zone-periactive zone. To our knowledge, the PDLIM1 protein has not been observed in the pre synapses of the retina. Thus, the present study describes the expression and subcellular localization of PDLIM1 for the first time, as well as its modulation by visual environment in the chicken retina.
Collapse
Affiliation(s)
- Hugo Ríos
- Universidad de Buenos Aires, Facultad de Medicina, I° U.A. Histología, Embriología, Biología Celular y Genética, Ciudad de Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Alejandra R Paganelli
- Universidad de Buenos Aires, Facultad de Medicina, I° U.A. Histología, Embriología, Biología Celular y Genética, Ciudad de Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Nicolás S Fosser
- Universidad de Buenos Aires, Facultad de Medicina, I° U.A. Histología, Embriología, Biología Celular y Genética, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
6
|
Rai A, Greening DW, Chen M, Xu R, Ji H, Simpson RJ. Exosomes Derived from Human Primary and Metastatic Colorectal Cancer Cells Contribute to Functional Heterogeneity of Activated Fibroblasts by Reprogramming Their Proteome. Proteomics 2019; 19:e1800148. [PMID: 30582284 DOI: 10.1002/pmic.201800148] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/05/2018] [Indexed: 12/18/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are a heterogeneous population of activated fibroblasts that constitute a dominant cellular component of the tumor microenvironment (TME) performing distinct functions. Here, the role of tumor-derived exosomes (Exos) in activating quiescent fibroblasts into distinct functional subtypes is investigated. Proteomic profiling and functional dissection reveal that early- (SW480) and late-stage (SW620) colorectal cancer (CRC) cell-derived Exos both activated normal quiescent fibroblasts (α-SMA- , CAV+ , FAP+ , VIM+ ) into CAF-like fibroblasts (α-SMA+ , CAV- , FAP+ , VIM+ ). Fibroblasts activated by early-stage cancer-exosomes (SW480-Exos) are highly pro-proliferative and pro-angiogenic and display elevated expression of pro-angiogenic (IL8, RAB10, NDRG1) and pro-proliferative (SA1008, FFPS) proteins. In contrast, fibroblasts activated by late-stage cancer-exosomes (SW620-Exos) display a striking ability to invade through extracellular matrix through upregulation of pro-invasive regulators of membrane protrusion (PDLIM1, MYO1B) and matrix-remodeling proteins (MMP11, EMMPRIN, ADAM10). Conserved features of Exos-mediated fibroblast activation include enhanced ECM secretion (COL1A1, Tenascin-C/X), oncogenic transformation, and metabolic reprogramming (downregulation of CAV-1, upregulation of glycogen metabolism (GAA), amino acid biosynthesis (SHMT2, IDH2) and membrane transporters of glucose (GLUT1), lactate (MCT4), and amino acids (SLC1A5/3A5)). This study highlights the role of primary and metastatic CRC tumor-derived Exos in generating phenotypically and functionally distinct subsets of CAFs that may facilitate tumor progression.
Collapse
Affiliation(s)
- Alin Rai
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - David W Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Maoshan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Rong Xu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Hong Ji
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Pdlim7 Regulates Arf6-Dependent Actin Dynamics and Is Required for Platelet-Mediated Thrombosis in Mice. PLoS One 2016; 11:e0164042. [PMID: 27792740 PMCID: PMC5085081 DOI: 10.1371/journal.pone.0164042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/19/2016] [Indexed: 11/19/2022] Open
Abstract
Upon vessel injury, platelets become activated and rapidly reorganize their actin cytoskeleton to adhere to the site of endothelial damage, triggering the formation of a fibrin-rich plug to prevent further blood loss. Inactivation of Pdlim7 provides the new perspective that regulation of actin cytoskeletal changes in platelets is dependent on the encoded PDZ-LIM protein. Loss-of-function of Pdlim7 triggers hypercoagulopathy and causes significant perinatal lethality in mice. Our in vivo and in vitro studies reveal that Pdlim7 is dynamically distributed along actin fibers, and lack of Pdlim7 leads to a marked inability to rearrange the actin cytoskeleton. Specifically, the absence of Pdlim7 prevents platelets from bundling actin fibers into a concentric ring that defines the round spread shape of activated platelets. Similarly, in mouse embryonic fibroblasts, loss of Pdlim7 abolishes the formation of stress fibers needed to adopt the typical elongated fibroblast shape. In addition to revealing a fundamental cell biological role in actin cytoskeletal organization, we also demonstrate a function of Pdlim7 in regulating the cycling between the GTP/GDP-bound states of Arf6. The small GTPase Arf6 is an essential factor required for actin dynamics, cytoskeletal rearrangements, and platelet activation. Consistent with our findings of significantly elevated initial F-actin ratios and subsequent morphological aberrations, loss of Pdlim7 causes a shift in balance towards an increased Arf6-GTP level in resting platelets. These findings identify a new Pdlim7-Arf6 axis controlling actin dynamics and implicate Pdlim7 as a primary endogenous regulator of platelet-dependent hemostasis.
