1
|
Huang W, Chen ACH, Wei X, Fong SW, Yeung WSB, Lee YL. Uncovering the role of TET2-mediated ENPEP activation in trophoblast cell fate determination. Cell Mol Life Sci 2024; 81:270. [PMID: 38886218 PMCID: PMC11335190 DOI: 10.1007/s00018-024-05306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Early trophoblast differentiation is crucial for embryo implantation, placentation and fetal development. Dynamic changes in DNA methylation occur during preimplantation development and are critical for cell fate determination. However, the underlying regulatory mechanism remains unclear. Recently, we derived morula-like expanded potential stem cells from human preimplantation embryos (hEPSC-em), providing a valuable tool for studying early trophoblast differentiation. Data analysis on published datasets showed differential expressions of DNA methylation enzymes during early trophoblast differentiation in human embryos and hEPSC-em derived trophoblastic spheroids. We demonstrated downregulation of DNA methyltransferase 3 members (DNMT3s) and upregulation of ten-eleven translocation methylcytosine dioxygenases (TETs) during trophoblast differentiation. While DNMT inhibitor promoted trophoblast differentiation, TET inhibitor hindered the process and reduced implantation potential of trophoblastic spheroids. Further integrative analysis identified that glutamyl aminopeptidase (ENPEP), a trophectoderm progenitor marker, was hypomethylated and highly expressed in trophoblast lineages. Concordantly, progressive loss of DNA methylation in ENPEP promoter and increased ENPEP expression were detected in trophoblast differentiation. Knockout of ENPEP in hEPSC-em compromised trophoblast differentiation potency, reduced adhesion and invasion of trophoblastic spheroids, and impeded trophoblastic stem cell (TSC) derivation. Importantly, TET2 was involved in the loss of DNA methylation and activation of ENPEP expression during trophoblast differentiation. TET2-null hEPSC-em failed to produce TSC properly. Collectively, our results illustrated the crucial roles of ENPEP and TET2 in trophoblast fate commitments and the unprecedented TET2-mediated loss of DNA methylation in ENPEP promoter.
Collapse
Affiliation(s)
- Wen Huang
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
- Centre for Translational Stem Cell Biology, Science Park, Sha Tin , Hong Kong, Special Administrative Region, China
| | - Andy Chun Hang Chen
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
- Centre for Translational Stem Cell Biology, Science Park, Sha Tin , Hong Kong, Special Administrative Region, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xujin Wei
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Sze Wan Fong
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - William Shu Biu Yeung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China.
- Centre for Translational Stem Cell Biology, Science Park, Sha Tin , Hong Kong, Special Administrative Region, China.
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Yin Lau Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China.
- Centre for Translational Stem Cell Biology, Science Park, Sha Tin , Hong Kong, Special Administrative Region, China.
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
2
|
Wang X, Zhang X, Wang Z, Xia Y, Shi Z, Hu K, Zhu X, Xu W, Zhu R, Cao Z, Zhang Y. CircHIRA sponges miR-196b-5p to promote porcine early embryonic development. Int J Biol Macromol 2024; 271:132451. [PMID: 38777006 DOI: 10.1016/j.ijbiomac.2024.132451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Circular RNA (circRNA) is abundantly expressed in preimplantation embryos and embryonic stem cells in mice and humans. However, its function and mechanism in early development of mammalian embryos remain unclear. Here, we showed that circHIRA mediated miR-196b-5p to regulate porcine early embryonic development. We verified the circular feature of circHIRA by sanger sequencing, and proved the authenticity of circHIRA by enzyme digestion test. HIRA and circHIRA were expressed in porcine early embryos, and its expression levels significantly increased from 8-cell stage onwards and reached the maximum at the blastocyst stage. Functional studies revealed that circHIRA knockdown not only significantly reduced the developmental efficiency of embryos from 8-cell stage to blastocyst stage, but also impaired the blastocyst quality. Mechanistically, integrated analysis of miRNA prediction and gene expression showed that circHIRA knockdown significantly increased the expression of miR-196b-5p in porcine early embryos. Furthermore, miR-196b-5p inhibitor injection could rescue the early development of circHIRA knockdown embryos. Taken together, the findings reveal that circHIRA regulates porcine early embryonic development via inhibiting the expression of miR-196b-5p.
Collapse
Affiliation(s)
- Xin Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiangdong Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhichao Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yi Xia
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenhu Shi
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kunlong Hu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xinyue Zhu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Wenhuan Xu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ruiqing Zhu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Ju LF, Xu HJ, Yang YG, Yang Y. Omics Views of Mechanisms for Cell Fate Determination in Early Mammalian Development. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:950-961. [PMID: 37075831 PMCID: PMC10928378 DOI: 10.1016/j.gpb.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/21/2023]
Abstract
During mammalian preimplantation development, a totipotent zygote undergoes several cell cleavages and two rounds of cell fate determination, ultimately forming a mature blastocyst. Along with compaction, the establishment of apicobasal cell polarity breaks the symmetry of an embryo and guides subsequent cell fate choice. Although the lineage segregation of the inner cell mass (ICM) and trophectoderm (TE) is the first symbol of cell differentiation, several molecules have been shown to bias the early cell fate through their inter-cellular variations at much earlier stages, including the 2- and 4-cell stages. The underlying mechanisms of early cell fate determination have long been an important research topic. In this review, we summarize the molecular events that occur during early embryogenesis, as well as the current understanding of their regulatory roles in cell fate decisions. Moreover, as powerful tools for early embryogenesis research, single-cell omics techniques have been applied to both mouse and human preimplantation embryos and have contributed to the discovery of cell fate regulators. Here, we summarize their applications in the research of preimplantation embryos, and provide new insights and perspectives on cell fate regulation.
