1
|
Teixeira Polez R, Huynh N, Pridgeon CS, Valle-Delgado JJ, Harjumäki R, Österberg M. Insights into spheroids formation in cellulose nanofibrils and Matrigel hydrogels using AFM-based techniques. Mater Today Bio 2024; 26:101065. [PMID: 38706731 PMCID: PMC11066555 DOI: 10.1016/j.mtbio.2024.101065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
The recent FDA decision to eliminate animal testing requirements emphasises the role of cell models, such as spheroids, as regulatory test alternatives for investigations of cellular behaviour, drug responses, and disease modelling. The influence of environment on spheroid formation are incompletely understood, leading to uncertainty in matrix selection for scaffold-based 3D culture. This study uses atomic force microscopy-based techniques to quantify cell adhesion to Matrigel and cellulose nanofibrils (CNF), and cell-cell adhesion forces, and their role in spheroid formation of hepatocellular carcinoma (HepG2) and induced pluripotent stem cells (iPS(IMR90)-4). Results showed different cell behaviour in CNF and Matrigel cultures. Both cell lines formed compact spheroids in CNF but loose cell aggregates in Matrigel. Interestingly, the type of cell adhesion protein, and not the bond strength, appeared to be a key factor in the formation of compact spheroids. The gene expression of E- and N-cadherins, proteins on cell membrane responsible for cell-cell interactions, was increased in CNF culture, leading to formation of compact spheroids while Matrigel culture induced integrin-laminin binding and downregulated E-cadherin expression, resulting in looser cell aggregates. These findings enhance our understanding of cell-biomaterial interactions in 3D cultures and offer insights for improved 3D cell models, culture biomaterials, and applications in drug research.
Collapse
Affiliation(s)
- Roberta Teixeira Polez
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
| | - Ngoc Huynh
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| | - Chris S. Pridgeon
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| | - Riina Harjumäki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| |
Collapse
|
2
|
Abend A, Steele C, Jahnke HG, Zink M. Adhesion of Neurons and Glial Cells with Nanocolumnar TiN Films for Brain-Machine Interfaces. Int J Mol Sci 2021; 22:8588. [PMID: 34445294 PMCID: PMC8395253 DOI: 10.3390/ijms22168588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Coupling of cells to biomaterials is a prerequisite for most biomedical applications; e.g., neuroelectrodes can only stimulate brain tissue in vivo if the electric signal is transferred to neurons attached to the electrodes' surface. Besides, cell survival in vitro also depends on the interaction of cells with the underlying substrate materials; in vitro assays such as multielectrode arrays determine cellular behavior by electrical coupling to the adherent cells. In our study, we investigated the interaction of neurons and glial cells with different electrode materials such as TiN and nanocolumnar TiN surfaces in contrast to gold and ITO substrates. Employing single-cell force spectroscopy, we quantified short-term interaction forces between neuron-like cells (SH-SY5Y cells) and glial cells (U-87 MG cells) for the different materials and contact times. Additionally, results were compared to the spreading dynamics of cells for different culture times as a function of the underlying substrate. The adhesion behavior of glial cells was almost independent of the biomaterial and the maximum growth areas were already seen after one day; however, adhesion dynamics of neurons relied on culture material and time. Neurons spread much better on TiN and nanocolumnar TiN and also formed more neurites after three days in culture. Our designed nanocolumnar TiN offers the possibility for building miniaturized microelectrode arrays for impedance spectroscopy without losing detection sensitivity due to a lowered self-impedance of the electrode. Hence, our results show that this biomaterial promotes adhesion and spreading of neurons and glial cells, which are important for many biomedical applications in vitro and in vivo.
