1
|
Wei Z, Zhou C, Shen Y, Deng H, Shen Z. Identification of a new anoikis-related gene signature for prognostic significance in head and neck squamous carcinomas. Medicine (Baltimore) 2023; 102:e34790. [PMID: 37682196 PMCID: PMC10489427 DOI: 10.1097/md.0000000000034790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/26/2023] [Indexed: 09/09/2023] Open
Abstract
Anoikis, a mode of programmed cell death, is essential for normal development and homeostasis in the organism and plays an important role in the onset and progression of cancers. The authors of this research sought to establish a gene signature associated with anoikis to predict therapy outcomes and patient prognosis for individuals with head and neck squamous cell carcinoma (HNSCC). Transcriptome data of anoikis-related genes (ARGs) in individuals with HNSCC were retrieved from public databases to aid in the formulation of the gene signature. A novel ARG signature was then created using a combination of the Least Absolute Shrinkage and Selection Operator regression and Cox regression analysis. The relationship between ARGs and tumor immune microenvironment in HNSCC was explored using single-cell analysis. HNSCC individuals were classified into high-risk and low-risk groups as per the median value of risk score. The study also investigated the variations in the infiltration status of immune cells, tumor microenvironment, sensitivity to immunotherapy and chemotherapeutics, as well as functional enrichment between the low-risk and high-risk categories. A total of 18 ARGs were incorporated in the formulation of the signature. Our signature's validity as a standalone predictive predictor was validated by multivariate Cox regression analysis and Kaplan-Meier survival analysis. Generally, the prognosis was worse for high-risk individuals. Subjects in the low-risk groups had a better prognosis and responded in a better way to combination immunotherapy, had higher immunological ratings and activity levels, and had more immune cell infiltration. In addition, gene set enrichment analysis findings showed that the low-risk subjects exhibited heightened activity in several immune-related pathways. However, the high-risk patients responded better to chemotherapy. The aim of this research was to develop a new ARG signature to predict the prognosis and sensitivity to immunotherapeutic and chemotherapeutic schemes for HNSCC patient. As a result, this could help spur the creation of new chemotherapeutics and immunotherapeutic approaches for patients with HNSCC.
Collapse
Affiliation(s)
- Zhengyu Wei
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, China
| | - Yi Shen
- Health Science Center, Ningbo University, Ningbo, China
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Habibi N, Bissonnette C, Pei P, Wang D, Chang A, Raymond JE, Lahann J, Mallery SR. Mucopenetrating Janus Nanoparticles For Field-Coverage Oral Cancer Chemoprevention. Pharm Res 2023; 40:749-764. [PMID: 36635487 PMCID: PMC10036282 DOI: 10.1007/s11095-022-03465-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/18/2022] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Oral squamous cell carcinoma (OSCC), is associated with high morbidity and mortality. Preemptive interventions have been postulated to provide superior therapeutic options, but their implementation has been restricted by the availability of broadly applicable local delivery systems. METHODS We address this challenge by engineering a delivery vehicle, Janus nanoparticles (JNP), that combine the dual mucoadhesive properties of a first cationic chitosan compartment with a second hydrophobic poly(lactide-co-glycolide) release compartment. JNP are designed to avoid rapid mucus clearance while ensuring stable loading and controlled release of the IL-6 receptor antagonist, tocilizumab (TCZ). RESULTS The JNP featured defined and monodispersed sizes with an average diameter of 327 nm and a PDI of 0.245, high circularities above 0.90 and supported controlled release of TCZ and effective internalization by oral keratinocytes. TCZ released from JNP retained its biological activity and effectively reduced both, soluble and membrane-bound IL-6Rα (71% and 50%). In full-thickness oral mucosal explants, 76% of the JNP breached the stratum corneum and in 41% were observed in the basal cell layer indicating excellent mucopenetrating properties. When tested in an aggressive OSCC xenograft model, TCZ-loaded JNP showed high levels of xenograft inhibition and outperformed all control groups with respect to inhibition of tumor cell proliferation, reduction in tumor size and reduced expression of the proto-oncogene ERG. CONCLUSION By combining critically required, yet orthogonal properties within the same nanoparticle design, the JNP in this study, demonstrate promise as precision delivery platforms for intraoral field-coverage chemoprevention, a vastly under-researched area of high clinical importance.
Collapse
Affiliation(s)
- Nahal Habibi
- Biointerfaces Institute, Departments of Chemical Engineering, Material Science and Engineering, Biomedical Engineering, and Macromolecular Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48105, USA
| | - Caroline Bissonnette
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, 305 W. 12th Ave, Columbus, OH, 43210, USA
- Department of Stomatology, Faculty of Dentistry, University of Montreal, Montreal, QC, Canada
| | - Ping Pei
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, 305 W. 12th Ave, Columbus, OH, 43210, USA
| | - Daren Wang
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, 305 W. 12th Ave, Columbus, OH, 43210, USA
| | - Albert Chang
- Biointerfaces Institute, Departments of Chemical Engineering, Material Science and Engineering, Biomedical Engineering, and Macromolecular Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48105, USA
| | - Jeffery E Raymond
- Biointerfaces Institute, Departments of Chemical Engineering, Material Science and Engineering, Biomedical Engineering, and Macromolecular Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48105, USA
| | - Joerg Lahann
- Biointerfaces Institute, Departments of Chemical Engineering, Material Science and Engineering, Biomedical Engineering, and Macromolecular Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48105, USA.
| | - Susan R Mallery
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, 305 W. 12th Ave, Columbus, OH, 43210, USA.
