1
|
Wang Y, Liu T, Liu W, Zhao H, Li P. Research hotspots and future trends in lipid metabolism in chronic kidney disease: a bibliometric and visualization analysis from 2004 to 2023. Front Pharmacol 2024; 15:1401939. [PMID: 39290864 PMCID: PMC11405329 DOI: 10.3389/fphar.2024.1401939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Background Disorders of lipid metabolism play a key role in the initiation and progression of chronic kidney disease (CKD). Recently, research on lipid metabolism in CKD has rapidly increased worldwide. However, comprehensive bibliometric analyses in this field are lacking. Therefore, this study aimed to evaluate publications in the field of lipid metabolism in CKD over the past 20 years based on bibliometric analysis methods to understand the important achievements, popular research topics, and emerging thematic trends. Methods Literature on lipid metabolism in CKD, published between 2004 and 2023, was retrieved from the Web of Science Core Collection. The VOSviewer (v.1.6.19), CiteSpace (v.6.3 R1), R language (v.4.3.2), and Bibliometrix (v.4.1.4) packages (https://www.bibliometrix.org) were used for the bibliometric analysis and visualization. Annual output, author, country, institution, journal, cited literature, co-cited literature, and keywords were also included. The citation frequency and H-index were used to evaluate quality and influence. Results In total, 1,285 publications in the field of lipid metabolism in CKD were identified in this study. A total of 7,615 authors from 1,885 institutions in 69 countries and regions published articles in 466 journals. Among them, China was the most productive (368 articles), and the United States had the most citations (17,880 times) and the highest H-index (75). Vaziri Nosratola D, Levi Moshe, Fornoni Alessia, Zhao Yingyong, and Merscher Sandra emerged as core authors. Levi Moshe (2,247 times) and Vaziri Nosratola D (1,969 times) were also authors of the top two most cited publications. The International Journal of Molecular Sciences and Kidney International are the most published and cited journals in this field, respectively. Cardiovascular disease (CVD) and diabetic kidney disease (DKD) have attracted significant attention in the field of lipid metabolism. Oxidative stress, inflammation, insulin resistance, autophagy, and cell death are the key research topics in this field. Conclusion Through bibliometric analysis, the current status and global trends in lipid metabolism in CKD were demonstrated. CVD and DKD are closely associated with the lipid metabolism of patients with CKD. Future studies should focus on effective CKD treatments using lipid-lowering targets.
Collapse
Affiliation(s)
- Ying Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weijing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hailing Zhao
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| |
Collapse
|
2
|
Duara J, Torres M, Gurumani M, Molina David J, Njeim R, Kim JJ, Mitrofanova A, Ge M, Sloan A, Müller-Deile J, Schiffer M, Merscher S, Fornoni A. Oxysterol-binding protein-like 7 deficiency leads to ER stress-mediated apoptosis in podocytes and proteinuria. Am J Physiol Renal Physiol 2024; 327:F340-F350. [PMID: 38961844 PMCID: PMC11460532 DOI: 10.1152/ajprenal.00319.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with renal lipid dysmetabolism among a variety of other pathways. We recently demonstrated that oxysterol-binding protein-like 7 (OSBPL7) modulates the expression and function of ATP-binding cassette subfamily A member 1 (ABCA1) in podocytes, a specialized type of cell essential for kidney filtration. Drugs that target OSBPL7 lead to improved renal outcomes in several experimental models of CKD. However, the role of OSBPL7 in podocyte injury remains unclear. Using mouse models and cellular assays, we investigated the influence of OSBPL7 deficiency on podocytes. We demonstrated that reduced renal OSBPL7 levels as observed in two different models of experimental CKD are linked to increased podocyte apoptosis, primarily mediated by heightened endoplasmic reticulum (ER) stress. Although as expected, the absence of OSBPL7 also resulted in lipid dysregulation (increased lipid droplets and triglycerides content), OSBPL7 deficiency-related lipid dysmetabolism did not contribute to podocyte injury. Similarly, we demonstrated that the decreased autophagic flux we observed in OSBPL7-deficient podocytes was not the mechanistic link between OSBPL7 deficiency and apoptosis. In a complementary zebrafish model, osbpl7 knockdown was sufficient to induce proteinuria and morphological damage to the glomerulus, underscoring its physiological relevance. Our study sheds new light on the mechanistic link between OSBPL7 deficiency and podocyte injury in glomerular diseases associated with CKD, and it strengthens the role of OSBPL7 as a novel therapeutic target.NEW & NOTEWORTHY OSBPL7 and ER stress comprise a central mechanism in glomerular injury. This study highlights a crucial link between OSBPL7 deficiency and ER stress in CKD. OSBPL7 deficiency causes ER stress, leading to podocyte apoptosis. There is a selective effect on lipid homeostasis in that OSBPL7 deficiency affects lipid homeostasis, altering cellular triglyceride but not cholesterol content. The interaction of ER stress and apoptosis supports that ER stress, not reduced autophagy, is the main driver of apoptosis in OSBPL7-deficient podocytes.
Collapse
Affiliation(s)
- Joanne Duara
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Maria Torres
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Boston University, Boston, Massachusetts, United States
| | - Margaret Gurumani
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Boston University, Boston, Massachusetts, United States
| | - Judith Molina David
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Rachel Njeim
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Jin-Ju Kim
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Alla Mitrofanova
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Mengyuan Ge
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Alexis Sloan
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Janina Müller-Deile
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Mount Desert Island Biological Laboratories, Salisbury Cove, Maine, United States
| | - Sandra Merscher
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
3
|
Hasan IH, Badr A, Almalki H, Alhindi A, Mostafa HS. Podocin, mTOR, and CHOP dysregulation contributes to nephrotoxicity induced of lipopolysaccharide/diclofenac combination in rats: Curcumin and silymarin could afford protective effect. Life Sci 2023; 330:121996. [PMID: 37536613 DOI: 10.1016/j.lfs.2023.121996] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
AIM Sepsis is a common cause of acute kidney injury (AKI). Lipopolysaccharides (LPS) are the main gram-negative bacterial cell wall component with a well-documented inflammatory impact. Diclofenac (DIC) is a non-steroidal anti-inflammatory drug with a potential nephrotoxic effect. Curcumin (CUR) and silymarin (SY) are natural products with a wide range of pharmacological activities, including antioxidant and anti-inflammatory ones. The objective of this study was to examine the protective impact of CUR and SY against kidney damage induced by LPS/DIC co-exposure. MATERIALS AND METHODS Four groups of rats were used; control; LPS/DIC, LPS/DIC + CUR, and LPS/DIC + SY group. LPS/DIC combination induced renal injury at an LPS dose much lower than a nephrotoxic one. KEY FINDING Nephrotoxicity was confirmed by histopathological examination and significant elevation of renal function markers. LPS/DIC induced oxidative stress in renal tissues, evidenced by decreasing reduced glutathione and superoxide dismutase, and increasing lipid peroxidation. Inflammatory response of LPS/DIC was associated with a significant increase of renal IL-1β and TNF-α. Treatment with either CUR or SY shifted measured parameters to the opposite side. Moreover, LPS/DIC exposure was associated with upregulation of mTOR and endoplasmic reticulum stress protein (CHOP) and downregulation of podocin These effects were accompanied by reduced gene expression of cystatin C and KIM-1. CUR and SY ameliorated LPS/DIC effect on the aforementioned genes and protein significantly. SIGNIFICANCE This study confirms the potential nephrotoxicity; mechanisms include upregulation of mTOR, CHOP, cystatin C, and KIM-1 and downregulation of podocin. Moreover, both CUR and SY are promising nephroprotective products against LPS/DIC co-exposure.