Collapse
Affiliation(s)
- Alice Abend
- Research Group Biotechnology and Biomedicine, Faculty of Physics and Earth Sciences, Peter Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
| | - Chelsie Steele
- Research Group Biotechnology and Biomedicine, Faculty of Physics and Earth Sciences, Peter Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
| | - Heinz-Georg Jahnke
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany;
| | - Mareike Zink
- Research Group Biotechnology and Biomedicine, Faculty of Physics and Earth Sciences, Peter Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
| |
Collapse
|
3
|
Dao L, Blaue C, Franz CM. Integrin α 2β 1 as a negative regulator of the laminin receptors α 6β 1 and α 6β 4. Micron 2021; 148:103106. [PMID: 34171483 DOI: 10.1016/j.micron.2021.103106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/30/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
Integrin α2β1 is a widely expressed collagen I receptor which also mediates laminin-111 binding in some cell types, but the functional relevance of collagen versus laminin binding for different cell types is poorly understood. Here we use AFM-based singe-cell force spectroscopy (SCFS) to compare α2β1-mediated adhesion strength to collagen and laminin in different cell types. Chinese Hamster Ovary (CHO) cells stably expressing integrin α2β1 (CHO-A2) displayed enhanced adhesion to collagen, but weak adhesion to laminin, consistent with a role of α2β1 as a receptor only for collagen in these cells. Inversely, the α2β1-deficient CHO wildtype cells (CHO-WT) showed weak adhesion to collagen, but strong adhesion to laminin-111, in turn suggesting that integrin α2β1 expression suppresses laminin binding. Analogous results were obtained in a pair of SAOS-2 human osteosarcoma cell lines. Again, wildtype cells (SAOS-WT) adhered strongly to laminin and poorly to collagen, while expression of integrin α2β1 (SAOS-A2) induced strong adhesion to collagen, but reduced adhesion to laminin. Expression of α2β1 also shifted cell spreading preference from laminin to collagen and suppressed laminin-dependent transmigration. In agreement with reduced laminin adhesion, α2β1 expression downregulated transcription and expression of integrin subunits α6 and β4, components of the main laminin-111 binding receptors integrin α6β1 and α6β4 in these cells. Integrin α6 and β4 expression was also reduced when α2 expression was chemically induced using tetradecanoyl-phorbol-acetate (TPA). Our results thus show that integrin α2β1 expression negatively regulates integrin α6β1 and α6β4-mediated adhesion, spreading and invasion on laminin in different cancer cell types. In contrast to SAOS-WT, but similar to SAOS-A2 osteosarcoma cells, primary Human osteoblasts (HOB) cells express α2 but only low levels of β4 integrin, preferentially adhere to and spread on collagen over laminin and show suppressed laminin-dependent transmigration. By enhancing collagen binding directly and suppressing laminin binding indirectly through laminin receptor downregulation, α2β1 expression may thus re-direct migrating cancer cells from laminin-rich to collagenous tissues and partially revert osteosarcoma cells towards an untransformed phenotype.
Collapse
Affiliation(s)
- Lu Dao
- Center for Functional Nanostructures, Karlsruher Institut für Technologie (KIT), Wolfgang-Gaede-Strasse 1a, 76131, Karlsruhe, Germany
| | - Carina Blaue
- Center for Functional Nanostructures, Karlsruher Institut für Technologie (KIT), Wolfgang-Gaede-Strasse 1a, 76131, Karlsruhe, Germany
| | - Clemens M Franz
- Center for Functional Nanostructures, Karlsruher Institut für Technologie (KIT), Wolfgang-Gaede-Strasse 1a, 76131, Karlsruhe, Germany; WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan.