- The Ohio State University Comprehensive Cancer, 460 W. 10th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Li ZX, Chen JX, Zheng ZJ, Cai WJ, Yang XB, Huang YY, Gong Y, Xu F, Chen YS, Lin L. TGF-β1 promotes human breast cancer angiogenesis and malignant behavior by regulating endothelial-mesenchymal transition. Front Oncol 2022; 12:1051148. [PMID: 36465358 PMCID: PMC9709251 DOI: 10.3389/fonc.2022.1051148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Endothelial-mesenchymal transition (EndMT) is an important process of angiogenesis, which plays a significant role in in tumor invasion and metastasis, while its regulatory mechanisms in breast cancer remain to be fully elucidated. We previously demonstrated that tumor-associated macrophages (TAMs) can induce EndMT in endothelial cells by secreting CCL18 through the activation of the TGF-β and Notch signaling pathways in breast cancer. This study was designed to study the role of EndMT in breast cancer angiogenesis and progression in order to explore the underlying mechanism. METHODS Immunohistochemistry (IHC) was used to evaluate the expression of microvascular density (MVD) and EndMT markers in breast cancer. TGF-β1 was used to induce EndMT models of differentiated-endothelial breast cancer stem-like cells (BCSLCs). In vitro cell migration, proliferation and matrigel tube-formation assays, as well as in vivo nude mouse tumor-bearing model and nude mouse dorsal skinfold window chamber (DSWC) model, were utilized to investigate the effects in order to explore the mechanism of EndMT induced by TGF-β1 on breast cancer progression. RESULTS In this study, we demonstrated that the EndMT markers were positively associated with MVD indicating unfavorable prognosis of invasive ductal carcinoma (IDC) patients. Functionally, TGF-β1 promoted migration, proliferation and angiogenesis of differentiated-endothelial BCSLCs by inducing EndMT in vitro and promoted tumor growth and angiogenesis in vivo. Mechanically, we revealed TGF-β1 induced EndMT by activation of TGF-β and Notch signaling pathways with increase of p-Smad2/3 and Notch1 expression. Moreover, we found Snail and Slug were key factors of TGF-β and Notch signaling pathways. CONCLUSION Our findings elucidated the mechanism of TGF-β1 in the promotion of angiogenesis and progression by EndMT in breast cancer.
Collapse
Affiliation(s)
- Zi-Xiong Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jie-Xin Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ze-Jun Zheng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Wang-Jing Cai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiong-Bin Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yuan-Yuan Huang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yao Gong
- Department of Rheumatology, Shantou University Medical College, Shantou, China
| | - Feng Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yong-Song Chen
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ling Lin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Rheumatology, Shantou University Medical College, Shantou, China
| |
Collapse
|
4
|
Bajbouj K, Al-Ali A, Shafarin J, Sahnoon L, Sawan A, Shehada A, Elkhalifa W, Saber-Ayad M, Muhammad J, Elmoselhi AB, Guraya S, Hamad M. Vitamin D Exerts Significant Antitumor Effects by Suppressing Vasculogenic Mimicry in Breast Cancer Cells. Front Oncol 2022; 12:918340. [PMID: 35747793 PMCID: PMC9210804 DOI: 10.3389/fonc.2022.918340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundNumerous clinical and experimental observations have alluded to the substantial anti-neoplastic role of vitamin D in breast cancer (BC), primarily by inducing apoptosis and affecting metastasis. Tumor progression and resistance to chemotherapy have been linked to vasculogenic mimicry (VM), which represents the endothelial-independent formation of microvascular channels by cancer cells. However, the effect of vitamin D on VM formation in BC has not been thoroughly investigated. This study examined the impact of 1α,25-dihydroxyvitamin D3 (calcitriol), the active form of vitamin D, on the expression of major factors involved in BC migration, invasion, and VM formation.Experimental MethodsPublicly available transcriptomic datasets were used to profile the expression status of the key VM markers in vitamin D-treated BC cells. The in silico data were validated by examining the expression and activity of the key factors that are involved in tumor progression and MV formation in hormone-positive MCF-7 and aggressive triple‐negative MDA-MB-231 BC cells after treatment with calcitriol.Results and DiscussionsThe bioinformatics analysis showed that tumor VM formation-enriched pathways were differentially downregulated in vitamin D-treated cells when compared with control counterparts. Treatment of BC cells with calcitriol resulted in increased expression of tissue inhibitors of metalloproteinases (TIMPs 1 and 2) and decreased content and gelatinolytic activity of matrix metalloproteinases (MMPs 2 and 9). Furthermore, calcitriol treatment reduced the expression of several pro-MV formation regulators including vascular endothelial growth factor (VEGF), tumor growth factor (TGF-β1), and amphiregulin. Eventually, this process resulted in a profound reduction in cell migration and invasion following the treatment of BC cells with calcitriol when compared to the controls. Finally, the formation of VM was diminished in the aggressive triple‐negative MDA-MB-231 cancer cell line after calcitriol treatment.ConclusionOur findings demonstrate that vitamin D mediates its antitumor effects in BC cells by inhibiting and curtailing their potential for VM formation.