Collapse
|
8
|
Shang Y, Wang H, Jia P, Zhao H, Liu C, Liu W, Song Z, Xu Z, Yang L, Wang Y, Li W. Autophagy regulates spermatid differentiation via degradation of PDLIM1. Autophagy 2016; 12:1575-92. [PMID: 27310465 DOI: 10.1080/15548627.2016.1192750] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spermiogenesis is a complex and highly ordered spermatid differentiation process that requires reorganization of cellular structures. We have previously found that Atg7 is required for acrosome biogenesis. Here, we show that autophagy regulates the round and elongating spermatids. Specifically, we found that Atg7 is required for spermatozoa flagella biogenesis and cytoplasm removal during spermiogenesis. Spermatozoa motility of atg7-null mice dropped significantly with some extra-cytoplasm retained on the mature sperm head. These defects are associated with an impairment of the cytoskeleton organization. Functional screening revealed that the negative cytoskeleton organization regulator, PDLIM1 (PDZ and LIM domain 1 [elfin]), needs to be degraded by the autophagy-lysosome-dependent pathway to facilitate the proper organization of the cytoskeleton. Our results thus provide a novel mechanism showing that autophagy regulates cytoskeleton organization mainly via degradation of PDLIM1 to facilitate the differentiation of spermatids.
Collapse
Affiliation(s)
- Yongliang Shang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Hongna Wang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Pengfei Jia
- c State Key Laboratory of Molecular Developmental Biology and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing , China
| | - Haichao Zhao
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Chao Liu
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Weixiao Liu
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Zhenhua Song
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Zhiliang Xu
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Lin Yang
- c State Key Laboratory of Molecular Developmental Biology and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing , China
| | - Yanfang Wang
- d State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing , China
| | - Wei Li
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
9
|
Watarai A, Schirmer L, Thönes S, Freudenberg U, Werner C, Simon JC, Anderegg U. TGFβ functionalized starPEG-heparin hydrogels modulate human dermal fibroblast growth and differentiation. Acta Biomater 2015. [PMID: 26219861 DOI: 10.1016/j.actbio.2015.07.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hydrogels are promising biomaterials that can adapt easily to complex tissue entities. Furthermore, chemical modifications enable these hydrogels to become an instructive biomaterial to a variety of cell types. Human dermal fibroblasts play a pivotal role during wound healing, especially for the synthesis of novel dermal tissue replacing the primary fibrin clot. Thus, the control of growth and differentiation of dermal fibroblasts is important to modulate wound healing. In here, we utilized a versatile starPEG-heparin hydrogel platform that can be independently adjusted with respect to mechanical and biochemical properties for cultivating human dermal fibroblasts. Cell-based remodeling of the artificial matrix was ensured by using matrix metalloprotease (MMP) cleavable crosslinker peptides. Attachment and proliferation of fibroblasts on starPEG-heparin hydrogels of differing stiffness, density of pro-adhesive RGD peptides and MMP cleavable peptide linkers were tested. Binding and release of human TGFβ1 as well as biological effect of the pre-adsorbed growth factor on fibroblast gene expression and myofibroblast differentiation were investigated. Hydrogels containing RGD peptides supported fibroblast attachment, spreading, proliferation matrix deposition and remodeling compared to hydrogels without any modifications. Reversibly conjugated TGFβ1 was demonstrated to be constantly released from starPEG-heparin hydrogels for several days and capable of inducing myofibroblast differentiation of fibroblasts as determined by induction of collagen type I, ED-A-Fibronectin expression and incorporation of alpha smooth muscle actin and palladin into F-actin stress fibers. Taken together, customized starPEG-heparin hydrogels could be of value to promote dermal wound healing by stimulating growth and differentiation of human dermal fibroblasts. STATEMENT OF SIGNIFICANCE The increasing number of people of advanced age within the population results in an increasing demand for the treatment of non-healing wounds. Hydrogels are promising biomaterials for the temporary closure of large tissue defects: They can adapt to complex tissue geometry and can be engineered for specific tissue needs. We used a starPEG-heparin hydrogel platform that can be independently adjusted to mechanical and biochemical characteristics. We investigated how these hydrogels can support attachment, proliferation and differentiation of dermal fibroblasts. After introducing adhesive peptides these hydrogels support cell attachment and proliferation. Moreover, TGFβ - an essential growth and differentiation factor for fibroblasts - can be immobilized reversibly and functionally on these hydrogels. Thus, starPEG-heparin hydrogels could be developed to bioactive temporary wound dressings.