Collapse
Affiliation(s)
- Iman H Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia.
| | - Amira Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Haneen Almalki
- Pharm D program, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Alanoud Alhindi
- Pharm D program, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Hesham S Mostafa
- Statistics Deanship of Scientific Research, College of Humanities and Social Sciences, King Saud University, P.O. Box 2456, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Zhang R, Bian C, Gao J, Ren H. Endoplasmic reticulum stress in diabetic kidney disease: adaptation and apoptosis after three UPR pathways. Apoptosis 2023:10.1007/s10495-023-01858-w. [PMID: 37285056 DOI: 10.1007/s10495-023-01858-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2023] [Indexed: 06/08/2023]
Abstract
Diabetes kidney disease (DKD) is one of the common chronic microvascular complications of diabetes, which has become the most important cause of modern chronic kidney disease beyond chronic glomerulonephritis. The endoplasmic reticulum is one of the largest organelles, and endoplasmic reticulum stress (ERS) is the basic mechanism of metabolic disorder in all organs and tissues. Under the stimulation of stress-induced factors, the endoplasmic reticulum, as a trophic receptor, regulates adaptive and apoptotic ERS through molecular chaperones and three unfolded protein reaction (UPR) pathways, thereby regulating diabetic renal damage. Therefore, three pathway factors have different expressions in different sections of renal tissues. This study deeply discussed the specific reagents, animals, cells, and clinical models related to ERS in DKD, and reviewed ERS-related three pathways on DKD with glomerular filtration membrane, renal tubular reabsorption, and other pathological lesions of different renal tissues, as well as the molecular biological mechanisms related to the balance of adaption and apoptosis by searching and sorting out MeSH subject words from PubMed database.
Collapse
Affiliation(s)
- Ruijing Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Lvshun South Road west 9, Dalian, 116044, Liaoning, China
| | - Che Bian
- Department of Endocrinology and Metabolism, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Gao
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Lvshun South Road west 9, Dalian, 116044, Liaoning, China.
| |
Collapse
|
5
|
Sehrawat A, Mishra J, Mastana SS, Navik U, Bhatti GK, Reddy PH, Bhatti JS. Dysregulated autophagy: A key player in the pathophysiology of type 2 diabetes and its complications. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166666. [PMID: 36791919 DOI: 10.1016/j.bbadis.2023.166666] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Autophagy is essential in regulating the turnover of macromolecules via removing damaged organelles, misfolded proteins in various tissues, including liver, skeletal muscles, and adipose tissue to maintain the cellular homeostasis. In these tissues, a specific type of autophagy maintains the accumulation of lipid droplets which is directly related to obesity and the development of insulin resistance. It appears to play a protective role in a normal physiological environment by eliminating the invading pathogens, protein aggregates, and damaged organelles and generating energy and new building blocks by recycling the cellular components. Ageing is also a crucial modulator of autophagy process. During stress conditions involving nutrient deficiency, lipids excess, hypoxia etc., autophagy serves as a pro-survival mechanism by recycling the free amino acids to maintain the synthesis of proteins. The dysregulated autophagy has been found in several ageing associated diseases including type 2 diabetes (T2DM), cancer, and neurodegenerative disorders. So, targeting autophagy can be a promising therapeutic strategy against the progression to diabetes related complications. Our article provides a comprehensive outline of understanding of the autophagy process, including its types, mechanisms, regulation, and role in the pathophysiology of T2DM and related complications. We also explored the significance of autophagy in the homeostasis of β-cells, insulin resistance (IR), clearance of protein aggregates such as islet amyloid polypeptide, and various insulin-sensitive tissues. This will further pave the way for developing novel therapeutic strategies for diabetes-related complications.
Collapse
Affiliation(s)
- Abhishek Sehrawat
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| | - Umashanker Navik
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India.
| |
Collapse
|
6
|
Immunoexpression Pattern of Autophagy Markers in Developing and Postnatal Kidneys of Dab1−/−(yotari) Mice. Biomolecules 2023; 13:biom13030402. [PMID: 36979337 PMCID: PMC10046325 DOI: 10.3390/biom13030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
The purpose of this study was to compare the immunofluorescence patterns of autophagic markers: Light chain 3 beta (LC3B), Glucose regulating protein 78 (GRP78), Heat shock cognate 71 (HSC70) and Lysosomal-associated membrane protein 2A (LAMP2A) in the developing and postnatal kidneys of Dab1−/− (yotari) mice to those of wild-type samples. Embryos were obtained on gestation days 13.5 and 15.5 (E13.5 and E15.5), and adult animals were sacrificed at postnatal days 4, 11 and 14 (P4, P11, and P14). After fixation and dehydration, paraffin-embedded kidney tissues were sectioned and incubated with specific antibodies. Using an immunofluorescence microscope, sections were analyzed. For statistical analysis, a two-way ANOVA test and a Tukey’s multiple comparison test were performed with a probability level of p < 0.05. A significant increase in GRP78 and LAMP2A expression was observed in the renal vesicles and convoluted tubules of yotari in embryonic stages. In postnatal kidneys, all observed proteins showed higher signal intensities in proximal and distal convoluted tubules of yotari, while a higher percentage of LC3B-positive cells was also observed in glomeruli. Our findings suggest that all of the examined autophagic markers play an important role in normal kidney development, as well as the potential importance of these proteins in renal pathology, where they primarily serve a protective function and thus may be used as diagnostic and therapeutic targets.
Collapse
|
7
|
Sheng H, Zhang D, Zhang J, Zhang Y, Lu Z, Mao W, Liu X, Zhang L. Kaempferol attenuated diabetic nephropathy by reducing apoptosis and promoting autophagy through AMPK/mTOR pathways. Front Med (Lausanne) 2022; 9:986825. [PMID: 36530875 PMCID: PMC9748551 DOI: 10.3389/fmed.2022.986825] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/14/2022] [Indexed: 07/23/2023] Open
Abstract
INTRODUCTION Renal podocyte injury, apoptosis and autophagy are involved in the occurrence and development of diabetic nephropathy (DN). Kaempferol (KPF) has the promotion of autophagy and inhibition of apoptosis properties in the development of miscellaneous diseases, but these functions in DN have not yet been elucidated. METHODS We used db/db mice to evaluate the protective role of KPF on DN. The anti-DN effect of KPF was evaluated by urine albumin-to-creatinine ratio and pathological changes of kidney tissue. Injury of podocytes was observed through Transmission electron microscopy. Immunofluorescence, Western blot, and Immunohistochemistry were used to detect the protein expression of podocyte-associated molecules, autophagy, and AMPK/mTOR pathway. RESULTS We demonstrated that KPF treatment significantly attenuated diabetes-induced albuminuria and glycolipid metabolism dysfunction. In addition, KPF alleviated mesangial matrix expansion, glomerular basement membrane thickening and loss or fusion of podocytes. Mechanistically, KPF treatment regulated the expression of autophagic proteins (upregulated LC3II, Beclin-1, Atg7 and Atg 5, and downregulated p62/SQSTM1), accompanied by inhibited renal apoptosis (downregulated Caspase 3 and Bax, and upregulated Bcl-2). KPF could significantly regulate the AMPK/mTOR signaling pathways by increasing p-AMPK and decreasing p-mTOR expressions. DISCUSSION In conclusion, KPF might have a protective effect on DN through reduced apoptosis and enhanced podocytes autophagy, which were correlated with regulating AMPK/mTOR pathways.
Collapse
Affiliation(s)
- Hongqin Sheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Duo Zhang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaqi Zhang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanmei Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaoyu Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Mao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Xusheng Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Lei Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| |
Collapse
|
8
|
Navarro-Betancourt JR, Cybulsky AV. The IRE1α pathway in glomerular diseases: The unfolded protein response and beyond. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:971247. [PMID: 39086958 PMCID: PMC11285563 DOI: 10.3389/fmmed.2022.971247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/07/2022] [Indexed: 08/02/2024]
Abstract
Endoplasmic reticulum (ER) function is vital for protein homeostasis ("proteostasis"). Protein misfolding in the ER of podocytes (glomerular visceral epithelial cells) is an important contributor to the pathogenesis of human glomerular diseases. ER protein misfolding causes ER stress and activates a compensatory signaling network called the unfolded protein response (UPR). Disruption of the UPR, in particular deletion of the UPR transducer, inositol-requiring enzyme 1α (IRE1α) in mouse podocytes leads to podocyte injury and albuminuria in aging, and exacerbates injury in glomerulonephritis. The UPR may interact in a coordinated manner with autophagy to relieve protein misfolding and its consequences. Recent studies have identified novel downstream targets of IRE1α, which provide new mechanistic insights into proteostatic pathways. Novel pathways of IRE1α signaling involve reticulophagy, mitochondria, metabolism, vesicular trafficking, microRNAs, and others. Mechanism-based therapies for glomerulopathies are limited, and development of non-invasive ER stress biomarkers, as well as targeting ER stress with pharmacological compounds may represent a therapeutic opportunity for preventing or attenuating progression of chronic kidney disease.