Collapse
Affiliation(s)
- Khuloud Bajbouj
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Khuloud Bajbouj,
| | - Abeer Al-Ali
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Jasmin Shafarin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Lina Sahnoon
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmad Sawan
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmed Shehada
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Medical Pharmacology Department, Cairo University, Cairo, Egypt
| | - Jibran Sualeh Muhammad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Adel B. Elmoselhi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Salman Y. Guraya
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
5
|
Żurek M, Rzepakowska A, Kotuła I, Demkow U, Niemczyk K. Serum expression of Vascular Endothelial-Cadherin, CD44, Human High mobility group B1, Kallikrein 6 proteins in different stages of laryngeal intraepithelial lesions and early glottis cancer. PeerJ 2022; 10:e13104. [PMID: 35462765 PMCID: PMC9029362 DOI: 10.7717/peerj.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/22/2022] [Indexed: 01/12/2023] Open
Abstract
Background The study was designed to evaluate the potential validity and utility of selected molecular markers in serum samples from patients with specific stages of laryngeal intraepithelial lesions that could serve as diagnostic tools in differentiation of benign and dysplastic lesions from invasive pathologies. Methods Prospective study included 80 consecutive patients with vocal fold lesions treated at the single otorhinolaryngology centre. All participants had surgical resection of the lesion. Blood samples were collected from each patient before the surgery. Final diagnosis was confirmed on histopathological examination and included 39 (48.75%) non-dysplastic lesions, eight (10%) low-grade dysplasia, six (7.5%) high-grade dysplasia and 27 (33.75%) invasive cancers. The ELISA procedures were performed according to the manufacturer's instruction. Individual serum concentration of selected proteins was reported in ng/ml: Vascular Endothelial-Cadherin Complex (VE-cad), CD44, Human High mobility group protein B1(HMGB1), Kallikrein 6. Results The highest mean levels of HMGB1, KLK6 and VE-cad were detected in sera of patients with low-grade dysplasia (81.14, 24.33, 14.17 respectively). Soluble CD44 was the most elevated in patients with non-dysplastic lesions (2.49). The HMGB1, KLK6 and VE-cad serum levels were increasing from non-dysplastic to low-grade dysplasia and followed by the decrease for high-grade dysplasia and invasive cancer, however the differences were not significant (p-values 0.897, 0.354, 0.1 respectively). Patients' serum had the highest CD44 concentration in non-dysplastic and low-grade dysplasia with the following decrease through high-grade dysplasia and invasive cancer. GERD symptomatic patients had higher levels of KLK6 and CD44 than other patients (p-value 0.06 and 0.084 respectively). There were no significant differences of biomarkers levels related to patients' gender (p-value from 0.243 to 1) or smoking status (p-value from 0.22 to 0.706). Conclusions VE-cad, HMGB1, CD44 and KLK6 did not prove to be reliable biomarkers implicating malignant potential within vocal fold hypertrophic intraepithelial lesions.
Collapse
Affiliation(s)
- Michał Żurek
- Department of Otorhinolaryngology Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland,Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Anna Rzepakowska
- Department of Otorhinolaryngology Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Kotuła
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Kazimierz Niemczyk
- Department of Otorhinolaryngology Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Salem A, Salo T. Vasculogenic Mimicry in Head and Neck Squamous Cell Carcinoma-Time to Take Notice. FRONTIERS IN ORAL HEALTH 2022; 2:666895. [PMID: 35048009 PMCID: PMC8757801 DOI: 10.3389/froh.2021.666895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a group of common cancers characterized by a swift growth pattern, early metastasis, and dismal 5-year survival rates. Despite the recent advances in cancer management, the multimodality approach is not effective in eradicating HNSCC. Moreover, the clinical response to the antiangiogenic therapy remains considerably limited in HNSCC patients, suggesting that tumor perfusion can take place through other non-angiogenic pathways. Tumor cell-induced angiogenesis is one of the main hallmarks of cancer. However, at the end of the previous millennium, a new paradigm of tumor cell-associated neovascularization has been reported in human melanoma cells. This new phenomenon, which was named "vasculogenic mimicry" or "vascular mimicry" (VM), describes the ability of aggressively growing tumor cells to form perfusable, matrix-rich, vessel-like networks in 3-dimensional matrices in vitro. Similar matrix-rich VM networks were also identified in tissue samples obtained from cancer patients. To date, myriad studies have reported intriguing features of VM in a wide variety of cancers including HNSCC. We aim in this mini-review to summarize the current evidence regarding the phenomenon of VM in HNSCC-from the available detection protocols and potentially involved mechanisms, to its prognostic value and the present limitations.