Collapse
Affiliation(s)
- Lin-Fang Ju
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Heng-Ji Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Yun-Gui Yang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ying Yang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Oh JN, Lee M, Choe GC, Lee DK, Choi KH, Kim SH, Jeong J, Lee CK. Identification of the Lineage Markers and Inhibition of DAB2 in In Vitro Fertilized Porcine Embryos. Int J Mol Sci 2020; 21:ijms21197275. [PMID: 33019677 PMCID: PMC7582820 DOI: 10.3390/ijms21197275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Specification of embryonic lineages is an important question in the field of early development. Numerous studies analyzed the expression patterns of the candidate transcripts and proteins in humans and mice and clearly determined the markers of each lineage. To overcome the limitations of human and mouse embryos, the expression of the marker transcripts in each cell has been investigated using in vivo embryos in pigs. In vitro produced embryos are more accessible, can be rapidly processed with low cost. Therefore, we analyzed the characteristics of lineage markers and the effects of the DAB2 gene (trophectoderm marker) in in vitro fertilized porcine embryos. We investigated the expression levels of the marker genes during embryonic stages and distribution of the marker proteins was assayed in day 7 blastocysts. Then, the shRNA vectors were injected into the fertilized embryos and the differences in the marker transcripts were analyzed. Marker transcripts showed diverse patterns of expression, and each embryonic lineage could be identified with localization of marker proteins. In DAB2-shRNA vectors injected embryos, HNF4A and PDGFRA were upregulated. DAB2 protein level was lower in shRNA-injected embryos without significant differences. Our results will contribute to understanding of the mechanisms of embryonic lineage specification in pigs.
Collapse
Affiliation(s)
- Jong-Nam Oh
- Department of Agricultural Biotechnology, Animal Biotechnology Major and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.-N.O.); (M.L.); (G.C.C.); (D.-K.L.); (K.-H.C.); (S.-H.K.); (J.J.)
| | - Mingyun Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.-N.O.); (M.L.); (G.C.C.); (D.-K.L.); (K.-H.C.); (S.-H.K.); (J.J.)
| | - Gyung Cheol Choe
- Department of Agricultural Biotechnology, Animal Biotechnology Major and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.-N.O.); (M.L.); (G.C.C.); (D.-K.L.); (K.-H.C.); (S.-H.K.); (J.J.)
| | - Dong-Kyung Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.-N.O.); (M.L.); (G.C.C.); (D.-K.L.); (K.-H.C.); (S.-H.K.); (J.J.)
| | - Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Animal Biotechnology Major and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.-N.O.); (M.L.); (G.C.C.); (D.-K.L.); (K.-H.C.); (S.-H.K.); (J.J.)
| | - Seung-Hun Kim
- Department of Agricultural Biotechnology, Animal Biotechnology Major and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.-N.O.); (M.L.); (G.C.C.); (D.-K.L.); (K.-H.C.); (S.-H.K.); (J.J.)
| | - Jinsol Jeong
- Department of Agricultural Biotechnology, Animal Biotechnology Major and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.-N.O.); (M.L.); (G.C.C.); (D.-K.L.); (K.-H.C.); (S.-H.K.); (J.J.)
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.-N.O.); (M.L.); (G.C.C.); (D.-K.L.); (K.-H.C.); (S.-H.K.); (J.J.)
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
- Correspondence:
| |
Collapse
|
5
|
Li Q, Shi J, Liu W. The role of Wnt/β-catenin-lin28a/let-7 axis in embryo implantation competency and epithelial-mesenchymal transition (EMT). Cell Commun Signal 2020; 18:108. [PMID: 32650795 PMCID: PMC7353806 DOI: 10.1186/s12964-020-00562-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/23/2020] [Indexed: 12/30/2022] Open
Abstract
Background The pre-implantation embryo in a competent status and post-implantation fully differentiation of the inner cell mass (ICM) and trophectoderm (TE) are prerequisites of successful implantation. Type I embryonic epithelial-mesenchymal transition (EMT) involves in these processes. A high level of the mir-let-7 family was found in the dormant mouse embryo of implantation failure in our previous study. Besides, its natural inhibitor lin28a was found to function in maintained stem cell pluripotency and involved in early embryo nucleolus construction. Until now, few studies got involved in the exact molecular mechanism that affects embryo implantation potential. In this study, the possible function of Wnt/β-catenin-lin28a/let-7 pathway in mouse embryo implantation was studied. Methods ICR mouse, Lin28a/Let-7 g transgenic mice (Lin28a-TG/Let-7 g-TG), and implanting dormant mice models were used for the study. Results Wnt/β-catenin signaling is essential in embryo implantation, which promotes embryo implantation through directly trigger lin28a expression, thus represses the mir-let-7 family. Lin28a and mir-let-7 both participate in implantation via an inverse function. Lin28a and mir-let-7 participate in embryo implantation through embryonic EMT. Conclusions Wnt/β-catenin signaling promotes embryo implantation and accompanying embryonic EMT, which is mediated by directly activate lin28a/let-7 axis. Video abstract
Collapse
Affiliation(s)
- Qian Li
- Department of Obstetrics and Gynaecology, Laboratory Block, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China.,Assisted Reproductive Center, Women & Children's Hospital of Northwest China, 73 Hou zai Road, Xi'an, China
| | - Juanzi Shi
- Assisted Reproductive Center, Women & Children's Hospital of Northwest China, 73 Hou zai Road, Xi'an, China
| | - Weimin Liu
- Department of Obstetrics and Gynaecology, Laboratory Block, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China.