Collapse
Affiliation(s)
| | - Andrey V. Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
Podocyte protection by Angptl3 knockout via inhibiting ROS/GRP78 pathway in LPS-induced acute kidney injury. Int Immunopharmacol 2022; 105:108549. [DOI: 10.1016/j.intimp.2022.108549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 01/15/2023]
|
10
|
Teh YM, Mualif SA, Lim SK. A comprehensive insight into autophagy and its potential signaling pathways as a therapeutic target in podocyte injury. Int J Biochem Cell Biol 2021; 143:106153. [PMID: 34974186 DOI: 10.1016/j.biocel.2021.106153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023]
Abstract
As part of the glomerular filtration membrane, podocyte is terminally differentiated, structurally unique, and highly specialized in maintaining kidney function. Proteinuria caused by podocyte injury (foot process effacement) is the clinical symptom of various kidney diseases (CKD), including nephrotic syndrome. Podocyte autophagy has become a powerful therapeutic strategy target in ameliorating podocyte injury. Autophagy is known to be associated significantly with sirtuin-1, proteinuria, and podocyte injury. Various key findings in podocyte autophagy were reported in the past ten years, such as the role of endoplasmic reticulum (ER) stress in podocyte autophagy impairment, podocyte autophagy-related gene, essential roles of the signaling pathways: Mammalian Target of Rapamycin (mTOR)/ Phosphoinositide 3-kinase (PI3k)/ serine/threonine kinase 1 (Akt) in podocyte autophagy. These significant factors caused podocyte injury associated with autophagy impairment. Sirtuin-1 was reported to have a vital key role in mTOR signaling, 5'AMP-activated protein kinase (AMPK) regulation, autophagy activation, and various critical pathways associated with podocyte's function and health; it has potential value to podocyte injury pathogenesis investigation. From these findings, podocyte autophagy has become an attractive therapeutic strategy to ameliorate podocyte injury, and this review will provide an in-depth review on therapeutic targets he podocyte autophagy.
Collapse
Affiliation(s)
- Yoong Mond Teh
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
| | - Siti Aisyah Mualif
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia; Medical Device and Technology Centre (MEDiTEC), Universiti Teknologi Malaysia, Malaysia
| | - Soo Kun Lim
- Renal Division, Department of Medicine, Faculty of Medicine, University of Malaya (UM), Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Recent Advances in Diabetic Kidney Diseases: From Kidney Injury to Kidney Fibrosis. Int J Mol Sci 2021; 22:ijms222111857. [PMID: 34769288 PMCID: PMC8584225 DOI: 10.3390/ijms222111857] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/08/2021] [Accepted: 10/30/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease and end-stage renal disease. The natural history of DKD includes glomerular hyperfiltration, progressive albuminuria, declining estimated glomerular filtration rate, and, ultimately, kidney failure. It is known that DKD is associated with metabolic changes caused by hyperglycemia, resulting in glomerular hypertrophy, glomerulosclerosis, and tubulointerstitial inflammation and fibrosis. Hyperglycemia is also known to cause programmed epigenetic modification. However, the detailed mechanisms involved in the onset and progression of DKD remain elusive. In this review, we discuss recent advances regarding the pathogenic mechanisms involved in DKD.
Collapse
|
12
|
Xu J, Tang Z, He Y, Cai S, Wang B, Zhang S, Wu M, Qian K, Zhang K, Chai B, Chen G, Xu K, Ji H, Xiao J, Wu Y. Dl-3-n-Butylphthalide Ameliorates Diabetic Nephropathy by Ameliorating Excessive Fibrosis and Podocyte Apoptosis. Front Pharmacol 2021; 12:628950. [PMID: 34497508 PMCID: PMC8419457 DOI: 10.3389/fphar.2021.628950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is a common diabetes associated complication. Thus, it is important to understand the pathological mechanism of DN and find the appropriate therapeutic strategy for it. Dl-3-n-Butylphthalide (DL-NBP) has anti-inflammatory and antioxidant effects, and been widely used for the treatment of stroke and cardiovascular diseases. In this study, we selected three different doses (20, 60, and 120 mg⋅kg-1 d-1) of DL-NBP and attempted to elucidate its role and molecular mechanism underlying DN. We found that DL-NBP, especially at the dose of 60 or 120 mg⋅kg-1 d-1, could significantly ameliorate diabetes-induced elevated blood urea nitrogen (BUN) and creatinine level, and alleviate renal fibrosis. Additionally, the elevated expressions of collagen and α-smooth muscle actin (α-SMA) in the kidney from db/db mice were found to be significantly suppressed after DL-NBP treatment. Furthermore, mechanistic studies revealed that DL-NBP inhibits pro-inflammatory cytokine levels, thereby ameliorating the development of renal fibrosis. Moreover, we found that DL-NBP could not only reduce the endoplasmic reticulum stress (ERS), but also suppress activation of the renin-angiotensin system to inhibit vascular endothelial growth factor (VEGF) level, which subsequently reduces the podocyte apoptosis in kidney of db/db mice. In a word, our findings suggest that DL-NBP may be a potential therapeutic drug in the treatment of DN.
Collapse
Affiliation(s)
- Jingyu Xu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Zonghao Tang
- Drug Discovery Research Center, Key Laboratory of Medical Electrophysiology of Ministry of Education, Southwest Medical University, Luzhou, China
| | - Youwu He
- Department of hand and plastic surgery, The First People's Hospital of Yuhang District, Hangzhou, China
| | - Shufang Cai
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Beini Wang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Susu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Man Wu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Kai Qian
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Kailun Zhang
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Bo Chai
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Guorong Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Hao Ji
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yanqing Wu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
13
|
Yu N, Yang L, Ling L, Liu Y, Yu Y, Wu Q, Gu Y, Niu J. Curcumin attenuates angiotensin II-induced podocyte injury and apoptosis by inhibiting endoplasmic reticulum stress. FEBS Open Bio 2020; 10:1957-1966. [PMID: 32770719 PMCID: PMC7530386 DOI: 10.1002/2211-5463.12946] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/21/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Podocytes are an important component of the glomerular filtration barrier in the kidneys. The dysfunction and apoptosis of podocytes are important factors that can lead to the progression of chronic kidney disease (CKD). In CKD, angiotensin II is continuously elevated in circulation and is considered to have key roles in inducing podocyte injury and apoptosis. Curcumin is a hydrophobic polyphenolic compound extracted from turmeric. Increasing evidence demonstrates that curcumin has a protective effect on the kidneys in CKD. However, the mechanisms mediating this protective effect remain unclear. The aim of this study was to explore whether curcumin could protect against angiotensin II‐induced injury and apoptosis of podocytes. We performed western blotting, immunofluorescence, phalloidin staining, and terminal deoxynucleotidyl transferase nick‐end labeling staining to observe the expression level of podocyte‐specific proteins, apoptosis‐related proteins, and the arrangement of F‐actin. We found that curcumin could reverse angiotensin II‐induced podocyte injury and apoptosis in a dose‐dependent manner. In addition, curcumin dose‐dependently attenuated a pro‐apoptotic pathway, activated by angiotensin II‐induced endoplasmic reticulum stress. Conversely, the protective effects of curcumin were impaired upon addition of tunicamycin, an activator of endoplasmic reticulum stress. Thus, we speculate that curcumin protects against angiotensin II‐induced podocyte injury and apoptosis, at least partly by inhibiting endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Nan Yu
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Lin Yang
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Lilu Ling
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yuan Liu
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ying Yu
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qing Wu
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yong Gu
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianying Niu
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Gowd V, Kang Q, Wang Q, Wang Q, Chen F, Cheng KW. Resveratrol: Evidence for Its Nephroprotective Effect in Diabetic Nephropathy. Adv Nutr 2020; 11:1555-1568. [PMID: 32577714 PMCID: PMC7666903 DOI: 10.1093/advances/nmaa075] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/08/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes mellitus (DM). Dietary habits play a major role in determining the onset and progression of DM-related disorders and a proper diet (rich in fruits and vegetables) can delay or prevent the process of DM pathogenesis. Thus, increasing attention has been paid to polyphenols and polyphenol-rich foods since their increased intake has been associated with a reduced incidence of DM and its associated complications. Resveratrol is a polyphenolic phytoalexin that is mainly found in grapevines and berries. It is available in various pharmaceutical dosages and is widely recommended as a dietary supplement due to its beneficial effects. Remarkably, resveratrol's capability to effectively lower blood glucose levels without any side effects has been amply demonstrated in many in vitro and in vivo studies. Herein, we comprehensively review and discuss the nephroprotective effect of resveratrol during DN and its associated mechanisms. Resveratrol exerts its nephroprotective effects via various mechanisms including reducing oxidative stress and advanced glycation end-product (AGE) production, stimulating autophagy, inhibiting endoplasmic reticulum (ER) stress and inflammation, ameliorating lipotoxicity, activating the AMP kinase (AMPK) pathway, and modulating angiogenesis. Moreover, the use of resveratrol as an adjuvant to conventional antidiabetic therapies could be an effective approach to manage DN in humans. However, evidence is scarce to support whether resveratrol has beneficial effects in humans during DN. Therefore, clinical studies are warranted to elucidate resveratrol's role against DN.