Collapse
Affiliation(s)
- Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), Research Program Unit, University of Helsinki, Helsinki, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), Research Program Unit, University of Helsinki, Helsinki, Finland.,Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
7
|
Marques Dos Reis E, Vieira Berti F. Vasculogenic Mimicry-An Overview. Methods Mol Biol 2022; 2514:3-13. [PMID: 35771413 DOI: 10.1007/978-1-0716-2403-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Vasculogenic mimicry (VM), a tumor microcirculation model found in melanoma in the last 20 years, is a vascular channel-like structure composed of tumor cells, but without endothelial cells, that stains positive for periodic acid-Schiff (PAS) and negative staining for CD31. VM provides, to the highly aggressive malignant tumor cells, adequate oxygen and nutrient supply for tumor growth and subsequent metastasis process and its presence are related to poor prognosis in patients. VM is independent of endothelial cells, which may partly explain why angiogenesis drug inhibitors have not achieved the expected success for cancer treatment.
Collapse
Affiliation(s)
- Emily Marques Dos Reis
- Chemical and Food Engineering Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Fernanda Vieira Berti
- Chemical and Food Engineering Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
8
|
Hujanen R, Almahmoudi R, Salo T, Salem A. Comparative Analysis of Vascular Mimicry in Head and Neck Squamous Cell Carcinoma: In Vitro and In Vivo Approaches. Cancers (Basel) 2021; 13:4747. [PMID: 34638234 PMCID: PMC8507545 DOI: 10.3390/cancers13194747] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Tissue vasculature provides the main conduit for metastasis in solid tumours including head and neck squamous cell carcinoma (HNSCC). Vascular mimicry (VM) is an endothelial cell (EC)-independent neovascularization pattern, whereby tumour cells generate a perfusable vessel-like meshwork. Yet, despite its promising clinical utility, there are limited approaches to better identify VM in HNSCC and what factors may influence such a phenomenon in vitro. Therefore, we employed different staining procedures to assess their utility in identifying VM in tumour sections, wherein mosaic vessels may also be adopted to further assess the VM-competent cell phenotype. Using 13 primary and metastatic HNSCC cell lines in addition to murine- and human-derived matrices, we elucidated the impact of the extracellular matrix, tumour cell type, and density on the formation and morphology of cell-derived tubulogenesis in HNSCC. We then delineated the optimal cell numbers needed to obtain a VM meshwork in vitro, which revealed cell-specific variations and yet consistent expression of the EC marker CD31. Finally, we proposed the zebrafish larvae as a simple and cost-effective model to evaluate VM development in vivo. Taken together, our findings offer a valuable resource for designing future studies that may facilitate the therapeutic exploitation of VM in HNSCC and other tumours.
Collapse
Affiliation(s)
- Roosa Hujanen
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland; (R.H.); (R.A.); (T.S.)
| | - Rabeia Almahmoudi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland; (R.H.); (R.A.); (T.S.)
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland; (R.H.); (R.A.); (T.S.)
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014 Helsinki, Finland
- Helsinki University Hospital (HUS), 00029 Helsinki, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
- Department of Pathology, Helsinki University Hospital (HUS), 00029 Helsinki, Finland
| | - Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland; (R.H.); (R.A.); (T.S.)
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014 Helsinki, Finland
- Helsinki University Hospital (HUS), 00029 Helsinki, Finland
| |
Collapse
|
9
|
Hujanen R, Almahmoudi R, Karinen S, Nwaru BI, Salo T, Salem A. Vasculogenic Mimicry: A Promising Prognosticator in Head and Neck Squamous Cell Carcinoma and Esophageal Cancer? A Systematic Review and Meta-Analysis. Cells 2020; 9:cells9020507. [PMID: 32102317 PMCID: PMC7072765 DOI: 10.3390/cells9020507] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Vasculogenic mimicry (VM) is an intratumoral microcirculation pattern formed by aggressive cancer cells, which mediates tumor growth. In this study, we compiled the evidence from studies evaluating whether positive VM status can serve as a prognostic factor to patients with squamous cell carcinoma of the head and neck (HNSCC) or esophagus (ESCC). Comprehensive systematic searches were conducted using Cochrane Library, Ovid Medline, PubMed, and Scopus databases. We appraised the quality of studies and the potential for bias, and performed random-effect meta-analysis to assess the prognostic impact of VM on the overall survival (OS). Seven studies with 990 patients were eligible, where VM was detected in 34.24% of patients. Positive-VM was strongly associated with poor OS (hazard ratio = 0.50; 95% confidence interval: 0.38-0.64), which remained consistent following the subgroup analysis of the studies. Furthermore, VM was associated with more metastasis to local lymph nodes and more advanced stages of HNSCC and ESCC. In conclusion, this study provides clear evidence showing that VM could serve as a promising prognosticator for patients with either HNSCC or ESCC. Further studies are warranted to assess how VM can be implemented as a reliable staging element in clinical practice and whether it could provide a new target for therapeutic intervention.