| |
Collapse
|
6
|
Gonadal development and sex determination in mouse. Reprod Biol 2020; 20:115-126. [DOI: 10.1016/j.repbio.2020.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 12/18/2022]
|
7
|
Frum T, Watts JL, Ralston A. TEAD4, YAP1 and WWTR1 prevent the premature onset of pluripotency prior to the 16-cell stage. Development 2019; 146:dev.179861. [PMID: 31444221 PMCID: PMC6765126 DOI: 10.1242/dev.179861] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022]
Abstract
In mice, pluripotent cells are thought to derive from cells buried inside the embryo around the 16-cell stage. Sox2 is the only pluripotency gene known to be expressed specifically within inside cells at this stage. To understand how pluripotency is established, we therefore investigated the mechanisms regulating the initial activation of Sox2 expression. Surprisingly, Sox2 expression initiated normally in the absence of both Nanog and Oct4 (Pou5f1), highlighting differences between embryo and stem cell models of pluripotency. However, we observed precocious ectopic expression of Sox2 prior to the 16-cell stage in the absence of Yap1, Wwtr1 and Tead4. Interestingly, the repression of premature Sox2 expression was sensitive to LATS kinase activity, even though LATS proteins normally do not limit activity of TEAD4, YAP1 and WWTR1 during these early stages. Finally, we present evidence for direct transcriptional repression of Sox2 by YAP1, WWTR1 and TEAD4. Taken together, our observations reveal that, while embryos are initially competent to express Sox2 as early as the four-cell stage, transcriptional repression prevents the premature expression of Sox2, thereby restricting the pluripotency program to the stage when inside cells are first created. Highlighted Article: The pluripotency marker SOX2 is not initially regulated by OCT4 and NANOG, but by HIPPO pathway members during the first 2 days of mouse embryogenesis.
Collapse
Affiliation(s)
- Tristan Frum
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jennifer L Watts
- Physiology Graduate Program, Michigan State University, East Lansing, MI 48824, USA.,Reproductive and Developmental Biology Training Program, Michigan State University, East Lansing, MI 48824, USA
| | - Amy Ralston
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA .,Reproductive and Developmental Biology Training Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
De Caluwé J, Tosenberger A, Gonze D, Dupont G. Signalling-modulated gene regulatory networks in early mammalian development. J Theor Biol 2019; 463:56-66. [DOI: 10.1016/j.jtbi.2018.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/25/2018] [Accepted: 12/05/2018] [Indexed: 01/18/2023]
|
9
|
Mahdavinezhad F, Kazemi P, Fathalizadeh P, Sarmadi F, Sotoodeh L, Hashemi E, Hajarian H, Dashtizad M. In vitro versus In vivo: Development-, Apoptosis-, and Implantation- Related Gene Expression in Mouse Blastocyst. IRANIAN JOURNAL OF BIOTECHNOLOGY 2019; 17:e2157. [PMID: 31457046 PMCID: PMC6697851 DOI: 10.21859/ijb.2157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background While mammalian embryos can adapt to their environments, their sensitivity overshadows their adaptability in suboptimal in vitro conditions. Therefore, the environment in which the gametes are fertilized or to which the embryo is exposed can greatly affect the quality of the embryo and consequently its implantation potential. Objectives Since providing an optimal culture condition needs a deep understanding of the environmental effects, and regarding the fact that normal morphology fails to be a reliable indicator of natural embryo development, the current study aimed at comparing in vivo- and in vitro-derived blastocysts at the molecular level. Materials and Methods In vivo and in vitro mouse blastocysts were obtained by flushing the uterine horns and in vitro fertilization/culture, respectively. Normal blastocysts of both groups were evaluated in terms of hatching rate and expression of three lineage-differentiation-, apoptosis-, and implantation-related genes. Results The hatching rate was lower in In vitro fertilization (IVF)-produced blastocysts in comparison with that of the in vivo counterparts. More importantly, the study results indicated significant changes in the expression levels of eight out of ten selected genes, especially Mmp-9 (about -10.7-fold). The expression of Mmp-9 in trophoblast cells is required for successful implantation and trophoblast invasion. Conclusions The current study, in addition to confirming that the altered gene expression pattern of in vitro-produced embryos resulted in normal morphology, provided a possible reason for lower implantation rate of in vitro-produced blastocysts regarding the Mmp-9 expression.