| |
Collapse
|
4
|
Bachmann M, Schäfer M, Mykuliak VV, Ripamonti M, Heiser L, Weißenbruch K, Krübel S, Franz CM, Hytönen VP, Wehrle-Haller B, Bastmeyer M. Induction of ligand promiscuity of αVβ3 integrin by mechanical force. J Cell Sci 2020; 133:jcs242404. [PMID: 32193334 DOI: 10.1242/jcs.242404] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 12/20/2022] Open
Abstract
αVβ3 integrin can bind to multiple extracellular matrix proteins, including vitronectin (Vn) and fibronectin (Fn), which are often presented to cells in culture as homogenous substrates. However, in tissues, cells experience highly complex and changing environments. To better understand integrin ligand selection in such complex environments, we employed binary-choice substrates of Fn and Vn to dissect αVβ3 integrin-mediated binding to different ligands on the subcellular scale. Super-resolution imaging revealed that αVβ3 integrin preferred binding to Vn under various conditions. In contrast, binding to Fn required higher mechanical load on αVβ3 integrin. Integrin mutations, structural analysis and chemical inhibition experiments indicated that the degree of hybrid domain swing-out is relevant for the selection between Fn and Vn; only a force-mediated, full hybrid domain swing-out facilitated αVβ3-Fn binding. Thus, force-dependent conformational changes in αVβ3 integrin increased the diversity of available ligands for binding and therefore enhanced the ligand promiscuity of this integrin.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Michael Bachmann
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva 1211, Switzerland
| | - Markus Schäfer
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Vasyl V Mykuliak
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, and Fimlab Laboratories, Tampere 33014, Finland
| | - Marta Ripamonti
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva 1211, Switzerland
| | - Lia Heiser
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Kai Weißenbruch
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Sarah Krübel
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Clemens M Franz
- DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, and Fimlab Laboratories, Tampere 33014, Finland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva 1211, Switzerland
| | - Martin Bastmeyer
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
5
|
Li Z, Liu T, Yang J, Lin J, Xin SX. Characterization of adhesion properties of the cardiomyocyte integrins and extracellular matrix proteins using atomic force microscopy. J Mol Recognit 2019; 33:e2823. [PMID: 31709699 DOI: 10.1002/jmr.2823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 11/10/2022]
Abstract
Integrins are transmembrane adhesion receptors that play important roles in the cardiovascular system by interacting with the extracellular matrix (ECM). However, direct quantitative measurements of the adhesion properties of the integrins on cardiomyocyte (CM) and their ECM ligands are lacking. In this study, we used atomic force microscopy (AFM) to quantify the adhesion force (peak force and mean force) and binding probability between CM integrins and three main heart tissue ECM proteins, ie, collagen (CN), fibronectin (FN), and laminin (LN). Functionalizing the AFM probes with ECM proteins, we found that the peak force (mean force) was 61.69 ± 5.5 pN (76.54 ± 4.0 pN), 39.26 ± 4.4 pN (59.84 ± 3.6 pN), and 108.31 ± 4.2 pN (129.63 ± 6.0 pN), respectively, for the bond of CN-integrin, FN-integrin, and LN-integrin. The binding specificity between CM integrins and ECM proteins was verified by using monoclonal antibodies, where α10 - and α11 -integrin bind to CN, α3 - and α5 -integrin bind to FN, and α3 - and α7 -integrin bind to LN. Furthermore, adhesion properties of CM integrins under physiologically high concentrations of extracellular Ca2+ and Mg2+ were tested. Additional Ca2+ reduced the adhesion mean force to 68.81 ± 4.0 pN, 49.84 ± 3.3 pN, and 119.21 ± 5.8 pN and binding probability to 0.31, 0.34, 0.40 for CN, FN, and LN, respectively, whereas Mg2+ caused very minor changes to adhesion properties of CM integrins. Thus, adhesion properties between adult murine CM integrins and its main ECM proteins were characterized, paving the way for an improved understanding of CM mechanobiology.
Collapse
Affiliation(s)
- Zecheng Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Tianqi Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Junxian Yang
- Institute of Biomechanics, School of Biosciences and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jiangguo Lin
- Institute of Biomechanics, School of Biosciences and Bioengineering, South China University of Technology, Guangzhou, China
| | - Sherman Xuegang Xin
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
6
|
|
7
|
El-Kirat-Chatel S, Dufrêne YF. Nanoscale adhesion forces between the fungal pathogen Candida albicans and macrophages. NANOSCALE HORIZONS 2016; 1:69-74. [PMID: 32260605 DOI: 10.1039/c5nh00049a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The development of fungal infections is tightly controlled by the interaction of fungal pathogens with host immune cells. While the recognition of specific fungal cell wall components by immune receptors has been widely investigated, the molecular forces involved are not known. In this Communication, we show the ability of single-cell force spectroscopy to quantify the specific adhesion forces between the fungal pathogen Candida albicans and macrophages. The Candida-macrophage adhesion force is strong, up to ∼3000 pN, and corresponds to multiple cumulative bonds between lectin receptors expressed on the macrophage membrane and mannan carbohydrates on the fungal cell surface. Adhesion force signatures show constant force plateaus, up to >100 μm long, reflecting the extraction of elongated tethers from the macrophage membrane, a phenomenon which may increase the duration of intercellular adhesion. Adhesion strengthens with time, suggesting that the macrophage membrane engulfs the pathogen quickly after initial contact, leading to its internalization. The force nanoscopy method developed here holds great promise for understanding and controlling the early stages of microbe-immune interactions.