Collapse
Affiliation(s)
- Roosa Hujanen
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland
| | - Rabeia Almahmoudi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland
| | - Sini Karinen
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland
| | - Bright I. Nwaru
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014 Helsinki, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
- Medical Research Centre, Oulu University Hospital, 90220 Oulu, Finland
- Helsinki University Hospital (HUS), 00029 Helsinki, Finland
| | - Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014 Helsinki, Finland
- Correspondence:
| |
Collapse
|
10
|
López-Urrutia E, Bustamante Montes LP, Ladrón de Guevara Cervantes D, Pérez-Plasencia C, Campos-Parra AD. Crosstalk Between Long Non-coding RNAs, Micro-RNAs and mRNAs: Deciphering Molecular Mechanisms of Master Regulators in Cancer. Front Oncol 2019; 9:669. [PMID: 31404273 PMCID: PMC6670781 DOI: 10.3389/fonc.2019.00669] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer is a complex disease, and its study requires deep understanding of several biological processes and their regulation. It is an accepted fact that non-coding RNAs are vital components of the regulation and cross-talk among cancer-related signaling pathways that favor tumor aggressiveness and metastasis, such as neovascularization, angiogenesis, and vasculogenic mimicry. Both long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs) have been described as master regulators of cancer on their own; yet there is accumulating evidence that, besides regulating mRNA expression through independent mechanisms, these classes of non-coding RNAs interact with each other directly, fine-tuning the effects of their regulation. While still relatively scant, research on the lncRNA-miRNA-mRNA axis regulation is growing at a fast rate, it is only in the last 5 years, that lncRNA-miRNA interactions have been identified in tumor-related vascular processes. In this review, we summarize the current progress of research on the cross-talk between lncRNAs and miRNAs in the regulation of neovascularization, angiogenesis and vasculogenic mimicry.
Collapse
Affiliation(s)
- Eduardo López-Urrutia
- Unidad de Biomedicina, FES-IZTACALA, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico
| | | | | | - Carlos Pérez-Plasencia
- Unidad de Biomedicina, FES-IZTACALA, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico.,Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Alma D Campos-Parra
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| |
Collapse
|
11
|
Ge H, Luo H. Overview of advances in vasculogenic mimicry - a potential target for tumor therapy. Cancer Manag Res 2018; 10:2429-2437. [PMID: 30122992 PMCID: PMC6080880 DOI: 10.2147/cmar.s164675] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Vasculogenic mimicry (VM) describes the process utilized by highly aggressive cancer cells to generate vascular-like structures without the presence of endothelial cells. VM has been vividly described in various tumors and participates in cancer progression dissemination and metastasis. Diverse molecular mechanisms and signaling pathways are involved in VM formation. Furthermore, the patterning characteristics of VM, detected with molecular imaging, are being investigated for use as a tool to aid clinical practice. This review explores the most recent studies investigating the role of VM in tumor induction. Indeed, the recognition of these advances will increasingly affect the development of novel therapeutic target strategies for VM in human cancer.
Collapse
Affiliation(s)
- Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, People's Republic of China,
| | - Hui Luo
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, People's Republic of China, .,Division of Graduate, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
12
|
Shang W, Zhang Q, Huang Y, Shanti R, Alawi F, Le A, Jiang C. Cellular Plasticity-Targeted Therapy in Head and Neck Cancers. J Dent Res 2018; 97:654-664. [PMID: 29486673 DOI: 10.1177/0022034518756351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Head and neck cancer is one of the most frequent human malignancies worldwide, with a high rate of recurrence and metastasis. Head and neck squamous cell carcinoma (HNSCC) is cellularly and molecularly heterogeneous, with subsets of undifferentiated cancer cells exhibiting stem cell-like properties, called cancer stem cells (CSCs). Epithelial-mesenchymal transition, gene mutation, and epigenetic modification are associated with the formation of cellular plasticity of tumor cells in HNSCC, contributing to the acquisition of invasive, recurrent, and metastatic properties and therapeutic resistance. Tumor microenvironment (TME) plays a supportive role in the initiation, progression, and metastasis of head and neck cancer. Stromal fibroblasts, vasculature, immune cells, cytokines, and hypoxia constitute the main components of TME in HNSCC, which contributes not only to the acquisition of CSC properties but also to the recurrence and therapeutic resistance of the malignancies. In this review, we discuss the potential mechanisms underlying the development of cellular plasticity, especially the emergence of CSCs, in HNSCC. We also highlight recent studies implicating the complex interplays among TME components, plastic CSCs, tumorigenesis, recurrence, and therapeutic resistance of HNSCC. Finally, we summarize the treatment modalities of HNSCC and reinforce the novel concept of therapeutic targeting CSCs in HNSCC.