Collapse
Affiliation(s)
- Vemana Gowd
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Qingzheng Kang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Qi Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China,Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, Beijing, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | | |
Collapse
|
15
|
Chen Y, Jiang W, Liu X, Du Y, Liu L, Ordovas JM, Lai CQ, Shen L. Curcumin supplementation improves heat-stress-induced cardiac injury of mice: physiological and molecular mechanisms. J Nutr Biochem 2020; 78:108331. [DOI: 10.1016/j.jnutbio.2019.108331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/13/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022]
|
16
|
Yu S, Ren Q, Yu L, Tan J, Xia ZK. Role of autophagy in Puromycin Aminonucleoside-induced podocyte apoptosis. J Recept Signal Transduct Res 2020; 40:273-280. [PMID: 32102592 DOI: 10.1080/10799893.2020.1731536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: The aim of our study is to investigate the relationship between podocyte autophagy and apoptosis induced by Puromycin Aminonucleoside (PAN) and to clarify its mechanism.Methods: Podocytes were cultured in vitro. The apoptosis rates of each group were detected using flow cytometry. The expression of LC3-II protein and changes in distribution were detected through laser scanning confocal microscope, and the western blot protocol was employed for detection of protein expression of LC3-II. The autophagosomes were detected by transmission electron microscopy.Results: In this study, We found that autophagosome increased followed by apoptosis after podocyte injury. Furthermore, we conformed that the activation of autophagy could inhibit the apoptosis to alleviate the injury of podocyte at an early stage.Conclusions: Autophagy occurred earlier before apoptosis and autophagy mediated podocyte apoptosis induced by PAN. These findings indicate that autophagy may become a novel therapeutic target for the treatment of podocyte injury and proteinuria in the future.
Collapse
Affiliation(s)
- Shengyou Yu
- Department of Pediatrics, Jinling Hospital, The first school of clinical Medicine, Southern Medical University, Nanjing, P. R. China.,Department of Pediatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P. R. China
| | - Qi Ren
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou, P. R. China
| | - Li Yu
- Department of Pediatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P. R. China
| | - Junjie Tan
- Department of Pediatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P. R. China
| | - Zheng Kun Xia
- Department of Pediatrics, Jinling Hospital, The first school of clinical Medicine, Southern Medical University, Nanjing, P. R. China
| |
Collapse
|
17
|
Podocyte autophagy is associated with foot process effacement and proteinuria in patients with minimal change nephrotic syndrome. PLoS One 2020; 15:e0228337. [PMID: 31978139 PMCID: PMC6980606 DOI: 10.1371/journal.pone.0228337] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a cellular mechanism involved in the bulk degradation of proteins and turnover of organelle. Several studies have shown the significance of autophagy of the renal tubular epithelium in rodent models of tubulointerstitial disorder. However, the role of autophagy in the regulation of human glomerular diseases is largely unknown. The current study aimed to demonstrate morphological evidence of autophagy and its association with the ultrastructural changes of podocytes and clinical data in patients with idiopathic nephrotic syndrome, a disease in which patients exhibit podocyte injury. The study population included 95 patients, including patients with glomerular disease (minimal change nephrotic syndrome [MCNS], n = 41; idiopathic membranous nephropathy [IMN], n = 37) and 17 control subjects who underwent percutaneous renal biopsy. The number of autophagic vacuoles and the grade of foot process effacement (FPE) in podocytes were examined by electron microscopy (EM). The relationships among the expression of autophagic vacuoles, the grade of FPE, and the clinical data were determined. Autophagic vacuoles were mainly detected in podocytes by EM. The microtubule-associated protein 1 light chain 3 (LC3)-positive area was co-localized with the Wilms tumor 1 (WT1)-positive area on immunofluorescence microscopy, which suggested that autophagy occurred in the podocytes of patients with MCNS. The number of autophagic vacuoles in the podocytes was significantly correlated with the podocyte FPE score (r = -0.443, p = 0.004), the amount of proteinuria (r = 0.334, p = 0.033), and the level of serum albumin (r = -0.317, p = 0.043) in patients with MCNS. The FPE score was a significant determinant for autophagy after adjusting for the age in a multiple regression analysis in MCNS patients (p = 0.0456). However, such correlations were not observed in patients with IMN or in control subjects. In conclusion, the results indicated that the autophagy of podocytes is associated with FPE and severe proteinuria in patients with MCNS. The mechanisms underlying the activation of autophagy in association with FPE in podocytes should be further investigated in order to elucidate the pathophysiology of MCNS.
Collapse
|
18
|
Zheng D, Tao M, Liang X, Li Y, Jin J, He Q. p66Shc regulates podocyte autophagy in high glucose environment through the Notch-PTEN-PI3K/Akt/mTOR pathway. Histol Histopathol 2019; 35:405-415. [PMID: 31650524 DOI: 10.14670/hh-18-178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Autophagy has been found to be involved in podocyte injury, which is a key factor in the progression of diabetic kidney disease (DKD). p66Shc is an important protein adaptor that regulates production of reactive oxygen species (ROS) and induction of apoptosis, and is a novel biomarker for oxidative damage of renal tubules. Our preliminary studies showed that p66Shc expression in podocytes of DKD patients is increased, while autophagic flux and podocyte number is decreased in DKD patients. The mechanism by which p66Shc may regulate podocyte autophagy and injury remains unknown. The present study aimed to investigate the molecular function of p66Shc under high glucose condition and its possible therapeutic utility in DKD. METHODS We histologically evaluated kidney injury in a streptozocin (STZ)-induced mouse model of diabetes using HE, PAS, PASM, and Masson staining and assessed glomerular structure by transmission electron microscopy. The apoptosis rate of high glucose-treated podocytes was assessed by TUNEL and Annexin V/PI staining. Markers of podocyte autophagy were measured by immunofluorescence and western blotting. DHE/ET fluorescence quantification was used for ROS detection and quantification. RESULTS Urine creatinine, serum creatinine, urinary microalbumin, and p66Shc expression were significantly increased in STZ-induced diabetic mice. Cultured MPC5 podocytes subjected to high glucose showed reduced viability, and p66Shc overexpression further accelerated apoptosis. p66Shc knockdown enhanced HG-induced autophagy, while p66Shc overexpression reduced the expression of PTEN and increased the expression of mTOR and phospho-mTOR. LC3 protein expression was higher in cells with p66Shc knockdown, indicating that activation of p66Shc inhibits podocyte autophagy. DAPT, an inhibitor of the Notch pathway, downregulated the expression of p66Shc. CONCLUSION These findings indicate that p66Shc inhibits podocyte autophagy and induces apoptosis through the Notch -PTEN-PI3K/Akt/ mTOR signaling pathway in high glucose environment, providing novel evidence for its potential role in DKD treatment.