Collapse
Affiliation(s)
- Forough Mahdavinezhad
- Embryo Biotechnology Laboratory (Embio Lab), Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Parinaz Kazemi
- Embryo Biotechnology Laboratory (Embio Lab), Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.,McGill University Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Parisa Fathalizadeh
- Embryo Biotechnology Laboratory (Embio Lab), Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Fatemeh Sarmadi
- Embryo Biotechnology Laboratory (Embio Lab), Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Leila Sotoodeh
- Embryo Biotechnology Laboratory (Embio Lab), Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ehsan Hashemi
- Embryo Biotechnology Laboratory (Embio Lab), Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hadi Hajarian
- Department of Animal Science, Razi University, Kermanshah, Iran
| | - Mojtaba Dashtizad
- Embryo Biotechnology Laboratory (Embio Lab), Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
10
|
Wear HM, Eriksson A, Yao HHC, Watanabe KH. Cell-based computational model of early ovarian development in mice. Biol Reprod 2018; 97:365-377. [PMID: 29088396 DOI: 10.1093/biolre/iox089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/09/2017] [Indexed: 11/13/2022] Open
Abstract
Despite its importance to reproduction, certain mechanisms of early ovarian development remain a mystery. To improve our understanding, we constructed the first cell-based computational model of ovarian development in mice that is divided into two phases: Phase I spans embryonic day 5.5 (E5.5) to E12.5; and Phase II spans E12.5 to postnatal day 2. We used the model to investigate four mechanisms: in Phase I, (i) whether primordial germ cells (PGCs) undergo mitosis during migration; and (ii) if the mechanism for secretion of KIT ligand from the hindgut resembles inductive cell-cell signaling or is secreted in a static manner; and in Phase II, (iii) that changes in cellular adhesion produce germ cell nest breakdown; and (iv) whether localization of primordial follicles in the cortex of the ovary is due to proliferation of granulosa cells. We found that the combination of the first three hypotheses produced results that aligned with experimental images and PGC abundance data. Results from the fourth hypothesis did not match experimental images, which suggests that more detailed processes are involved in follicle localization. Phase I and Phase II of the model reproduce experimentally observed cell counts and morphology well. A sensitivity analysis identified contact energies, mitotic rates, KIT chemotaxis strength, and diffusion rate in Phase I and oocyte death rate in Phase II as parameters with the greatest impact on model predictions. The results demonstrate that the computational model can be used to understand unknown mechanisms, generate new hypotheses, and serve as an educational tool.
Collapse
Affiliation(s)
- Hannah M Wear
- Institute of Environmental Health, Oregon Health & Science University, Portland, OR, USA
| | - Annika Eriksson
- Division of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University Portland, OR, USA
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Karen H Watanabe
- Institute of Environmental Health, Oregon Health & Science University, Portland, OR, USA.,School of Public Health, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
11
|
Tang L, He G, Liu X, Xu W. Progress in the understanding of the etiology and predictability of fetal growth restriction. Reproduction 2018; 153:R227-R240. [PMID: 28476912 DOI: 10.1530/rep-16-0287] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 02/21/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022]
Abstract
Fetal growth restriction (FGR) is defined as the failure of fetus to reach its growth potential for various reasons, leading to multiple perinatal complications and adult diseases of fetal origins. Shallow extravillous trophoblast (EVT) invasion-induced placental insufficiency and placental dysfunction are considered the main reasons for idiopathic FGR. In this review, first we discuss the major characteristics of anti-angiogenic state and the pro-inflammatory bias in FGR. We then elaborate major abnormalities in placental insufficiency at molecular levels, including the interaction between decidual leukocytes and EVT, alteration of miRNA expression and imprinted gene expression pattern in FGR. Finally, we review current animal models used in FGR, an experimental intervention based on animal models and the progress of predictive biomarker studies in FGR.Free Chinese abstract: A Chinese translation of this abstract is freely available at http://www.reproduction-online.org/content/153/6/R215/suppl/DC1.
Collapse
Affiliation(s)
- Li Tang
- Joint Laboratory of Reproductive MedicineSCU-CUHK, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education.,Department of Obstetric and Gynecologic DiseasesWest China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Guolin He
- Department of Obstetric and Gynecologic DiseasesWest China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinghui Liu
- Department of Obstetric and Gynecologic DiseasesWest China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Wenming Xu
- Joint Laboratory of Reproductive MedicineSCU-CUHK, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education .,Department of Obstetric and Gynecologic DiseasesWest China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
12
|
Hildebrand S, Hultin S, Subramani A, Petropoulos S, Zhang Y, Cao X, Mpindi J, Kalloniemi O, Johansson S, Majumdar A, Lanner F, Holmgren L. The E-cadherin/AmotL2 complex organizes actin filaments required for epithelial hexagonal packing and blastocyst hatching. Sci Rep 2017; 7:9540. [PMID: 28842668 PMCID: PMC5572699 DOI: 10.1038/s41598-017-10102-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022] Open
Abstract
Epithelial cells connect via cell-cell junctions to form sheets of cells with separate cellular compartments. These cellular connections are essential for the generation of cellular forms and shapes consistent with organ function. Tissue modulation is dependent on the fine-tuning of mechanical forces that are transmitted in part through the actin connection to E-cadherin as well as other components in the adherens junctions. In this report we show that p100 amotL2 forms a complex with E-cadherin that associates with radial actin filaments connecting cells over multiple layers. Genetic inactivation or depletion of amotL2 in epithelial cells in vitro or zebrafish and mouse in vivo, resulted in the loss of contractile actin filaments and perturbed epithelial packing geometry. We further showed that AMOTL2 mRNA and protein was expressed in the trophectoderm of human and mouse blastocysts. Genetic inactivation of amotL2 did not affect cellular differentiation but blocked hatching of the blastocysts from the zona pellucida. These results were mimicked by treatment with the myosin II inhibitor blebbistatin. We propose that the tension generated by the E-cadherin/AmotL2/actin filaments plays a crucial role in developmental processes such as epithelial geometrical packing as well as generation of forces required for blastocyst hatching.