Collapse
Affiliation(s)
- W Shang
- 1 Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Shandong, China.,4 School of Stomatology, Qingdao University, Shandong, China
| | - Q Zhang
- 2 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Y Huang
- 3 Department of Orthodontics, The Affiliated Hospital of Qingdao University, Shandong, China.,4 School of Stomatology, Qingdao University, Shandong, China
| | - R Shanti
- 2 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,5 Department of Oral and Maxillofacial Surgery, Perelman Center for Advanced Medicine, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,6 Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - F Alawi
- 7 Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A Le
- 2 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,5 Department of Oral and Maxillofacial Surgery, Perelman Center for Advanced Medicine, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - C Jiang
- 3 Department of Orthodontics, The Affiliated Hospital of Qingdao University, Shandong, China.,4 School of Stomatology, Qingdao University, Shandong, China
| |
Collapse
|
13
|
Wu Z, Song W, Cheng Z, Yang D, Yu L. Expression of LGR5 in oral squamous cell carcinoma and its correlation to vasculogenic mimicry. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11267-11275. [PMID: 31966480 PMCID: PMC6965846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/10/2017] [Indexed: 06/10/2023]
Abstract
BACKGROUND LGR5, also named as GPR49, is considered as a biomarker of cancer stem cells which have been responsible for the initiation, progression, metastasis, and recurrence of cancers. Vasculogenic mimicry (VM) which defines the formation of fluid-conducting tubes by highly progressive and genetically dysregulated cancer cells has been considered as useful biomarker for metastasis and prognosis in various cancers. In this study, we analyzed associations between LGR5 and VM in oral squamous cell carcinoma (OSCC), and their association with clinicopathological characters in OSCC. METHODS Positive rates of LGR5 and VM in 190 OSCC tissue samples and correspondence normal tissues were detected by immunohistochemical and histochemical staining. Patients' clinical data were also collected. RESULTS Positive rates of LGR5 and VM were significantly higher in OSCC tissues than those in normal tissues. Positive rates of LGR5 and VM were positively related to tumor size, grades, lymph node metastasis, and TNM stages, and inversely with patients overall survival time. And there was a positive association between the expression of LGR5 and positive rate of VM. In multivariate analysis, high expression of LGR5 and positive VM and lymph node metastasis, as well as TNM stages were to be considered as independent prognosis factors for overall survival time in patients with OSCC. CONCLUSIONS The expression of LGR5 and VM represent potential biomarkers for metastasis and prognosis, as well as therapeutic targets for OSCC.
Collapse
Affiliation(s)
- Zhigang Wu
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui Province, China
| | - Wenqing Song
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui Province, China
- Department of Pathology, Bengbu Medical CollegeAnhui Province, China
| | - Zenong Cheng
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui Province, China
- Department of Pathology, Bengbu Medical CollegeAnhui Province, China
| | - Dongkun Yang
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui Province, China
| | - Lan Yu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui Province, China
- Department of Pathology, Bengbu Medical CollegeAnhui Province, China
| |
Collapse
|
14
|
Dey N, De P, Brian LJ. Evading anti-angiogenic therapy: resistance to anti-angiogenic therapy in solid tumors. Am J Transl Res 2015; 7:1675-98. [PMID: 26692917 PMCID: PMC4656750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/27/2015] [Indexed: 06/05/2023]
Abstract
Vascular endothelial growth factor (VEGF) dependent tumor angiogenesis is an essential step for the initiation and promotion of tumor progression. The hypothesis that VEGF-driven tumor angiogenesis is necessary and sufficient for metastatic progression of the tumor, has been the major premise of the use of anti-VEGF therapy for decades. While the success of anti-VEGF therapy in solid tumors has led to the success of knowledge-based-therapies over the past several years, failures of this therapeutic approach due to the development of inherent/acquired resistance has led to the increased understanding of VEGF-independent angiogenesis. Today, tumor-angiogenesis is not a synonymous term to VEGF-dependent function. The extensive study of VEGF-independent angiogenesis has revealed several key factors responsible for this phenomenon including the role of myeloid cells, and the contribution of entirely new phenomenon like vascular mimicry. In this review, we will present the cellular and molecular factors related to the development of anti-angiogenic resistance following anti-VEGF therapy in different solid tumors.
Collapse
Affiliation(s)
- Nandini Dey
- Department of Molecular & Experimental Medicine, Precision Oncology Center, Avera Research Institute Sioux Falls, SD, USA
| | - Pradip De
- Department of Molecular & Experimental Medicine, Precision Oncology Center, Avera Research Institute Sioux Falls, SD, USA
| | - Leyland-Jones Brian
- Department of Molecular & Experimental Medicine, Precision Oncology Center, Avera Research Institute Sioux Falls, SD, USA
| |
Collapse
|
15
|
Bedal KB, Grässel S, Spanier G, Reichert TE, Bauer RJ. The NC11 domain of human collagen XVI induces vasculogenic mimicry in oral squamous cell carcinoma cells. Carcinogenesis 2015; 36:1429-39. [PMID: 26424749 DOI: 10.1093/carcin/bgv141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/16/2015] [Indexed: 01/18/2023] Open
Abstract
Collagen XVI, a fibril-associated collagen with interrupted triple helix (FACIT) collagen, is involved in oral squamous cell carcinoma (OSCC) and glioblastoma progression. The NC11 domain of collagen XVI has been described previously with a strong implication in physiological processes. We detected the non-collagenous (NC) 11-domain in supernatants of OSCC cells after recombinant expression of full-length collagen XVI and in sera from OSCC patients and healthy individuals. Stable expression of NC11-green fluorescent protein (GFP) fusion protein in OSCC cells initiated proliferation control and block of anchorage-independent growth. Moreover, the NC11 domain triggered the generation of tubular-like net structures on laminin-rich matrix in contrast to mock-GFP control cells and cells expressing full-length collagen XVI. Taqman® quantitative PCR and diaminobenzidine staining in 2D- and 3D cell culture revealed a significantly increased gene and protein expression of VEGFR1, VEGFR2 and uPAR in recombinant NC11-GFP-expressing cells. Specific VEGF receptor inhibition with Axitinib or fetal calf serum heat inactivation prevented formation of tubular-like net structures. Accordantly, NC11-GFP coated culture slides led to an increase of focal adhesion contact formation and the upregulation of VEGFR1 and uPAR in three different non-transfected OSCC cell lines. In summary, we suggest that the NC11 domain of collagen XVI is a potential biomarker for OSCC and triggers vasculogenic mimicry via upregulation of endothelial receptors VEGFR1, VEGFR2 and uPAR in 2D- and 3D OSCC cell culture conditions.
