1
|
Engin A. Lipid Storage, Lipolysis, and Lipotoxicity in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:97-129. [PMID: 39287850 DOI: 10.1007/978-3-031-63657-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The ratio of free fatty acid (FFA) turnover decreases significantly with the expansion of white adipose tissue. Adipose tissue and dietary saturated fatty acid levels significantly correlate with an increase in fat cell size and number. The G0/G1 switch gene 2 increases lipid content in adipocytes and promotes adipocyte hypertrophy through the restriction of triglyceride (triacylglycerol: TAG) turnover. Hypoxia in obese adipose tissue due to hypertrophic adipocytes results in excess deposition of extracellular matrix (ECM) components. Cluster of differentiation (CD) 44, as the main receptor of the extracellular matrix component regulates cell-cell and cell-matrix interactions including diet-induced insulin resistance. Excess TAGs, sterols, and sterol esters are surrounded by the phospholipid monolayer surface and form lipid droplets (LDs). Once LDs are formed, they grow up because of the excessive amount of intracellular FFA stored and reach a final size. The ratio of FFA turnover/lipolysis decreases significantly with increases in the degree of obesity. Dysfunctional adipose tissue is unable to expand further to store excess dietary lipids, increased fluxes of plasma FFAs lead to ectopic fatty acid deposition and lipotoxicity. Reduced neo-adipogenesis and dysfunctional lipid-overloaded adipocytes are hallmarks of hypertrophic obesity linked to insulin resistance. Obesity-associated adipocyte death exhibits feature of necrosis-like programmed cell death. Adipocyte death is a prerequisite for the transition from hypertrophic to hyperplastic obesity. Increased adipocyte number in obesity has life-long effects on white adipose tissue mass. The positive correlation between the adipose tissue volume and magnetic resonance imaging proton density fat fraction estimation is used for characterization of the obesity phenotype, as well as the risk stratification and selection of appropriate treatment strategies. In obese patients with type 2 diabetes, visceral adipocytes exposed to chronic/intermittent hyperglycemia develop a new microRNAs' (miRNAs') expression pattern. Visceral preadipocytes memorize the effect of hyperglycemia via changes in miRNAs' expression profile and contribute to the progression of diabetic phenotype. Nonsteroidal anti-inflammatory drugs, metformin, and statins can be beneficial in treating the local or systemic consequences of white adipose tissue inflammation. Rapamycin inhibits leptin-induced LD formation. Collectively, in this chapter, the concept of adipose tissue remodeling in response to adipocyte death or adipogenesis, and the complexity of LD interactions with the other cellular organelles are reviewed. Furthermore, clinical perspective of fat cell turnover in obesity is also debated.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
2
|
Chen J, Wang C, Liu W, Qiao Q, Qi H, Zhou W, Xu N, Li J, Piao H, Tan D, Liu X, Xu Z. Stable Super‐Resolution Imaging of Lipid Droplet Dynamics through a Buffer Strategy with a Hydrogen‐Bond Sensitive Fluorogenic Probe. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jie Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chao Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Wenjuan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Huan Qi
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Wei Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Ning Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Jin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hailong Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Davin Tan
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Xiaogang Liu
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
3
|
Chen J, Wang C, Liu W, Qiao Q, Qi H, Zhou W, Xu N, Li J, Piao H, Tan D, Liu X, Xu Z. Stable Super-Resolution Imaging of Lipid Droplet Dynamics through a Buffer Strategy with a Hydrogen-Bond Sensitive Fluorogenic Probe. Angew Chem Int Ed Engl 2021; 60:25104-25113. [PMID: 34519394 DOI: 10.1002/anie.202111052] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/02/2021] [Indexed: 11/10/2022]
Abstract
Although super-resolution imaging offers an opportunity to visualize cellular structures and organelles at the nanoscale level, cellular heterogeneity and unpredictability still pose a significant challenge in the dynamic imaging of live cells. It is thus vital to develop better-performing and more photostable probes for long-term super-resolution imaging. Herein, we report a probe, LD-FG, for imaging lipid droplet (LD) dynamics using structured illumination microscopy (SIM). LD-FG allows wash-free imaging of LDs, owing to a hydrogen-bond sensitive fluorogenic response. The replacement of photobleached LD-FG by intact probe molecules outside the LDs ensures the long-time stability of the fluorescence imaging. With this buffering fluorogenic probe, fast and unpredictable dynamic processes of LDs can be visualized. Using this probe, two LD coalescence modes were discovered. The dynamic imaging also allowed us to propose a new model of LD maturation during adipocyte differentiation, i.e., a fast LD coalescence followed by a slow ripening step. The excellent performance of LD-FG makes the buffer strategy an effective method for designing fluorescent probes for cell dynamic imaging.