Collapse
Affiliation(s)
- Sebastian Hildebrand
- Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institutet and Division of Obstetrics and Gynecology, Karolinska University Hospital, Huddinge, Sweden.,Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
| | - Sara Hultin
- Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
| | - Aravindh Subramani
- Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
| | - Sophie Petropoulos
- Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institutet and Division of Obstetrics and Gynecology, Karolinska University Hospital, Huddinge, Sweden
| | - Yuanyuan Zhang
- Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
| | - Xiaofang Cao
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center (BMC), Uppsala University, Uppsala, Sweden
| | - John Mpindi
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Olli Kalloniemi
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Staffan Johansson
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center (BMC), Uppsala University, Uppsala, Sweden
| | - Arindam Majumdar
- Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden.,Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Fredrik Lanner
- Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institutet and Division of Obstetrics and Gynecology, Karolinska University Hospital, Huddinge, Sweden.
| | - Lars Holmgren
- Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
13
|
Abstract
Embryonic development is a self-organised process during which cells divide, interact, change fate according to a complex gene regulatory network and organise themselves in a three-dimensional space. Here, we model this complex dynamic phenomenon in the context of the acquisition of epiblast and primitive endoderm identities within the inner cell mass of the preimplantation embryo in the mouse. The multiscale model describes cell division and interactions between cells, as well as biochemical reactions inside each individual cell and in the extracellular matrix. The computational results first confirm that the previously proposed mechanism by which extra-cellular signalling allows cells to select the appropriate fate in a tristable regulatory network is robust when considering a realistic framework involving cell division and three-dimensional interactions. The simulations recapitulate a variety of in vivo observations on wild-type and mutant embryos and suggest that the gene regulatory network confers differential plasticity to the different cell fates. A detailed analysis of the specification process emphasizes that developmental transitions and the salt-and-pepper patterning of epiblast and primitive endoderm cells from a homogenous population of inner cell mass cells arise from the interplay between the internal gene regulatory network and extracellular signalling by Fgf4. Importantly, noise is necessary to create some initial heterogeneity in the specification process. The simulations suggest that initial cell-to-cell differences originating from slight inhomogeneities in extracellular Fgf4 signalling, in possible combination with slightly different concentrations of the key transcription factors between daughter cells, are able to break the original symmetry and are amplified in a flexible and self-regulated manner until the blastocyst stage.
Collapse
|
14
|
Young NP, Kamireddy A, Van Nostrand JL, Eichner LJ, Shokhirev MN, Dayn Y, Shaw RJ. AMPK governs lineage specification through Tfeb-dependent regulation of lysosomes. Genes Dev 2016; 30:535-52. [PMID: 26944679 PMCID: PMC4782048 DOI: 10.1101/gad.274142.115] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Faithful execution of developmental programs relies on the acquisition of unique cell identities from pluripotent progenitors, a process governed by combinatorial inputs from numerous signaling cascades that ultimately dictate lineage-specific transcriptional outputs. Despite growing evidence that metabolism is integrated with many molecular networks, how pathways that control energy homeostasis may affect cell fate decisions is largely unknown. Here, we show that AMP-activated protein kinase (AMPK), a central metabolic regulator, plays critical roles in lineage specification. Although AMPK-deficient embryonic stem cells (ESCs) were normal in the pluripotent state, these cells displayed profound defects upon differentiation, failing to generate chimeric embryos and preferentially adopting an ectodermal fate at the expense of the endoderm during embryoid body (EB) formation. AMPK(-/-) EBs exhibited reduced levels of Tfeb, a master transcriptional regulator of lysosomes, leading to diminished endolysosomal function. Remarkably, genetic loss of Tfeb also yielded endodermal defects, while AMPK-null ESCs overexpressing this transcription factor normalized their differential potential, revealing an intimate connection between Tfeb/lysosomes and germ layer specification. The compromised endolysosomal system resulting from AMPK or Tfeb inactivation blunted Wnt signaling, while up-regulating this pathway restored expression of endodermal markers. Collectively, these results uncover the AMPK pathway as a novel regulator of cell fate determination during differentiation.
Collapse
Affiliation(s)
- Nathan P Young
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Anwesh Kamireddy
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Jeanine L Van Nostrand
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Lillian J Eichner
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Maxim Nikolaievich Shokhirev
- Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Yelena Dayn
- Transgenic Core Facility, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Reuben J Shaw
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
15
|
Wear HM, McPike MJ, Watanabe KH. From primordial germ cells to primordial follicles: a review and visual representation of early ovarian development in mice. J Ovarian Res 2016; 9:36. [PMID: 27329176 PMCID: PMC4915180 DOI: 10.1186/s13048-016-0246-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/13/2016] [Indexed: 01/08/2023] Open
Abstract
Background Normal development of reproductive organs is crucial for successful reproduction. In mice the early ovarian developmental process occurs during the embryonic and postnatal period and is regulated through a series of molecular signaling events. Early ovarian development in mice is a seventeen-day process that begins with the rise of six primordial germ cells on embryonic day five (E5) and ends with the formation of primordial follicles on postnatal day two (P2). Results We reviewed the current literature and created a visual representation of early ovarian development that depicts the important molecular events and associated phenotypic outcomes based on primary data. The visual representation shows the timeline of key signaling interactions and regulation of protein expression in different cells involved in ovarian development. The major developmental events were divided into five phases: 1) origin of germ cells and maintenance of pluripotency; 2) primordial germ cell migration; 3) sex differentiation; 4) formation of germ cell nests; and 5) germ cell nest breakdown and primordial follicle formation. Conclusions This review and visual representation provide a summary of the current scientific understanding of the key regulation and signaling during ovarian development and highlights areas needing further study. The visual representation can be used as an educational resource to link molecular events with phenotypic outcomes; serves as a tool to generate new hypotheses and predictions of adverse reproductive outcomes due to perturbations at the molecular and cellular levels; and provides a comprehendible foundation for computational model development and hypothesis testing.