Collapse
Affiliation(s)
- Konstanze B Bedal
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg 93059, 93053 Regensburg, Germany, Centre for Medical Biotechnology, BioPark I 93053, Regensburg, Germany and
| | - Susanne Grässel
- Centre for Medical Biotechnology, BioPark I 93053, Regensburg, Germany and Department of Orthopaedic Surgery, Experimental Orthopaedics, University Hospital Regensburg 93059, Regensburg, Germany
| | - Gerrit Spanier
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg 93059, 93053 Regensburg, Germany
| | - Torsten E Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg 93059, 93053 Regensburg, Germany
| | - Richard J Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg 93059, 93053 Regensburg, Germany, Centre for Medical Biotechnology, BioPark I 93053, Regensburg, Germany and
| |
Collapse
|
16
|
Oronsky BT, Oronsky AL, Lybeck M, Oronsky NC, Scicinski JJ, Carter C, Day RM, Rodriguez Orengo JF, Rodriguez-Torres M, Fanger GF, Reid TR. Episensitization: Defying Time's Arrow. Front Oncol 2015; 5:134. [PMID: 26125013 PMCID: PMC4464068 DOI: 10.3389/fonc.2015.00134] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 05/27/2015] [Indexed: 12/17/2022] Open
Abstract
The development of cancer is driven by complex genetic and epigenetic changes that result in aberrant and uncontrolled cellular growth. Epigenetic changes, in particular, are implicated in the silencing or activation of key genes that control cellular growth and apoptosis and contribute to transformative potential. The purpose of this review is to define and assess the treatment strategy of “episensitization,” or the ability to sensitize cancer cells to subsequent therapy by resetting the epigenetic infrastructure of the tumor. One important facet is resensitization by epigenetic mechanisms, which goes against the norm, i.e., challenges the long-held doctrine in oncology that the reuse of previously tried and failed therapies is a clinically pointless endeavor. Thus, episensitization is a hybrid term, which covers recent clinically relevant observations and refers to the epigenomic mechanism of resensitization. Among the many formidable challenges in the treatment of cancer, the most inevitable is the development of acquired therapeutic resistance. Here, we present the basic principles behind episensitization and highlight the evidence suggesting that epigenetically mediated histone hypoacetylation and DNA hypermethylation events may reverse clinical drug resistance. The potential reversibility of epigenetic changes and the microenvironmental impact of epigenetic control on gene expression may mediate a return to a baseline state of treatment susceptibility. Episensitization is a novel and highly practical management strategy both to prevent the practice of permanent treatment discontinuation with the occurrence of resistance, which rapidly exhausts remaining options in the pharmaceutical armamentarium and to significantly extend patient survival. Accordingly, this review highlights several epigenetic agents including decitabine, vorinostat, entinostat, 5-azacitidine, oncolytic viruses, and RRx-001.