Collapse
Affiliation(s)
- Jie Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Wenjuan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Huan Qi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Wei Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Ning Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Jin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hailong Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Davin Tan
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Alam W, Rocca C, Khan H, Hussain Y, Aschner M, De Bartolo A, Amodio N, Angelone T, Cheang WS. Current Status and Future Perspectives on Therapeutic Potential of Apigenin: Focus on Metabolic-Syndrome-Dependent Organ Dysfunction. Antioxidants (Basel) 2021; 10:antiox10101643. [PMID: 34679777 PMCID: PMC8533599 DOI: 10.3390/antiox10101643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome and its associated disorders such as obesity, insulin resistance, atherosclerosis and type 2 diabetes mellitus are globally prevalent. Different molecules showing therapeutic potential are currently available for the management of metabolic syndrome, although their efficacy has often been compromised by their poor bioavailability and side effects. Studies have been carried out on medicinal plant extracts for the treatment and prevention of metabolic syndrome. In this regard, isolated pure compounds have shown promising efficacy for the management of metabolic syndrome, both in preclinical and clinical settings. Apigenin, a natural bioactive flavonoid widely present in medicinal plants, functional foods, vegetables and fruits, exerts protective effects in models of neurological disorders and cardiovascular diseases and most of these effects are attributed to its antioxidant action. Various preclinical and clinical studies carried out so far show a protective effect of apigenin against metabolic syndrome. Herein, we provide a comprehensive review on both in vitro and in vivo evidence related to the promising antioxidant role of apigenin in cardioprotection, neuroprotection and renoprotection, and to its beneficial action in metabolic-syndrome-dependent organ dysfunction. We also provide evidence on the potential of apigenin in the prevention and/or treatment of metabolic syndrome, analysing the potential and limitation of its therapeutic use.
Collapse
Affiliation(s)
- Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 221400, China;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Anna De Bartolo
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
- National Institute of Cardiovascular Research I.N.R.C., 40126 Bologna, Italy
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China;
| |
Collapse
|
5
|
Adomshick V, Pu Y, Veiga-Lopez A. Automated lipid droplet quantification system for phenotypic analysis of adipocytes using CellProfiler. Toxicol Mech Methods 2020; 30:378-387. [PMID: 32208812 DOI: 10.1080/15376516.2020.1747124] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adipogenic differentiation is the process by which preadipocytes become mature adipocytes, cells that store energy and regulate metabolic homeostasis. During differentiation, neutral lipids that accumulate in adipocytes can be detected using stains and used as an index of cell differentiation. However, imaging tools for evaluating intracellular lipid droplets remain at their infancy. Nutrition, stress, or chemical exposure can dysregulate adipogenic differentiation and lipid metabolism. Therefore, the aims of this study were to develop an accurate, standardized approach to quantify lipid droplet size of mature adipocytes and a clustering approach to analyze the total lipid content per adipocyte. For the lipid droplet analysis, we used two approaches, the free online computer software of reference, ImageJ, and another free online computer software, CellProfiler. For ImageJ, we used an already developed macro designed to identify particles and quantify their area, and for CellProfiler, we developed a new analysis pipeline. Our results show that CellProfiler is able to accurately identify a greater number of lipid droplets compared to ImageJ. A clustering analysis is also possible using CellProfiler which allows for the quantification of total lipid content per individual adipocyte to provide insight into single-cell responsiveness to adipogenic stimuli. CellProfiler streamlines the lipid droplet phenotypic analysis of adipocytes compared to more traditional analysis methods. In conclusion, this novel image analysis tool can provide a more precise evaluation of lipid droplet and adipogenesis dysregulation, a critical need in the understanding of metabolic disorders.