Collapse
Affiliation(s)
- Danna Zheng
- Zhejiang Chinese Medical University, Zhejiang, PR China.,Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang, PR China.,People's Hospital of Hangzhou Medical College, Zhejiang, PR China.,Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Zhejiang, PR China
| | - Mei Tao
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang, PR China.,People's Hospital of Hangzhou Medical College, Zhejiang, PR China.,Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Zhejiang, PR China
| | - Xudong Liang
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang, PR China.,People's Hospital of Hangzhou Medical College, Zhejiang, PR China.,Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Zhejiang, PR China
| | - Yiwen Li
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang, PR China.,People's Hospital of Hangzhou Medical College, Zhejiang, PR China.,Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Zhejiang, PR China
| | - Juan Jin
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang, PR China.,People's Hospital of Hangzhou Medical College, Zhejiang, PR China.,Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Zhejiang, PR China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang, PR China.,People's Hospital of Hangzhou Medical College, Zhejiang, PR China.,Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Zhejiang, PR China
| |
Collapse
|
19
|
Wang L, Ning N, Wang C, Hou X, Yuan Y, Ren Y, Sun C, Yan Z, Wang X, Liu H. Endoplasmic reticulum stress contributed to β1-adrenoceptor autoantibody-induced reduction of autophagy in cardiomyocytes. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1016-1025. [PMID: 31553425 DOI: 10.1093/abbs/gmz089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/22/2019] [Accepted: 07/15/2019] [Indexed: 12/31/2022] Open
Abstract
Autophagy reduction has been confirmed as an important mechanism in apoptosis induction. Our previous study showed that decreased autophagy induced by β1-adrenoceptor autoantibodies (β1-AAs) enhanced cardiomyocyte apoptosis and contributed to heart failure progression. Endoplasmic reticulum stress (ERS) is known to be an important mechanism in intracellular homeostasis and is closely related to autophagy. However, ERS in β1-AA-induced autophagy dysfunction of cardiomyocytes remains unclear. In this study, we used an active immunization rat model and H9c2 cardiomyocytes to study the role of ERS in β1-AA-induced autophagy. Results showed that prolonged action of β1-AAs significantly reduced the autophagy of myocardial tissues and H9c2 cardiomyocytes, and ERS and its related apoptotic pathways were significantly activated. Moreover, mRFP-GFP-LC3 double-labeled adenoviruses were used to detect cardiomyocyte autophagic flux to confirm that β1-AAs caused a significant decrease in autophagic flux in H9c2 cardiomyocytes. The ERS inhibitor, 4-phenylbutyrate (4-PBA), partially attenuated the β1-AA-induced reduction of cardiomyocyte autophagy, consistent with the effect of the mammalian target of rapamycin inhibitor rapamycin (Rapa). Compared to the pretreatment with 4-PBA or Rapa alone, pretreatment with the combination of 4-PBA and Rapa had a greater effect on attenuating the β1-AA-induced decrease in autophagy and β1-AA-induced apoptosis in cardiomyocytes. This study provides an experimental basis for the role of β1-AAs in the homeostatic maintenance of cardiomyocytes in patients with heart failure with respect to autophagy and ERS.
Collapse
Affiliation(s)
- Li Wang
- Department of Pathology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Na Ning
- Department of Pathology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Changtu Wang
- Department of Pathology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaohong Hou
- Department of Pathology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Yuan Yuan
- Laboratory of Morphology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Yanan Ren
- Department of Physiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Cong Sun
- Department of Pathology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Zi Yan
- Department of Physiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaohui Wang
- Department of Pathology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
- Laboratory of Morphology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Huirong Liu
- Department of Physiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
20
|
Ramesh J, Ronsard L, Gao A, Venugopal B. Autophagy Intertwines with Different Diseases-Recent Strategies for Therapeutic Approaches. Diseases 2019; 7:diseases7010015. [PMID: 30717078 PMCID: PMC6473623 DOI: 10.3390/diseases7010015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a regular and substantial “clear-out process” that occurs within the cell and that gets rid of debris that accumulates in membrane-enclosed vacuoles by using enzyme-rich lysosomes, which are filled with acids that degrade the contents of the vacuoles. This machinery is well-connected with many prevalent diseases, including cancer, HIV, and Parkinson’s disease. Considering that autophagy is well-known for its significant connections with a number of well-known fatal diseases, a thorough knowledge of the current findings in the field is essential in developing therapies to control the progression rate of diseases. Thus, this review summarizes the critical events comprising autophagy in the cellular system and the significance of its key molecules in manifesting this pathway in various diseases for down- or upregulation. We collectively reviewed the role of autophagy in various diseases, mainly neurodegenerative diseases, cancer, inflammatory diseases, and renal disorders. Here, some collective reports on autophagy showed that this process might serve as a dual performer: either protector or contributor to certain diseases. The aim of this review is to help researchers to understand the role of autophagy-regulating genes encoding functional open reading frames (ORFs) and its connection with diseases, which will eventually drive better understanding of both the progression and suppression of different diseases at various stages. This review also focuses on certain novel therapeutic strategies which have been published in the recent years based on targeting autophagy key proteins and its interconnecting signaling cascades.
Collapse
Affiliation(s)
- Janani Ramesh
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India.
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Larance Ronsard
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02140, USA.
| | - Anthony Gao
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Bhuvarahamurthy Venugopal
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India.
| |
Collapse
|
21
|
Chen Y, Zhao X, Li J, Zhang L, Li R, Zhang H, Liao R, Liu S, Shi W, Liang X. Amino acid starvation promotes podocyte autophagy through mammalian target of rapamycin inhibition and transcription factor EB activation. Mol Med Rep 2018; 18:4342-4348. [PMID: 30221708 PMCID: PMC6172392 DOI: 10.3892/mmr.2018.9438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/06/2018] [Indexed: 02/06/2023] Open
Abstract
Autophagy is important for maintaining normal physiological functions and podocyte cell homeostasis. Amino acid signaling is an important upstream signaling pathway for autophagy regulation. However, the function and the associated mechanism of amino acid signaling in podocyte autophagy is unclear. The present study used normal culture medium and amino acid deprivation medium to culture podocytes in vitro. Multiple methods were utilized to detect autophagic activity including western blot analysis to measure the levels of microtubule-associated protein 1 light chain 3 (LC3) II and beclin1, reverse transcription-quantitative polymerase chain reaction was performed to evaluate the levels of LC3 mRNA and transmission electron microscopy was conducted to observe autophagosomes. In addition, tandem green fluorescent protein (GFP)-monomeric red fluorescent protein (mRFP)-LC3 adenoviruses were employed to transduce podocytes to observe autophagic flux. Furthermore, the present study examined the effects of amino acid signaling on mammalian target of rapamycin (mTOR) activity and the nuclear translocation of transcription factor EB (TFEB), a core regulator of autophagy, using western blotting and immunofluorescence. The results revealed that amino acid starvation promoted the expression of LC3II and beclin1, and increased the number of autophagosomes and autolysosomes. Amino acid starvation inhibited mTOR activity, and promoted nuclear translocation and TFEB activity. Inhibition of TFEB blocked amino acid starvation-induced autophagy. These results indicated that amino acid starvation stimulated podocyte autophagy, and thus suggested that mTOR suppression and TFEB activation may mediate amino acid starvation-induced autophagy in podocytes.
Collapse
Affiliation(s)
- Yuanhan Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Xingchen Zhao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Jiaxin Li
- Cardiac Surgical Intensive Care Unit, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Li Zhang
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Ruizhao Li
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Hong Zhang
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Ruyi Liao
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Shuangxin Liu
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Wei Shi
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Xinling Liang
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
22
|
Baek E, Lee JS, Lee GM. Untangling the mechanism of 3‐methyladenine in enhancing the specific productivity: Transcriptome analysis of recombinant Chinese hamster ovary cells treated with 3‐methyladenine. Biotechnol Bioeng 2018; 115:2243-2254. [DOI: 10.1002/bit.26777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/05/2018] [Accepted: 06/21/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Eric Baek
- Department of Biological SciencesKAISTDaejeon Republic of Korea
| | - Jae Seong Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkKgs. Lyngby Denmark
- Department of Molecular Science and TechnologyAjou UniversitySuwon Republic of Korea
| | - Gyun Min Lee
- Department of Biological SciencesKAISTDaejeon Republic of Korea
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkKgs. Lyngby Denmark
| |
Collapse
|
23
|
Abstract
Ultimately, the common final pathway of any glomerular disease is podocyte effacement, podocyte loss, and, eventually, glomerular scarring. There has been a long-standing debate on the underlying mechanisms for podocyte depletion, ranging from necrosis and apoptosis to detachment of viable cells from the glomerular basement membrane. However, this debate still continues because additional pathways of programmed cell death have been reported in recent years. Interestingly, viable podocytes can be isolated out of the urine of proteinuric patients easily, emphasizing the importance of podocyte detachment in glomerular diseases. In contrast, detection of apoptosis and other pathways of programmed cell death in podocytes is technically challenging. In fact, we still are lacking direct evidence showing, for example, the presence of apoptotic bodies in podocytes, leaving the question unanswered as to whether podocytes undergo mechanisms of programmed cell death. However, understanding the mechanisms leading to podocyte depletion is of particular interest because future therapeutic strategies might interfere with these to prevent glomerular scarring. In this review, we summarize our current knowledge on podocyte cell death, the different molecular pathways and experimental approaches to study these, and, finally, focus on the mechanisms that prevent the onset of programmed cell death.