Collapse
Affiliation(s)
- Sofiane El-Kirat-Chatel
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud 4-5, bte L7.07.06, 1348 Louvain-la-Neuve, Belgium.
| | | |
Collapse
|
8
|
Kashef J, Franz CM. Quantitative methods for analyzing cell–cell adhesion in development. Dev Biol 2015; 401:165-74. [DOI: 10.1016/j.ydbio.2014.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/07/2014] [Accepted: 11/08/2014] [Indexed: 11/26/2022]
|
9
|
Yu M, Strohmeyer N, Wang J, Müller DJ, Helenius J. Increasing throughput of AFM-based single cell adhesion measurements through multisubstrate surfaces. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:157-66. [PMID: 25671160 PMCID: PMC4311671 DOI: 10.3762/bjnano.6.15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/10/2014] [Indexed: 05/23/2023]
Abstract
Mammalian cells regulate adhesion by expressing and regulating a diverse array of cell adhesion molecules on their cell surfaces. Since different cell types express distinct sets of cell adhesion molecules, substrate-specific adhesion is cell type- and condition-dependent. Single-cell force spectroscopy is used to quantify the contribution of cell adhesion molecules to adhesion of cells to specific substrates at both the cell and single molecule level. However, the low throughput of single-cell adhesion experiments greatly limits the number of substrates that can be examined. In order to overcome this limitation, segmented polydimethylsiloxane (PDMS) masks were developed, allowing the measurement of cell adhesion to multiple substrates. To verify the utility of the masks, the adhesion of four different cell lines, HeLa (Kyoto), prostate cancer (PC), mouse kidney fibroblast and MDCK, to three extracellular matrix proteins, fibronectin, collagen I and laminin 332, was examined. The adhesion of each cell line to different matrix proteins was found to be distinct; no two cell lines adhered equally to each of the proteins. The PDMS masks improved the throughput limitation of single-cell force spectroscopy and allowed for experiments that previously were not feasible. Since the masks are economical and versatile, they can aid in the improvement of various assays.
Collapse
Affiliation(s)
- Miao Yu
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Nico Strohmeyer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Jinghe Wang
- Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Jonne Helenius
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
10
|
Andolfi L, Bourkoula E, Migliorini E, Palma A, Pucer A, Skrap M, Scoles G, Beltrami AP, Cesselli D, Lazzarino M. Investigation of adhesion and mechanical properties of human glioma cells by single cell force spectroscopy and atomic force microscopy. PLoS One 2014; 9:e112582. [PMID: 25390644 PMCID: PMC4229222 DOI: 10.1371/journal.pone.0112582] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/08/2014] [Indexed: 11/18/2022] Open
Abstract
Active cell migration and invasion is a peculiar feature of glioma that makes this tumor able to rapidly infiltrate into the surrounding brain tissue. In our recent work, we identified a novel class of glioma-associated-stem cells (defined as GASC for high-grade glioma -HG- and Gasc for low-grade glioma -LG-) that, although not tumorigenic, act supporting the biological aggressiveness of glioma-initiating stem cells (defined as GSC for HG and Gsc for LG) favoring also their motility. Migrating cancer cells undergo considerable molecular and cellular changes by remodeling their cytoskeleton and cell interactions with surrounding environment. To get a better understanding about the role of the glioma-associated-stem cells in tumor progression, cell deformability and interactions between glioma-initiating stem cells and glioma-associated-stem cells were investigated. Adhesion of HG/LG-cancer cells on HG/LG-glioma-associated stem cells was studied by time-lapse microscopy, while cell deformability and cell-cell adhesion strengths were quantified by indentation measurements by atomic force microscopy and single cell force spectroscopy. Our results demonstrate that for both HG and LG glioma, cancer-initiating-stem cells are softer than glioma-associated-stem cells, in agreement with their neoplastic features. The adhesion strength of GSC on GASC appears to be significantly lower than that observed for Gsc on Gasc. Whereas, GSC spread and firmly adhere on Gasc with an adhesion strength increased as compared to that obtained on GASC. These findings highlight that the grade of glioma-associated-stem cells plays an important role in modulating cancer cell adhesion, which could affect glioma cell migration, invasion and thus cancer aggressiveness. Moreover this work provides evidence about the importance of investigating cell adhesion and elasticity for new developments in disease diagnostics and therapeutics.