Collapse
Affiliation(s)
- Victoria Adomshick
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Yong Pu
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
6
|
Boschi F, Rizzatti V, Zoico E, Montanari T, Zamboni M, Sbarbati A, Colitti M. Relationship between lipid droplets size and integrated optical density. Eur J Histochem 2019; 63. [PMID: 30907383 PMCID: PMC6444373 DOI: 10.4081/ejh.2019.3017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/09/2019] [Indexed: 12/19/2022] Open
Abstract
Lipid accumulation is largely investigated due to its role in many human diseases. The attention is mainly focused on the lipid droplets (LDs), spherical cytoplasmic organelles which are devoted to the storage of the lipids. The amount of lipid content is often evaluated by measuring LDs size and/or the integrated optical density (IOD) in cultured cells. Both evaluations are directly associated to the lipid content and therefore they are correlated to each other, but a lack of theoretical relationship between size and IOD was observed in literature. Here we investigated the size-IOD relationship of LDs observed in microscopical images of cultured cells. The experimental data were obtained from immature and differentiated 3T3-L1 murine cells, which have been extensively used in studies on adipogenesis. A simple model based on the spherical shape of the LDs and the Lambert-Beer law, which describes the light absorption by an optical thick material, leads to a mathematical relationship. Despite only light rays’ absorption was considered in the model, neglecting their scattering, a very good agreement between the theoretical curve and the experimental data was found. Moreover, a computational simulation corroborates the model indicating the validity of the mathematically theoretical relationship between size and IOD. The theoretical model could be used to calculate the absorption coefficient in the LDs population and it could be applied to seek for morphologically and functionally LDs subpopulations. The identification of LDs dynamic by measuring size and IOD could be related to different pathophysiological conditions and useful for understand cellular lipid-associated diseases.
Collapse
|
7
|
Song JH, Kang HB, Kim JH, Kwak S, Sung GJ, Park SH, Jeong JH, Kim H, Lee J, Jun W, Kim Y, Choi KC. Antiobesity and Cholesterol-Lowering Effects of Dendropanax morbifera Water Extracts in Mouse 3T3-L1 Cells. J Med Food 2018; 21:793-800. [PMID: 30048215 DOI: 10.1089/jmf.2017.4154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Obesity is the most common metabolic disease in developed countries and has become a global epidemic in recent years. Obesity is associated with various metabolic abnormalities, including glucose intolerance, insulin resistance, type 2 diabetes, dyslipidemia, and hypertension. Leaves from the plant Dendropanax morbiferus are beneficial to health as they contain high levels of vitamin C and tannin. There have been seminal studies on the anticancer, antimicrobial, antidiabetes, and antihyperglycemic effects of treatments with D. morbiferus trees. Herein, we investigated the toxicity of D. morbiferus water (DLW) extracts in vitro, and demonstrated no toxicity at 5-500 μg/mL in 24-72-h experiments with 3T3-L1 cells. The DLW increased cell viability at 48 h and inhibited adipogenesis in 3T3-L1 cells by reducing intracellular triglyceride levels and glucose uptake. In addition, mRNA and protein expression levels of adipogenesis-related genes were lowered by DLW, suggesting antiobesity effects in mouse 3T3-L1 cells. Because few studies have demonstrated cholesterol-lowering effects of D. morbiferus, we investigated the activities of adipogenic transcriptional factors following treatments of 3T3-L1 cells with D. morbiferus and observed increased CEBPα, CEBPβ, PPARγ, and SREBP1 activities in the cells, indicating that DLW extracts inhibit adipogenesis.