Collapse
Affiliation(s)
- Hannah M Wear
- Institute of Environmental Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd. Mail code HRC3, Portland, OR, 97239, USA
| | - Matthew J McPike
- Institute of Environmental Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd. Mail code HRC3, Portland, OR, 97239, USA
| | - Karen H Watanabe
- School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd. Mail code GH230, Portland, OR, 97239, USA.
| |
Collapse
|
16
|
Pedersen MT, Kooistra SM, Radzisheuskaya A, Laugesen A, Johansen JV, Hayward DG, Nilsson J, Agger K, Helin K. Continual removal of H3K9 promoter methylation by Jmjd2 demethylases is vital for ESC self-renewal and early development. EMBO J 2016; 35:1550-64. [PMID: 27266524 DOI: 10.15252/embj.201593317] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 05/06/2016] [Indexed: 12/12/2022] Open
Abstract
Chromatin-associated proteins are essential for the specification and maintenance of cell identity. They exert these functions through modulating and maintaining transcriptional patterns. To elucidate the functions of the Jmjd2 family of H3K9/H3K36 histone demethylases, we generated conditional Jmjd2a/Kdm4a, Jmjd2b/Kdm4b and Jmjd2c/Kdm4c/Gasc1 single, double and triple knockout mouse embryonic stem cells (ESCs). We report that while individual Jmjd2 family members are dispensable for ESC maintenance and embryogenesis, combined deficiency for specifically Jmjd2a and Jmjd2c leads to early embryonic lethality and impaired ESC self-renewal, with spontaneous differentiation towards primitive endoderm under permissive culture conditions. We further show that Jmjd2a and Jmjd2c both localize to H3K4me3-positive promoters, where they have widespread and redundant roles in preventing accumulation of H3K9me3 and H3K36me3. Jmjd2 catalytic activity is required for ESC maintenance, and increased H3K9me3 levels in knockout ESCs compromise the expression of several Jmjd2a/c targets, including genes that are important for ESC self-renewal. Thus, continual removal of H3K9 promoter methylation by Jmjd2 demethylases represents a novel mechanism ensuring transcriptional competence and stability of the pluripotent cell identity.
Collapse
Affiliation(s)
- Marianne Terndrup Pedersen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Marije Kooistra
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Aliaksandra Radzisheuskaya
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Anne Laugesen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark The Danish Stem Cell Center (Danstem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Vilstrup Johansen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Daniel Geoffrey Hayward
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karl Agger
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark The Danish Stem Cell Center (Danstem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Lokken AA, Ralston A. The Genetic Regulation of Cell Fate During Preimplantation Mouse Development. Curr Top Dev Biol 2016; 120:173-202. [PMID: 27475852 DOI: 10.1016/bs.ctdb.2016.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The adult body is estimated to contain several hundred distinct cell types, each with a specialized physiological function. Failure to maintain cell fate can lead to devastating diseases and cancer, but understanding how cell fates are assigned and maintained during animal development provides new opportunities for human health intervention. The mouse is a premier model for evaluating the genetic regulation of cell fate during development because of the wide variety of tools for measuring and manipulating gene expression levels, the ability to access embryos at desired developmental stages, and the similarities between mouse and human development, particularly during the early stages of development. During the first 3 days of mouse development, the preimplantation embryo sets aside cells that will contribute to the extraembryonic tissues. The extraembryonic tissues are essential for establishing pregnancy and ensuring normal fetal development in both mice and humans. Genetic analyses of mouse preimplantation development have permitted identification of genes that are essential for specification of the extraembryonic lineages. In this chapter, we review the tools and concepts of mouse preimplantation development. We describe genes that are essential for cell fate specification during preimplantation stages, and we describe diverse models proposed to account for the mechanisms of cell fate specification during early development.