Collapse
|
10
|
Hsia CW, Ho MY, Shui HA, Tsai CB, Tseng MJ. Analysis of dermal papilla cell interactome using STRING database to profile the ex vivo hair growth inhibition effect of a vinca alkaloid drug, colchicine. Int J Mol Sci 2015; 16:3579-98. [PMID: 25664862 PMCID: PMC4346914 DOI: 10.3390/ijms16023579] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/03/2015] [Indexed: 12/28/2022] Open
Abstract
Dermal papillae (DPs) control the formation of hair shafts. In clinical settings, colchicine (CLC) induces patients' hair shedding. Compared to the control, the ex vivo hair fiber elongation of organ cultured vibrissa hair follicles (HFs) declined significantly after seven days of CLC treatment. The cultured DP cells (DPCs) were used as the experimental model to study the influence of CLC on the protein dynamics of DPs. CLC could alter the morphology and down-regulate the expression of alkaline phosphatase (ALP), the marker of DPC activity, and induce IκBα phosphorylation of DPCs. The proteomic results showed that CLC modulated the expression patterns (fold>2) of 24 identified proteins, seven down-regulated and 17 up-regulated. Most of these proteins were presumably associated with protein turnover, metabolism, structure and signal transduction. Protein-protein interactions (PPI) among these proteins, established by Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, revealed that they participate in protein metabolic process, translation, and energy production. Furthermore, ubiquitin C (UbC) was predicted to be the controlling hub, suggesting the involvement of ubiquitin-proteasome system in modulating the pathogenic effect of CLC on DPC.
Collapse
Affiliation(s)
- Ching-Wu Hsia
- Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chia-yi 621, Taiwan.
| | - Ming-Yi Ho
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Hao-Ai Shui
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan.
| | - Chong-Bin Tsai
- Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chia-yi 621, Taiwan.
- Department of Ophthalmology, Chia-yi Christian Hospital, Chia-yi 600, Taiwan.
| | - Min-Jen Tseng
- Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chia-yi 621, Taiwan.
| |
Collapse
|
11
|
Abstract
α-Actinins are a major class of actin filament cross-linking proteins expressed in virtually all cells. In muscle, actinins cross-link thin filaments from adjacent sarcomeres. In non-muscle cells, different actinin isoforms play analogous roles in cross-linking actin filaments and anchoring them to structures such as cell-cell and cell-matrix junctions. Although actinins have long been known to play roles in cytokinesis, cell adhesion and cell migration, recent studies have provided further mechanistic insights into these functions. Roles for actinins in synaptic plasticity and membrane trafficking events have emerged more recently, as has a 'non-canonical' function for actinins in transcriptional regulation in the nucleus. In the present paper we review recent advances in our understanding of these diverse cell biological functions of actinins in non-muscle cells, as well as their roles in cancer and in genetic disorders affecting platelet and kidney physiology. We also make two proposals with regard to the actinin nomenclature. First, we argue that naming actinin isoforms according to their expression patterns is problematic and we suggest a more precise nomenclature system. Secondly, we suggest that the α in α-actinin is superfluous and can be omitted.
Collapse
|
12
|
Liu Z, Zhan Y, Tu Y, Chen K, Liu Z, Wu C. PDZ and LIM domain protein 1(PDLIM1)/CLP36 promotes breast cancer cell migration, invasion and metastasis through interaction with α-actinin. Oncogene 2014; 34:1300-11. [PMID: 24662836 PMCID: PMC4175366 DOI: 10.1038/onc.2014.64] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 02/10/2014] [Accepted: 02/16/2014] [Indexed: 12/19/2022]
Abstract
Increased CLP36 expression has been found to be closely associated with breast cancer progression. However, whether and how it contributes to malignant behavior of breast cancer cells were not known. We show here that CLP36 is critical for promoting breast cancer cell migration and invasion in vitro and metastasis in vivo, whereas it is dispensable for breast cell proliferation and anchorage independent growth in vitro and tumor growth in vivo. CLP36 interacted with both α-actinin-1 and -4 in breast cancer cells. Depletion of either α-actinin-1 or -4 inhibited breast cancer cell migration. Furthermore, mutations inhibiting the α-actinin-binding activity abolished the ability of CLP36 to promote breast cancer cell migration. Finally, depletion of CLP36 or disruption of the CLP36-α-actinin complex in breast cancer cells substantially inhibited Cdc42 activation, cell polarization and migration. Our results identify CLP36 as an important regulator of breast cancer cell migration and metastasis, and shed light on how increased CLP36 expression contributes to progression of breast cancer.
Collapse
Affiliation(s)
- Z Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Y Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Y Tu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - K Chen
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Z Liu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - C Wu
- 1] Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|