Collapse
Affiliation(s)
- Ji-Hye Song
- 1 Department of Biomedical Sciences, University of Ulsan College of Medicine , ASAN Medical Center, Seoul, Korea.,2 Department of Pharmacology, University of Ulsan College of Medicine , Seoul, Korea
| | - Hee-Bum Kang
- 1 Department of Biomedical Sciences, University of Ulsan College of Medicine , ASAN Medical Center, Seoul, Korea.,2 Department of Pharmacology, University of Ulsan College of Medicine , Seoul, Korea
| | - Ji Hye Kim
- 1 Department of Biomedical Sciences, University of Ulsan College of Medicine , ASAN Medical Center, Seoul, Korea
| | - Sungmin Kwak
- 1 Department of Biomedical Sciences, University of Ulsan College of Medicine , ASAN Medical Center, Seoul, Korea.,2 Department of Pharmacology, University of Ulsan College of Medicine , Seoul, Korea
| | - Gi-Jun Sung
- 1 Department of Biomedical Sciences, University of Ulsan College of Medicine , ASAN Medical Center, Seoul, Korea.,2 Department of Pharmacology, University of Ulsan College of Medicine , Seoul, Korea
| | - Seung-Ho Park
- 1 Department of Biomedical Sciences, University of Ulsan College of Medicine , ASAN Medical Center, Seoul, Korea.,2 Department of Pharmacology, University of Ulsan College of Medicine , Seoul, Korea
| | - Ji-Hoon Jeong
- 1 Department of Biomedical Sciences, University of Ulsan College of Medicine , ASAN Medical Center, Seoul, Korea.,2 Department of Pharmacology, University of Ulsan College of Medicine , Seoul, Korea
| | - Hyunhee Kim
- 1 Department of Biomedical Sciences, University of Ulsan College of Medicine , ASAN Medical Center, Seoul, Korea.,2 Department of Pharmacology, University of Ulsan College of Medicine , Seoul, Korea
| | - Jeongmin Lee
- 3 Department of Medical Nutrition, Kyung Hee University , Yongin-si, Kyunggi-do, Korea
| | - Woojin Jun
- 4 Division of Food and Nutrition, Chonnam National University , Gwangju, Korea
| | - Yongjae Kim
- 5 HBJbiofarm Research Institute , Cheomdan-ro, Jeju-si, Jeju-do, Korea
| | - Kyung-Chul Choi
- 1 Department of Biomedical Sciences, University of Ulsan College of Medicine , ASAN Medical Center, Seoul, Korea.,2 Department of Pharmacology, University of Ulsan College of Medicine , Seoul, Korea
| |
Collapse
|
8
|
Engin A. Fat Cell and Fatty Acid Turnover in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:135-160. [PMID: 28585198 DOI: 10.1007/978-3-319-48382-5_6] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ratio of free fatty acid (FFA) turnover decreases significantly with the expansion of white adipose tissue. Adipose tissue and dietary saturated fatty acid levels significantly correlate with an increase in fat cell size and number. Inhibition of adipose triglyceride lipase leads to an accumulation of triglyceride, whereas inhibition of hormone-sensitive lipase leads to the accumulation of diacylglycerol. The G0/G1 switch gene 2 increases lipid content in adipocytes and promotes adipocyte hypertrophy through the restriction of triglyceride turnover. Excess triacylglycerols (TAGs), sterols and sterol esters are surrounded by the phospholipid monolayer surface and form lipid droplets. Following the release of lipid droplets from endoplasmic reticulum, cytoplasmic lipid droplets increase their volume either by local TAG synthesis or by homotypic fusion. The number and the size of lipid droplet distribution is correlated with obesity. Obesity-associated adipocyte death exhibits feature of necrosis-like programmed cell death. NOD-like receptors family pyrin domain containing 3 (NLRP3) inflammasome-dependent caspase-1 activation in hypertrophic