Collapse
Affiliation(s)
- A A Lokken
- Michigan State University, East Lansing, MI, United States
| | - A Ralston
- Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
18
|
Liu J, Luo X, Xu Y, Gu J, Tang F, Jin Y, Li H. Single-stranded DNA binding protein Ssbp3 induces differentiation of mouse embryonic stem cells into trophoblast-like cells. Stem Cell Res Ther 2016; 7:79. [PMID: 27236334 PMCID: PMC4884356 DOI: 10.1186/s13287-016-0340-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intrinsic factors and extrinsic signals which control unlimited self-renewal and developmental pluripotency in embryonic stem cells (ESCs) have been extensively investigated. However, a much smaller number of factors involved in extra-embryonic trophoblast differentiation from ESCs have been studied. In this study, we investigated the role of the single-stranded DNA binding protein, Ssbp3, for the induction of trophoblast-like differentiation from mouse ESCs. METHODS Gain- and loss-of-function experiments were carried out through overexpression or knockdown of Ssbp3 in mouse ESCs under self-renewal culture conditions. Expression levels of pluripotency and lineage markers were detected by real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analyses. The global gene expression profile in Ssbp3-overexpressing cells was determined by affymetrix microarray. Gene ontology and pathway terms were analyzed and further validated by qRT-PCR and Western blotting. The methylation status of the Elf5 promoter in Ssbp3-overexpressing cells was detected by bisulfite sequencing. The trophoblast-like phenotype induced by Ssbp3 was also evaluated by teratoma formation and early embryo injection assays. RESULTS Forced expression of Ssbp3 in mouse ESCs upregulated expression levels of lineage-associated genes, with trophoblast cell markers being the highest. In contrast, depletion of Ssbp3 attenuated the expression of trophoblast lineage marker genes induced by downregulation of Oct4 or treatment with BMP4 and bFGF in ESCs. Interestingly, global gene expression profiling analysis indicated that Ssbp3 overexpression did not significantly alter the transcript levels of pluripotency-associated transcription factors. Instead, Ssbp3 promoted the expression of early trophectoderm transcription factors such as Cdx2 and activated MAPK/Erk1/2 and TGF-β pathways. Furthermore, overexpression of Ssbp3 reduced the methylation level of the Elf5 promoter and promoted the generation of teratomas with internal hemorrhage, indicative of the presence of trophoblast cells. CONCLUSIONS This study identifies Ssbp3, a single-stranded DNA binding protein, as a regulator for mouse ESCs to differentiate into trophoblast-like cells. This finding is helpful to understand the regulatory networks for ESC differentiation into extra-embryonic lineages.
Collapse
Affiliation(s)
- Jifeng Liu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinlong Luo
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Present address: KU Leuven Department of Development and Regeneration, Stem Cell Institute Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Yanli Xu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junjie Gu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, New Life Science Building A, Room 1328, 320 Yue Yang Road, Shanghai, 200032, China
| | - Fan Tang
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, New Life Science Building A, Room 1328, 320 Yue Yang Road, Shanghai, 200032, China
| | - Ying Jin
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, New Life Science Building A, Room 1328, 320 Yue Yang Road, Shanghai, 200032, China.
| | - Hui Li
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, New Life Science Building A, Room 1328, 320 Yue Yang Road, Shanghai, 200032, China.
| |
Collapse
|
19
|
Ahuja AK, Jodkowska K, Teloni F, Bizard AH, Zellweger R, Herrador R, Ortega S, Hickson ID, Altmeyer M, Mendez J, Lopes M. A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells. Nat Commun 2016; 7:10660. [PMID: 26876348 PMCID: PMC4756311 DOI: 10.1038/ncomms10660] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 01/08/2016] [Indexed: 12/15/2022] Open
Abstract
Embryonic stem cells (ESCs) represent a transient biological state, where pluripotency is coupled with fast proliferation. ESCs display a constitutively active DNA damage response (DDR), but its molecular determinants have remained elusive. Here we show in cultured ESCs and mouse embryos that H2AX phosphorylation is dependent on Ataxia telangiectasia and Rad3 related (ATR) and is associated with chromatin loading of the ssDNA-binding proteins RPA and RAD51. Single-molecule analysis of replication intermediates reveals massive ssDNA gap accumulation, reduced fork speed and frequent fork reversal. All these marks of replication stress do not impair the mitotic process and are rapidly lost at differentiation onset. Delaying the G1/S transition in ESCs allows formation of 53BP1 nuclear bodies and suppresses ssDNA accumulation, fork slowing and reversal in the following S-phase. Genetic inactivation of fork slowing and reversal leads to chromosomal breakage in unperturbed ESCs. We propose that rapid cell cycle progression makes ESCs dependent on effective replication-coupled mechanisms to protect genome integrity. In fast proliferating embryonic stem cells (ESC) the DNA damage response is activated by mechanisms that are as yet elusive. Here, Ahuja et al. link the DNA damage response to replication stress in mouse ESCs, caused by a short G1 phase, and propose fork remodelling as maintaining genome stability in embryos.