Collapse
Affiliation(s)
- Fabian Braun
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, Germany
| | - Jan U Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, Germany.
| |
Collapse
|
24
|
Yang H, Wu S. Retracted Article: Ligustrazine attenuates renal damage by inhibiting endoplasmic reticulum stress in diabetic nephropathy by inactivating MAPK pathways. RSC Adv 2018; 8:21816-21822. [PMID: 35541710 PMCID: PMC9080983 DOI: 10.1039/c8ra01674g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/13/2018] [Indexed: 01/15/2023] Open
Abstract
Diabetic nephropathy (DN) is a major cause of chronic kidney disease around the world.
Collapse
Affiliation(s)
- Hongling Yang
- Department of Nephrology
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital
- Chengdu
- China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital
| | - Shukun Wu
- Department of Nephrology
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital
- Chengdu
- China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital
| |
Collapse
|
25
|
Cheng YC, Chen CA, Chen HC. Endoplasmic reticulum stress-induced cell death in podocytes. Nephrology (Carlton) 2017; 22 Suppl 4:43-49. [DOI: 10.1111/nep.13145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Yu-Chi Cheng
- Division of Nephrology, Department of Internal Medicine; Kaohsiung Medical University Hospital, Kaohsiung Medical University; Kaohsiung Taiwan
| | - Chien-An Chen
- Division of Nephrology; Sinlau Hospital; Tainan Taiwan
| | - Hung-Chun Chen
- Division of Nephrology, Department of Internal Medicine; Kaohsiung Medical University Hospital, Kaohsiung Medical University; Kaohsiung Taiwan
| |
Collapse
|
26
|
Xu L, Fan Q, Wang X, Li L, Lu X, Yue Y, Cao X, Liu J, Zhao X, Wang L. Ursolic acid improves podocyte injury caused by high glucose. Nephrol Dial Transplant 2017; 32:1285-1293. [PMID: 26567247 DOI: 10.1093/ndt/gfv382] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/09/2015] [Indexed: 12/16/2023] Open
Abstract
BACKGROUND Autophagy plays an important role in the maintenance of podocyte homeostasis. Reduced autophagy may result in limited renal cell function during exposure to high glucose conditions. In this study we investigated the effects of ursolic acid (UA) on autophagy and podocyte injury, which were induced by high glucose. METHODS Conditionally immortalized murine podocytes were cultured in media supplemented with high glucose and the effects of the PI3K inhibitor LY294002 and UA on protein expression were determined. miR-21 expression was detected by real-time RT-PCR. Activation of the PTEN-PI3K/Akt/mTOR pathway, expression of autophagy-related proteins and expression of podocyte marker proteins were determined by western blot. Immunofluorescence was used to monitor the accumulation of LC3 puncta. Autophagosomes were also observed by transmission electron microscopy. RESULTS During exposure to high glucose conditions, the normal level of autophagy was reduced in podocytes, and this defective autophagy induced podocyte injury. Increased miR-21 expression, decreased PTEN expression and abnormal activation of the PI3K/Akt/mTOR pathway were observed in cells that were cultured in high glucose conditions. UA and LY294002 reduced podocyte injury through the restoration of defective autophagy. Our data suggest that UA inhibits miR-21 expression and increases PTEN expression, which in turn inhibits Akt and mTOR and restores normal levels of autophagy. CONCLUSIONS Our data suggest that podocyte injury is associated with reduced levels of autophagy during exposure to high glucose conditions, UA attenuated podocyte injury via an increase in autophagy through miR-21 inhibition and PTEN expression, which inhibit the abnormal activation of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Li Xu
- Department of Nephrology, First Hospital of China Medical University, Shenyang 110001, China
| | - Qiuling Fan
- Department of Nephrology, First Hospital of China Medical University, Shenyang 110001, China
| | - Xu Wang
- Department of Gastroenterology, First Hospital of China Medical University, Shenyang, China
| | - Lin Li
- Department of Nephrology, First Hospital of China Medical University, Shenyang 110001, China
| | - Xinxing Lu
- Department of Nephrology, First Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Yue
- Department of Nephrology, First Hospital of China Medical University, Shenyang 110001, China
| | - Xu Cao
- Department of Nephrology, First Hospital of China Medical University, Shenyang 110001, China
| | - Jia Liu
- Department of Nephrology, First Hospital of China Medical University, Shenyang 110001, China
| | - Xue Zhao
- Department of Nephrology, First Hospital of China Medical University, Shenyang 110001, China
| | - Lining Wang
- Department of Nephrology, First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
27
|
Afrin MR, Arumugam S, Rahman MA, Karuppagounder V, Harima M, Suzuki H, Miyashita S, Suzuki K, Ueno K, Yoneyama H, Watanabe K. Curcumin reduces the risk of chronic kidney damage in mice with nonalcoholic steatohepatitis by modulating endoplasmic reticulum stress and MAPK signaling. Int Immunopharmacol 2017; 49:161-167. [DOI: 10.1016/j.intimp.2017.05.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/16/2017] [Accepted: 05/29/2017] [Indexed: 12/26/2022]
|
28
|
Astragaloside IV protects against podocyte injury via SERCA2-dependent ER stress reduction and AMPKα-regulated autophagy induction in streptozotocin-induced diabetic nephropathy. Sci Rep 2017; 7:6852. [PMID: 28761152 PMCID: PMC5537362 DOI: 10.1038/s41598-017-07061-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/26/2017] [Indexed: 12/25/2022] Open
Abstract
Aberrant endoplasmic reticulum (ER) stress and autophagy are associated with diabetic nephropathy. Here we investigated the effect of astragaloside IV (AS-IV) on the progression of diabetic nephropathy (DN) and the underlying mechanism involving ER stress and autophagy in streptozotocin (STZ)-induced diabetic mice and high glucose (HG)-incubated podocytes. The diabetic mice developed progressive albuminuria and glomerulosclerosis within 8 weeks, which were significantly ameliorated by AS-IV treatment in a dose-dependent manner. Moreover, diabetes or HG-induced podocyte apoptosis was markedly attenuated by AS-IV, paralleled by a marked remission in ER stress and a remarkable restoration in impaired autophagy, which were associated with a significant improvement in the expression of sarcoendoplasmic reticulum Ca2+ ATPase 2b (SERCA2b) and AMP-activated protein kinase α (AMPKα) phosphorylation, respectively. Knockdown of SERCA2 in podocytes induced ER stress and largely abolished the protective effect of AS-IV, but had no obvious effect on the expression of autophagy-associated proteins. On the other hand, blockade of either autophagy induction or AMPKα activation could also significantly mitigate AS-IV-induced beneficial effect. Collectively, these results suggest that AS-IV prevented the progression of DN, which is mediated at least in part by SERCA2-dependent ER stress attenuation and AMPKα-promoted autophagy induction.
Collapse
|
29
|
Yi M, Zhang L, Liu Y, Livingston MJ, Chen JK, Nahman NS, Liu F, Dong Z. Autophagy is activated to protect against podocyte injury in adriamycin-induced nephropathy. Am J Physiol Renal Physiol 2017; 313:F74-F84. [PMID: 28404589 DOI: 10.1152/ajprenal.00114.2017] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 11/22/2022] Open
Abstract
Podocytes are highly differentiated epithelial cells wrapping glomerular capillaries to form the filtration barrier in kidneys. As such, podocyte injury or dysfunction is a critical pathogenic event in glomerular disease. Autophagy plays an important role in the maintenance of the homeostasis and function of podocytes. However, it is less clear whether and how autophagy contributes to podocyte injury in glomerular disease. Here, we have examined the role of autophagy in adriamycin-induced nephropathy, a classic model of glomerular disease. We show that autophagy was induced by adriamycin in cultured podocytes in vitro and in podocytes in mice. In cultured podocytes, activation of autophagy with rapamycin led to the suppression of adriamycin-induced apoptosis, whereas inhibition of autophagy with chloroquine enhanced podocyte apoptosis during adriamycin treatment. To determine the role of autophagy in vivo, we established an inducible podocyte-specific autophagy-related gene 7 knockout mouse model (Podo-Atg7-KO). Compared with wild-type littermates, Podo-Atg7-KO mice showed higher levels of podocyte injury, glomerulopathy, and proteinuria during adriamycin treatment. Together, these observations support an important role of autophagy in protecting podocytes under the pathological conditions of glomerular disease, suggesting the therapeutic potential of autophagy induction.