adipocytes induces obese adipocyte death by pyroptosis. Actually adipocyte death may be a prerequisite for the transition from hypertrophic to hyperplastic obesity. Major transcriptional factors, CCAAT/enhancer-binding proteins beta and delta, play a central role in the subsequent induction of critical regulators, peroxisome-proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha and sterol regulatory element-binding protein 1, in the transcriptional control of adipogenesis in obesity.Collectively, in this chapter the concept of adipose tissue remodeling in response to adipocyte death or adipogenesis, and the complexity of lipid droplet interactions with the other cellular organelles are reviewed. Furthermore, in addition to lipid droplet growth, the functional link between the adipocyte-specific lipid droplet-associated protein and fatty acid turn-over is also debated.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey. .,, Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
9
|
Appelqvist H, Stranius K, Börjesson K, Nilsson KPR, Dyrager C. Specific Imaging of Intracellular Lipid Droplets Using a Benzothiadiazole Derivative with Solvatochromic Properties. Bioconjug Chem 2017; 28:1363-1370. [DOI: 10.1021/acs.bioconjchem.7b00048] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hanna Appelqvist
- Department
of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Kati Stranius
- Department
of Chemistry and Molecular Biology, University of Gothenburg, 412 96 Göteborg, Sweden
| | - Karl Börjesson
- Department
of Chemistry and Molecular Biology, University of Gothenburg, 412 96 Göteborg, Sweden
| | - K. Peter. R. Nilsson
- Department
of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Christine Dyrager
- Department
of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
10
|
Boschi F, Rizzatti V, Zamboni M, Sbarbati A. Simulating the dynamics of lipid droplets in adipocyte differentiation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2017; 138:65-71. [PMID: 27886716 DOI: 10.1016/j.cmpb.2016.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/03/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Lipid droplets are cellular organelles that regulate the storage and hydrolysis of neutral lipids. The dynamic of lipid droplets (LDs), during the differentiation process from fibroblast-like cells into adipocyte, is strictly related to the lipid storage in cells. The number and size of the LDs depends on the lipidic or lipolytic stimulations to which the cells are exposed. METHOD Here, we propose a computational approach to study the processes regulating the LDs' number and growth/reduction in size using Monte Carlo simulations. The number and size of LDs are measured before and after experimental treatment in 3T3-L1 cell cultures. The algorithms simulating the evolution from basal to differentiate (lipidic or lipolytic) conditions are here detailed step by step. The algorithms can mimic thousand interacting events between LDs or squeezing/enlargement events of a single LD in a very brief computational time, from seconds up to few minutes. RESULTS The main processes regulating the interactions between LDs are here presented, and for each of them, all the needed information to re-write the computational routine are provided. More specifically, the results obtained, analyzing the fusion process between LDs, are here presented. CONCLUSIONS Here, we would like to supply the basis to explore the dynamics of lipid storage in cells with a computational approach and to encourage the applications of numerical simulation to cell studies.