Collapse
Affiliation(s)
- Laura Andolfi
- Istituto Officina dei Materiali-National Research Council, Trieste, Italy
- * E-mail:
| | - Eugenia Bourkoula
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Elisa Migliorini
- Département de Chimie Moléculaire, Ingénierie et Interactions Bio Moléculaires, Université Joseph Fourier, Grenoble, France
| | - Anita Palma
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Anja Pucer
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Miran Skrap
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Giacinto Scoles
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | | | - Daniela Cesselli
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Marco Lazzarino
- Istituto Officina dei Materiali-National Research Council, Trieste, Italy
- Cluster in Biomedicine, Trieste, Italy
| |
Collapse
|
11
|
Christenson W, Yermolenko I, Plochberger B, Camacho-Alanis F, Ros A, Ugarova TP, Ros R. Combined single cell AFM manipulation and TIRFM for probing the molecular stability of multilayer fibrinogen matrices. Ultramicroscopy 2013; 136:211-5. [PMID: 24239757 DOI: 10.1016/j.ultramic.2013.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/06/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
Abstract
Adsorption of fibrinogen on various surfaces produces a nanoscale multilayer matrix, which strongly reduces the adhesion of platelets and leukocytes with implications for hemostasis and blood compatibility of biomaterials. The nonadhesive properties of fibrinogen matrices are based on their extensibility, ensuing the inability to transduce strong mechanical forces via cellular integrins and resulting in weak intracellular signaling. In addition, reduced cell adhesion may arise from the weaker associations between fibrinogen molecules in the superficial layers of the matrix. Such reduced stability would allow integrins to pull fibrinogen molecules out of the matrix with comparable or smaller forces than required to break integrin-fibrinogen bonds. To examine this possibility, we developed a method based on the combination of total internal reflection fluorescence microscopy, single cell manipulation with an atomic force microscope and microcontact printing to study the transfer of fibrinogen molecules out of a matrix onto cells. We calculated the average fluorescence intensities per pixel for wild-type HEK 293 (HEK WT) and HEK 293 cells expressing leukocyte integrin Mac-1 (HEK Mac-1) before and after contact with multilayered matrices of fluorescently labeled fibrinogen. For contact times of 500 s, HEK Mac-1 cells show a median increase of 57% of the fluorescence intensity compared to 6% for HEK WT cells. The results suggest that the integrin Mac-1-fibrinogen interactions are stronger than the intermolecular fibrinogen interactions in the superficial layer of the matrix. The low mechanical stability of the multilayer fibrinogen surface may contribute to the reduced cell adhesive properties of fibrinogen-coated substrates. We anticipate that the described method can be applied to various cell types to examine their integrin-mediated adhesion to the extracellular matrices with a variable protein composition.