Collapse
Affiliation(s)
- Mixuan Yi
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia; and
| | - Lei Zhang
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia; and
| | - Yu Liu
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia; and
| | - Man J Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia; and
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia; and
| | - N Stanley Nahman
- Department of Medicine, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Fuyou Liu
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Dong
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; .,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia; and
| |
Collapse
|
30
|
Li YB, Li XR, Yang T, Wang JX, Zhao XF. The steroid hormone 20-hydroxyecdysone promotes switching from autophagy to apoptosis by increasing intracellular calcium levels. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:73-86. [PMID: 27777042 DOI: 10.1016/j.ibmb.2016.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 06/06/2023]
Abstract
Autophagy regulates cell survival (or cell death in several cases), whereas apoptosis regulates cell death. However, the relationship between autophagy and apoptosis and the regulative mechanism is unclear. We report that steroid hormone 20-hydroxyecdysone (20E) promotes switching from autophagy to apoptosis by increasing intracellular calcium levels in the midgut of the lepidopteran insect Helicoverpa armigera. Autophagy and apoptosis sequentially occurred during midgut programmed cell death under 20E regulation, in which lower concentrations of 20E induced microtubule-associated protein 1 light chain 3-phosphatidylethanolamine (LC3-II, also known as autophagy-related gene 8, ATG8) expression and autophagy. High concentrations of 20E induced cleavage of ATG5 to NtATG5 and pro-caspase-3 to active caspase-3, which led to a switch from autophagy to apoptosis. Blocking autophagy by knockdown of ATG5, ATG7, or ATG12, or with the autophagy inhibitor 3-methyladenine, inhibited 20E-induced autophagy and apoptosis. Blocking apoptosis by using the apoptosis inhibitor Ac-DEVD-CHO did not prevent 20E-induced autophagy, suggesting that apoptosis relies on autophagy. ATG5 knockdown resulted in abnormal pupation and delayed pupation time. High concentrations of 20E induced high levels of intracellular Ca2+, NtATG5, and active caspase-3, which mediated the switch from autophagy to apoptosis. Blocking 20E-mediated increase of cellular Ca2+ caused a decrease of NtATG5 and active caspase-3 and repressed the transformation from autophagy to apoptosis, thereby promoting cell survival. 20E induces an increase in the concentration of intracellular Ca2+, thereby switching autophagic cell survival to apoptotic cell death.
Collapse
Affiliation(s)
- Yong-Bo Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiang-Ru Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Ting Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
31
|
Autophagy in kidney disease and aging: lessons from rodent models. Kidney Int 2016; 90:950-964. [DOI: 10.1016/j.kint.2016.04.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 04/17/2016] [Accepted: 04/20/2016] [Indexed: 12/14/2022]
|
32
|
Lenoir O, Jasiek M, Hénique C, Guyonnet L, Hartleben B, Bork T, Chipont A, Flosseau K, Bensaada I, Schmitt A, Massé JM, Souyri M, Huber TB, Tharaux PL. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy 2016; 11:1130-45. [PMID: 26039325 DOI: 10.1080/15548627.2015.1049799] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The glomerulus is a highly specialized capillary tuft, which under pressure filters large amounts of water and small solutes into the urinary space, while retaining albumin and large proteins. The glomerular filtration barrier (GFB) is a highly specialized filtration interface between blood and urine that is highly permeable to small and midsized solutes in plasma but relatively impermeable to macromolecules such as albumin. The integrity of the GFB is maintained by molecular interplay between its 3 layers: the glomerular endothelium, the glomerular basement membrane and podocytes, which are highly specialized postmitotic pericytes forming the outer part of the GFB. Abnormalities of glomerular ultrafiltration lead to the loss of proteins in urine and progressive renal insufficiency, underlining the importance of the GFB. Indeed, albuminuria is strongly predictive of the course of chronic nephropathies especially that of diabetic nephropathy (DN), a leading cause of renal insufficiency. We found that high glucose concentrations promote autophagy flux in podocyte cultures and that the abundance of LC3B II in podocytes is high in diabetic mice. Deletion of Atg5 specifically in podocytes resulted in accelerated diabetes-induced podocytopathy with a leaky GFB and glomerulosclerosis. Strikingly, genetic alteration of autophagy on the other side of the GFB involving the endothelial-specific deletion of Atg5 also resulted in capillary rarefaction and accelerated DN. Thus autophagy is a key protective mechanism on both cellular layers of the GFB suggesting autophagy as a promising new therapeutic strategy for DN.
Collapse
Key Words
- BUN, blood urea nitrogen
- CASP3, caspase 3, apoptosis-related cysteine peptidase
- Cdh5, cadherin 5
- DM, diabetes mellitus
- DN, diabetic nephropathy
- ESRD, end-stage renal disease
- GBM, glomerular basement membrane
- GEC, glomerular endothelial cells
- GFB, glomerular filtration barrier
- MAP1LC3A/B/LC3A/B), microtubule-associated protein 1 light chain 3 α/β
- MTOR, mechanistic target of rapamycin
- Nphs2, nephrosis 2, podocin
- SQSTM1, sequestosome 1
- STZ, streptozotocin
- TEM, transmission electron microscopy
- TUBA, tubulin
- autophagy
- diabetic nephropathy
- endothelial cells
- podocytes
- proteinuria
- sclerosis
- α, WT1, Wilms tumor 1
Collapse
Affiliation(s)
- Olivia Lenoir
- a Paris Cardiovascular Research Center; Institut National de la Santé et de la Recherche Médicale (INSERM) ; Paris , France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wnt/β-catenin signalling and podocyte dysfunction in proteinuric kidney disease. Nat Rev Nephrol 2015; 11:535-45. [PMID: 26055352 DOI: 10.1038/nrneph.2015.88] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Podocytes are unique, highly specialized, terminally differentiated cells that are integral components of the kidney glomerular filtration barrier. Podocytes are vulnerable to a variety of injuries and in response they undergo a series of changes ranging from hypertrophy, autophagy, dedifferentiation, mesenchymal transition and detachment to apoptosis, depending on the nature and extent of the insult. Emerging evidence indicates that Wnt/β-catenin signalling has a central role in mediating podocyte dysfunction and proteinuria. Wnts are induced and β-catenin is activated in podocytes in various proteinuric kidney diseases. Genetic or pharmacologic activation of β-catenin is sufficient to impair podocyte integrity and causes proteinuria in healthy mice, whereas podocyte-specific ablation of β-catenin protects against proteinuria after kidney injury. Mechanistically, Wnt/β-catenin controls the expression of several key mediators implicated in podocytopathies, including Snail1, the renin-angiotensin system and matrix metalloproteinase 7. Wnt/β-catenin also negatively regulates Wilms tumour protein, a crucial transcription factor that safeguards podocyte integrity. Targeted inhibition of Wnt/β-catenin signalling preserves podocyte integrity and ameliorates proteinuria in animal models. This Review highlights advances in our understanding of the pathomechanisms of Wnt/β-catenin signalling in mediating podocyte injury, and describes the therapeutic potential of targeting this pathway for the treatment of proteinuric kidney disease.