Collapse
Affiliation(s)
- Federico Boschi
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Vanni Rizzatti
- Department of Medicine, Geriatric Section, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy
| | - Mauro Zamboni
- Department of Medicine, Geriatric Section, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy
| | - Andrea Sbarbati
- Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| |
Collapse
|
11
|
Kong S, Ding C, Huang L, Bai Y, Xiao T, Guo J, Su Z. The effects of COST on the differentiation of 3T3-L1 preadipocytes and the mechanism of action. Saudi J Biol Sci 2016; 24:251-255. [PMID: 28149159 PMCID: PMC5272960 DOI: 10.1016/j.sjbs.2016.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 11/28/2022] Open
Abstract
The objectives of this study were to explore the effect of COST (one thousand Da molecular weight chitosan oligosaccharide) on the differentiation of 3T3-L1 preadipocytes and to determine the mechanism of action. 3T3-L1 preadipocytes were used as the target cells, and the induction of the methods for the differentiation of 3T3-L1 preadipocytes was based on classic cocktails. The MTT assay was used to filtrate the concentration of COST. On the 6th day of induced-differentiation, the differentiation of 3T3-L1 cells was detected by Oil Red O staining. The expression of PPARγ and C/EBPα mRNA was determined using real-time fluorescence quantitative PCR (Q-PCR). COST inhibited 3T3-L1 preadipocyte differentiation in a dose-dependent manner and decreased lipid accumulation. At the molecular level, the expression of the transcription factors, PPARγ and C/EBPα, was reduced by COST during adipogenesis. These results indicate that COST effectively inhibited the differentiation of 3T3-L1 preadipocytes. The mechanism is related to the down-regulation expression of PPARγ and C/EBPα.
Collapse
Affiliation(s)
- Shang Kong
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chen Ding
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lanlan Huang
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- Guangzhou Boxabio Technology Ltd, Guangzhou Science City, China
| | - Tiancun Xiao
- Inorganic Chemistry Laboratory, Oxford University, South Parks Road, OX1 3QR, United Kingdom; Guangzhou Boxabio Technology Ltd, Guangzhou Science City, China
| | - Jiao Guo
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
12
|
Boschi F, Rizzatti V, Zamboni M, Sbarbati A. Models of lipid droplets growth and fission in adipocyte cells. Exp Cell Res 2015; 336:253-62. [PMID: 26121906 DOI: 10.1016/j.yexcr.2015.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/15/2015] [Accepted: 06/03/2015] [Indexed: 01/14/2023]
Abstract
Lipid droplets (LD) are spherical cellular inclusion devoted to lipids storage. It is well known that excessive accumulation of lipids leads to several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis and atherosclerosis. LDs' size range from fraction to one hundred of micrometers in adipocytes and is related to the lipid content, but their growth is still a puzzling question. It has been suggested that LDs can grow in size due to the fusion process by which a larger LD is obtained by the merging of two smaller LDs, but these events seems to be rare and difficult to be observed. Many other processes are thought to be involved in the number and growth of LDs, like the de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets. Moreover the number and size of LDs are influenced by the catabolism and the absorption or interaction with other organelles. The comprehension of these processes could help in the confinement of the pathologies related to lipid accumulation. In this study the LDs' size distribution, number and the total volume of immature (n=12), mature (n=12, 10-days differentiated) and lipolytic (n=12) 3T3-L1 adipocytes were considered. More than 11,000 LDs were measured in the 36 cells after Oil Red O staining. In a previous work Monte Carlo simulations were used to mimic the fusion process alone between LDs. We found that, considering the fusion as the only process acting on the LDs, the size distribution in mature adipocytes can be obtained with numerical simulation starting from the size distribution in immature cells provided a very high rate of fusion events. In this paper Monte Carlo simulations were developed to mimic the interaction between LDs taking into account many other processes in addition to fusion (de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets) in order to reproduce the LDs growth and we also simulated the catabolism (fission and the decrease through neutral lipid exit from pre-existing droplets) to reproduce their size reduction observed in lipolytic conditions. The results suggest that each single process, considered alone, can not be considered the only responsible for the size variation observed, but more than one of them, playing together, can quite well reproduce the experimental data.
Collapse
Affiliation(s)
- Federico Boschi
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Vanni Rizzatti
- Department of Medicine, Geriatric Section, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy
| | - Mauro Zamboni
- Department of Medicine, Geriatric Section, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy
| | - Andrea Sbarbati
- Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| |
Collapse
|