Collapse
Affiliation(s)
| | | | | | | | | | - Corey Carter
- Walter Reed National Military Medical Center, National Cancer Institute , Bethesda, MD , USA
| | - Regina M Day
- Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | | | | | | | - Tony R Reid
- Moores Cancer Center, University of California San Diego , La Jolla, CA , USA
| |
Collapse
|
17
|
Han BB, Li S, Tong M, Holpuch AS, Spinney R, Wang D, Border MB, Liu Z, Sarode S, Pei P, Schwendeman SP, Mallery SR. Fenretinide Perturbs Focal Adhesion Kinase in Premalignant and Malignant Human Oral Keratinocytes. Fenretinide's Chemopreventive Mechanisms Include ECM Interactions. Cancer Prev Res (Phila) 2015; 8:419-30. [PMID: 25712051 PMCID: PMC4417376 DOI: 10.1158/1940-6207.capr-14-0418] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/16/2015] [Indexed: 12/21/2022]
Abstract
The membrane-associated protein, focal adhesion kinase (FAK), modulates cell-extracellular matrix interactions and also conveys prosurvival and proliferative signals. Notably, increased intraepithelial FAK levels accompany transformation of premalignant oral intraepithelial neoplasia (OIN) to oral squamous cell carcinoma (OSCC). OIN chemoprevention is a patient-centric, optimal strategy to prevent OSCC's comorbidities and mortality. The cancer chemopreventive and synthetic vitamin A derivative, fenretinide, has demonstrated protein-binding capacities, for example, mTOR- and retinol-binding protein interactions. These studies used a continuum of human oral keratinocytes (normal-HPV E6/E7-transduced-OSCC) to assess potential fenretinide-FAK drug protein interactions and functional consequences on cellular growth regulation and motility. Molecular modeling studies demonstrated that fenretinide has approximately 200-fold greater binding affinity relative to the natural ligand (ATP) at FAK's kinase domain. Fenretinide also shows intermediate binding at FAK's FERM domain and interacts at the ATP-binding site of the closest FAK analogue, PYK2. Fenretinide significantly suppressed proliferation via induction of apoptosis and G2-M cell-cycle blockade. Fenretinide-treated cells also demonstrated F-actin disruption, significant inhibition of both directed migration and invasion of a synthetic basement membrane, and decreased phosphorylation of growth-promoting kinases. A commercially available FAK inhibitor did not suppress cell invasion. Notably, although FAK's FERM domain directs cell invasion, FAK inhibitors target the kinase domain. In addition, FAK-specific siRNA-treated cells showed an intermediate cell migration capacity; data which suggest cocontribution of the established migrating-enhancing PYK2. Our data imply that fenretinide is uniquely capable of disrupting FAK's and PYK2's prosurvival and mobility-enhancing effects and further extend fenretinide's chemopreventive contributions beyond induction of apoptosis and differentiation.
Collapse
Affiliation(s)
- Byungdo B Han
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Suyang Li
- Division of Oral Maxillofacial Pathology and Radiology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Meng Tong
- Division of Oral Maxillofacial Pathology and Radiology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Andrew S Holpuch
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Daren Wang
- Division of Oral Maxillofacial Pathology and Radiology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Michael B Border
- Division of Oral Maxillofacial Pathology and Radiology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Zhongfa Liu
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Sachin Sarode
- Division of Oral Maxillofacial Pathology and Radiology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Ping Pei
- Division of Oral Maxillofacial Pathology and Radiology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | | | - Susan R Mallery
- Division of Oral Maxillofacial Pathology and Radiology, College of Dentistry, The Ohio State University, Columbus, Ohio. The Ohio State University Comprehensive Cancer, Columbus, Ohio.
| |
Collapse
|
18
|
Meng J, Sun B, Zhao X, Zhang D, Zhao X, Gu Q, Dong X, Zhao N, Liu P, Liu Y. Doxycycline as an inhibitor of the epithelial-to-mesenchymal transition and vasculogenic mimicry in hepatocellular carcinoma. Mol Cancer Ther 2014; 13:3107-22. [PMID: 25277383 DOI: 10.1158/1535-7163.mct-13-1060] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study was conducted to examine the effects of doxycycline on the survival time and proliferation of hepatocellular carcinoma (HCC) in vivo and on the biologic functions of HCC in vitro. This study was also designed to evaluate the effects of doxycycline on epithelial-to-mesenchymal transition (EMT)- and vasculogenic mimicry (VM)-related protein expression and on matrix metalloproteinase (MMP) and DNA methyltransferase (DNMT) activity in vitro. Human MHCC97H cells were injected into BALB/c mice, which were divided into treatment and control groups. Doxycycline treatment prolonged the mouse survival time and partly suppressed the growth of engrafted HCC tumor cells, with an inhibition rate of 43.39%. Higher amounts of VM and endothelium-dependent vessels were found in the control group than the treatment group. IHC indicated that epithelial (E)-cadherin expression was increased in the doxycycline-treated mice compared with the control group. In in vitro experiments, doxycycline promoted HCC cell adhesion but inhibited HCC cell viability, proliferation, migration, and invasion. Western blot analysis, semiquantitative RT-PCR, qRT-PCR, and immunofluorescence demonstrated that doxycycline inhibited the degradation of the epithelial marker E-cadherin and downregulated the expression levels of EMT promoters, the mesenchymal marker vimentin, and the VM-associated marker vascular endothelial (VE)-cadherin. Furthermore, the activities of MMPs and DNMTs were examined in different groups via gelatin zymography and a DNMT activity assay kit. A methylation-specific PCR was performed to assess the promoter methylation of CDH1 (the gene encoding E-cadherin). Doxycycline prolonged the mouse survival time by inhibiting EMT progression and VM formation.
Collapse
Affiliation(s)
- Jie Meng
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin, China. Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, China. Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin, China.
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, China. Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Xueming Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Qiang Gu
- Department of Pathology, Tianjin Medical University, Tianjin, China. Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin, China. Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin, China
| | - Nan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Peimei Liu
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yanrong Liu
- Department of Pathology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
19
|
Evading anti-angiogenic therapy: resistance to anti-angiogenic therapy in solid tumours. Br J Cancer 2014. [DOI: 10.1038/bjc.2014.439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|