Collapse
Affiliation(s)
- W Christenson
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA; Center for Biological Physics, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Dao L, Gonnermann C, Franz CM. Investigating differential cell-matrix adhesion by directly comparative single-cell force spectroscopy. J Mol Recognit 2013; 26:578-89. [DOI: 10.1002/jmr.2303] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 07/24/2013] [Accepted: 07/31/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Lu Dao
- Center for Functional Nanostructures; Karlsruhe Institute of Technology (KIT); Wolfgang-Gaede-Strasse 1a 76131 Karlsruhe Germany
- Zoologisches Institut I; Karlsruhe Institute für Technology (KIT); Haid-und-Neu-Strasse 9 76131 Karlsruhe Germany
| | - Carina Gonnermann
- Center for Functional Nanostructures; Karlsruhe Institute of Technology (KIT); Wolfgang-Gaede-Strasse 1a 76131 Karlsruhe Germany
- Zoologisches Institut I; Karlsruhe Institute für Technology (KIT); Haid-und-Neu-Strasse 9 76131 Karlsruhe Germany
| | - Clemens M. Franz
- Center for Functional Nanostructures; Karlsruhe Institute of Technology (KIT); Wolfgang-Gaede-Strasse 1a 76131 Karlsruhe Germany
- Zoologisches Institut I; Karlsruhe Institute für Technology (KIT); Haid-und-Neu-Strasse 9 76131 Karlsruhe Germany
| |
Collapse
|
13
|
Wittenburg G, Lauer G, Oswald S, Labudde D, Franz CM. Nanoscale topographic changes on sterilized glass surfaces affect cell adhesion and spreading. J Biomed Mater Res A 2013; 102:2755-66. [PMID: 24027204 DOI: 10.1002/jbm.a.34943] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/29/2013] [Accepted: 09/05/2013] [Indexed: 11/10/2022]
Abstract
Producing sterile glass surfaces is of great importance for a wide range of laboratory and medical applications, including in vitro cell culture and tissue engineering. However, sterilization may change the surface properties of glass and thereby affect its use for medical applications, for instance as a substrate for culturing cells. To investigate potential effects of sterilization on glass surface topography, borosilicate glass coverslips were left untreated or subjected to several common sterilization procedures, including low-temperature plasma gas, gamma irradiation and steam. Imaging by atomic force microscopy demonstrated that the surface of untreated borosilicate coverslips features a complex landscape of microislands ranging from 1000 to 3000 nm in diameter and 1 to 3 nm in height. Steam treatment completely removes these microislands, producing a nanosmooth glass surface. In contrast, plasma treatment partially degrades the microisland structure, while gamma irradiation has no effect on microisland topography. To test for possible effects of the nanotopographic structures on cell adhesion, human gingival fibroblasts were seeded on untreated or sterilized glass surfaces. Analyzing fibroblast adhesion 3, 6, and 24 h after cell seeding revealed significant differences in cell attachment and spreading depending on the sterilization method applied. Furthermore, single-cell force spectroscopy revealed a connection between the nanotopographic landscape of glass and the formation of cellular adhesion forces, indicating that fibroblasts generally adhere weakly to nanosmooth but strongly to nanorough glass surfaces. Nanotopographic changes induced by different sterilization methods may therefore need to be considered when preparing sterile glass surfaces for cell culture or biomedical applications.
Collapse
Affiliation(s)
- Gretel Wittenburg
- Clinic for Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | |
Collapse
|
14
|
Taubenberger AV, Hutmacher DW, Muller DJ. Single-cell force spectroscopy, an emerging tool to quantify cell adhesion to biomaterials. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:40-55. [PMID: 23688177 DOI: 10.1089/ten.teb.2013.0125] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cell adhesion receptors play a central role in sensing and integrating signals provided by the cellular environment. Thus, understanding adhesive interactions at the cell-biomaterial interface is essential to improve the design of implants that should emulate certain characteristics of the cell's natural environment. Numerous cell adhesion assays have been developed; among these, atomic force microscopy-based single-cell force spectroscopy (AFM-SCFS) provides a versatile tool to quantify cell adhesion at physiological conditions. Here we discuss how AFM-SCFS can be used to quantify the adhesion of living cells to biomaterials and give examples of using AFM-SCFS in tissue engineering and regenerative medicine. We anticipate that in the near future, AFM-SCFS will be established in the biomaterial field as an important technique to quantify cell-biomaterial interactions and thereby will contribute to the optimization of implants, scaffolds, and medical devices.
Collapse
Affiliation(s)
- Anna V Taubenberger
- 1 Biotechnological Center, Dresden University of Technology , Dresden, Germany
| | | | | |
Collapse
|