Collapse
Affiliation(s)
- Akshay K Ahuja
- Institute of Molecular Cancer Research, University of Zurich, Zurich CH-8057, Switzerland
| | - Karolina Jodkowska
- DNA Replication Group, Molecular Oncology Programme, CNIO, Madrid E-28029, Spain
| | - Federico Teloni
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Zurich CH-8057, Switzerland
| | - Anna H Bizard
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Panum Institute, Copenhagen N DK-2200, Denmark
| | - Ralph Zellweger
- Institute of Molecular Cancer Research, University of Zurich, Zurich CH-8057, Switzerland
| | - Raquel Herrador
- Institute of Molecular Cancer Research, University of Zurich, Zurich CH-8057, Switzerland
| | - Sagrario Ortega
- Transgenic Mice Core Unit, Biotechnology Programme, CNIO, Madrid E-28029, Spain
| | - Ian D Hickson
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Panum Institute, Copenhagen N DK-2200, Denmark
| | - Matthias Altmeyer
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Zurich CH-8057, Switzerland
| | - Juan Mendez
- DNA Replication Group, Molecular Oncology Programme, CNIO, Madrid E-28029, Spain
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich CH-8057, Switzerland
| |
Collapse
|
20
|
Komatsu K, Fujimori T. Multiple phases in regulation of Nanog expression during pre-implantation development. Dev Growth Differ 2015; 57:648-56. [PMID: 26660234 DOI: 10.1111/dgd.12244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 12/21/2022]
Abstract
Nanog is a key transcriptional factor for the maintenance of pluripotency of ES cells, iPS cells or cells in early mammalian embryos. The expression of Nanog is mainly localized to the epiblast in the late blastocyst. The Nanog gene expression pattern varies between embryos and between blastomeres during blastocyst formation. In this report, we traced the changes of Nanog expression in each cell in developing preimplantation mouse embryos through time-lapse observation of Nanog-GFP transgenic mouse embryos. The expression pattern of Nanog was classified into four phases depending on the developmental stage. Nanog expression started at very low levels during cleavage stages. It increased stochastically during the morula stage, but its expression level had no clear correlation with future cell fates. After the 32-cell stage, when embryos form the blastocyst cavity, Nanog expression was upregulated mainly in ICM cells while it was repressed in the future primitive endoderm lineage in an FGF signaling-dependent manner in the later stages. These results indicate that there are multiple phases in the transcriptional regulation of Nanog during blastocyst formation.
Collapse
Affiliation(s)
- Kouji Komatsu
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Aichi, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Aichi, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate School for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| |
Collapse
|
21
|
Kudo M, Ikeda S, Sugimoto M, Kume S. Methionine-dependent histone methylation at developmentally important gene loci in mouse preimplantation embryos. J Nutr Biochem 2015; 26:1664-9. [PMID: 26372092 DOI: 10.1016/j.jnutbio.2015.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/04/2015] [Accepted: 08/07/2015] [Indexed: 12/19/2022]
Abstract
The involvement of specific nutrients in epigenetic gene regulation is a possible mechanism underlying nutrition-directed phenotypic alteration. However, the involvement of nutrients in gene-specific epigenetic regulation remains poorly understood. Methionine has been received attention as a possible nutrient involved in epigenetic modifications, as it is a precursor of the universal methyl donor for epigenetic methylation of DNA and histones. In the present study, the disruption of methionine metabolism by ethionine, an antimetabolite of methionine, induced abnormally higher expression of genes related to cell lineage differentiation and resulted in impaired blastocyst development of mouse preimplantation embryos in vitro. These effects were mitigated by the presence of methionine. Importantly, ethionine treatment induced lower trimethylation of histone H3 lysine 9 but did not affect methylation of DNA in the promoter regions of the examined genes. These results demonstrated that intact methionine metabolism is required for proper epigenetic histone modifications and normal expression of developmentally important genes during preimplantation development.
Collapse
Affiliation(s)
- Mari Kudo
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Shuntaro Ikeda
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | - Miki Sugimoto
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Shinichi Kume
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
22
|
Krawchuk D, Anani S, Honma-Yamanaka N, Polito S, Shafik M, Yamanaka Y. Loss of LKB1 leads to impaired epithelial integrity and cell extrusion in the early mouse embryo. J Cell Sci 2015; 128:1011-22. [PMID: 25588837 DOI: 10.1242/jcs.162156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LKB1/PAR-4 is essential for the earliest polarization steps in Caenorhabditis elegans embryos and Drosophila oocytes. Although LKB1 (also known as STK11) is sufficient to initiate polarity in a single mammalian intestinal epithelial cell, its necessity in the formation and maintenance of mammalian epithelia remains unclear. To address this, we completely remove LKB1 from mouse embryos by generating maternal-zygotic Lkb1 mutants and find that it is dispensable for polarity and epithelia formation in the early embryo. Instead, loss of Lkb1 leads to the extrusion of cells from blastocyst epithelia that remain alive and can continue to divide. Chimeric analysis shows that Lkb1 is cell-autonomously required to prevent these extrusions. Furthermore, heterozygous loss of Cdh1 exacerbates the number of extrusions per blastocyst, suggesting that LKB1 has a role in regulating adherens junctions in order to prevent extrusion in epithelia.
Collapse
Affiliation(s)
- Dayana Krawchuk
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 419, Montréal, QC H3A 1A3, Canada
| | - Shihadeh Anani
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 419, Montréal, QC H3A 1A3, Canada Department of Human Genetics, McGill University, 1160 Pine Avenue West, Room 419, Montréal, QC H3A 1A3, Canada
| | - Nobuko Honma-Yamanaka
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 419, Montréal, QC H3A 1A3, Canada
| | - Samantha Polito
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 419, Montréal, QC H3A 1A3, Canada
| | - Marian Shafik
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 419, Montréal, QC H3A 1A3, Canada
| | - Yojiro Yamanaka
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 419, Montréal, QC H3A 1A3, Canada Department of Human Genetics, McGill University, 1160 Pine Avenue West, Room 419, Montréal, QC H3A 1A3, Canada
| |
Collapse
|
23
|
McDonald A, Biechele S, Rossant J, Stanford W. Sox17-Mediated XEN Cell Conversion Identifies Dynamic Networks Controlling Cell-Fate Decisions in Embryo-Derived Stem Cells. Cell Rep 2014; 9:780-93. [DOI: 10.1016/j.celrep.2014.09.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/08/2014] [Accepted: 09/14/2014] [Indexed: 12/31/2022] Open
|