Collapse
|
34
|
Wang ZS, Xiong F, Xie XH, Chen D, Pan JH, Cheng L. Astragaloside IV attenuates proteinuria in streptozotocin-induced diabetic nephropathy via the inhibition of endoplasmic reticulum stress. BMC Nephrol 2015; 16:44. [PMID: 25886386 PMCID: PMC4387678 DOI: 10.1186/s12882-015-0031-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 03/12/2015] [Indexed: 12/20/2022] Open
Abstract
Background Diabetic nephropathy (DN) is a major cause of Chronic Kidney Disease and End-Stage Renal Disease throughout the world; however, the reversibility of diabetic nephropathy remains controversial. Endoplasmic reticulum (ER) stress plays an important role in the pathogenesis of DN. Astragaloside IV (AS-IV) is derived from Astragalus membranaceus (Fisch) Bge, a widely used traditional herbal medicine in China, and has diverse pharmacological activities including the attenuation of podocyte injury and amelioration of proteinuria in idiopathic nephrotic syndrome. The present study aimed to investigate the effect and mechanism of AS-IV on proteinuria in the rat streptozotocin (STZ)-induced model of diabetes. Methods Male Sprague–Dawley (SD) rats were randomly divided into four groups: normal control (Normal group), diabetic nephropathy (Model group), diabetic nephropathy plus AS-IV treatment (AS-IV group) and diabetic nephropathy plus 4-phenyl butyric acid treatment (PBA group). ER stress was induced in cultured human podocytes, pretreated with or without AS-IV, with tunicamycin (TM). At the end of 8 weeks, serum creatinine (Scr), blood urea nitrogen (BUN) and 24-hour urinary protein excretion rate (UAER) were determined. Renal morphology was examined after periodic acid-Schiff staining of kidney sections. Apoptosis of podocytes was measured by flow cytometry. The total expression and phosphorylation of eIF2α, PERK and JNK, and the expression of CHOP and cleaved caspase-3 were determined by western blotting. The expression of glucose-regulated protein 78 (GRP78) and 150 kDa oxygen-regulated protein (ORP150) mRNA and protein was determined by real-time PCR and western blotting respectively. Results AS-IV treatment significantly reduced urinary albumin excretion, plasma creatinine and blood urea nitrogen levels, and prevented the mesangial matrix expansion and increase in mean mesangial induced by STZ. AS-IV also prevented the phosphorylation of eIF2α, PERK and JNK, and inhibited the expression of GRP78 and ORP150 markedly, both in vivo and in vitro. AS-IV inhibited the TM-induced apoptosis of podocytes, concomitant with decreased CHOP expression and cleaved caspase-3. Conclusions This study supports the hypothesis that AS-IV reduces proteinuria and attenuates diabetes, which is associated with decreased ER stress. This might be an important mechanism in the renoprotective function of AS-IV in the pathogenesis of DN.
Collapse
Affiliation(s)
- Zeng Si Wang
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, 430000, Hubei Province, PR China.
| | - Fei Xiong
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, 430000, Hubei Province, PR China.
| | - Xiao Hang Xie
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, 430000, Hubei Province, PR China.
| | - Dan Chen
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, 430000, Hubei Province, PR China.
| | - Jian Hua Pan
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, 430000, Hubei Province, PR China.
| | - Li Cheng
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, 430000, Hubei Province, PR China.
| |
Collapse
|
35
|
Sureshbabu A, Ryter SW, Choi ME. Oxidative stress and autophagy: crucial modulators of kidney injury. Redox Biol 2015; 4:208-14. [PMID: 25613291 PMCID: PMC4803795 DOI: 10.1016/j.redox.2015.01.001] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 12/31/2014] [Accepted: 01/01/2015] [Indexed: 12/21/2022] Open
Abstract
Both acute kidney injury (AKI) and chronic kidney disease (CKD) that lead to diminished kidney function are interdependent risk factors for increased mortality. If untreated over time, end stage renal disease (ESRD) is an inevitable outcome. Acute and chronic kidney diseases occur partly due to imbalance between the molecular mechanisms that govern oxidative stress, inflammation, autophagy and cell death. Oxidative stress refers to the cumulative effects of highly reactive oxidizing molecules that cause cellular damage. Autophagy removes damaged organelles, protein aggregates and pathogens by recruiting these substrates into double membrane vesicles called autophagosomes which subsequently fuse with lysosomes. Mounting evidence suggests that both oxidative stress and autophagy are significantly involved in kidney health and disease. However, very little is known about the signaling processes that link them. This review is focused on understanding the role of oxidative stress and autophagy in kidney diseases. In this review, we also discuss the potential relationships between oxidative stress and autophagy that may enable the development of better therapeutic intervention to halt the progression of kidney disease and promote its repair and resolution. The molecular mechanisms underlying the regulation of oxidative stress responses and autophagy may exhibit considerable cross-talk. The autophagy pathway may be regulated in the context of kidney diseases. Failure or disruption of the autophagy pathway may contribute to the pathogenesis of kidney diseases. Targeting the autophagy pathway may show considerable therapeutic potential in the treatment and management of kidney disorders.
Collapse
Affiliation(s)
- Angara Sureshbabu
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY, USA
| | - Stefan W Ryter
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY, USA
| | - Mary E Choi
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
36
|
Yang Q, Stevenson HL, Scott MJ, Ismail N. Type I interferon contributes to noncanonical inflammasome activation, mediates immunopathology, and impairs protective immunity during fatal infection with lipopolysaccharide-negative ehrlichiae. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:446-61. [PMID: 25481711 DOI: 10.1016/j.ajpath.2014.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/18/2014] [Accepted: 10/09/2014] [Indexed: 12/29/2022]
Abstract
Ehrlichia species are intracellular bacteria that cause fatal ehrlichiosis, mimicking toxic shock syndrome in humans and mice. Virulent ehrlichiae induce inflammasome activation leading to caspase-1 cleavage and IL-18 secretion, which contribute to development of fatal ehrlichiosis. We show that fatal infection triggers expression of inflammasome components, activates caspase-1 and caspase-11, and induces host-cell death and secretion of IL-1β, IL-1α, and type I interferon (IFN-I). Wild-type and Casp1(-/-) mice were highly susceptible to fatal ehrlichiosis, had overwhelming infection, and developed extensive tissue injury. Nlrp3(-/-) mice effectively cleared ehrlichiae, but displayed acute mortality and developed liver injury similar to wild-type mice. By contrast, Ifnar1(-/-) mice were highly resistant to fatal disease and had lower bacterial burden, attenuated pathology, and prolonged survival. Ifnar1(-/-) mice also had improved protective immune responses mediated by IFN-γ and CD4(+) Th1 and natural killer T cells, with lower IL-10 secretion by T cells. Importantly, heightened resistance of Ifnar1(-/-) mice correlated with improved autophagosome processing, and attenuated noncanonical inflammasome activation indicated by decreased activation of caspase-11 and decreased IL-1β, compared with other groups. Our findings demonstrate that IFN-I signaling promotes host susceptibility to fatal ehrlichiosis, because it mediates ehrlichia-induced immunopathology and supports bacterial replication, perhaps via activation of noncanonical inflammasomes, reduced autophagy, and suppression of protective CD4(+) T cells and natural killer T-cell responses against ehrlichiae.
Collapse
Affiliation(s)
- Qin Yang
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Heather L Stevenson
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Melanie J Scott
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nahed Ismail
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
37
|
Cheng YC, Chang JM, Chen CA, Chen HC. Autophagy modulates endoplasmic reticulum stress-induced cell death in podocytes: a protective role. Exp Biol Med (Maywood) 2014; 240:467-76. [PMID: 25322957 DOI: 10.1177/1535370214553772] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 08/04/2014] [Indexed: 01/13/2023] Open
Abstract
Endoplasmic reticulum stress occurs in a variety of patho-physiological mechanisms and there has been great interest in managing this pathway for the treatment of clinical diseases. Autophagy is closely interconnected with endoplasmic reticulum stress to counteract the possible injurious effects related with the impairment of protein folding. Studies have shown that glomerular podocytes exhibit high rate of autophagy to maintain as terminally differentiated cells. In this study, podocytes were exposed to tunicamycin and thapsigargin to induce endoplasmic reticulum stress. Thapsigargin/tunicamycin treatment induced a significant increase in endoplasmic reticulum stress and of cell death, represented by higher GADD153 and GRP78 expression and propidium iodide flow cytometry, respectively. However, thapsigargin/tunicamycin stimulation also enhanced autophagy development, demonstrated by monodansylcadaverine assay and LC3 conversion. To evaluate the regulatory effects of autophagy on endoplasmic reticulum stress-induced cell death, rapamycin (Rap) or 3-methyladenine (3-MA) was added to enhance or inhibit autophagosome formation. Endoplasmic reticulum stress-induced cell death was decreased at 6 h, but was not reduced at 24 h after Rap+TG or Rap+TM treatment. In contrast, endoplasmic reticulum stress-induced cell death increased at 6 and 24 h after 3-MA+TG or 3-MA+TM treatment. Our study demonstrated that thapsigargin/tunicamycin treatment induced endoplasmic reticulum stress which resulted in podocytes death. Autophagy, which counteracted the induced endoplasmic reticulum stress, was simultaneously enhanced. The salvational role of autophagy was supported by adding Rap/3-MA to mechanistically regulate the expression of autophagy and autophagosome formation. In summary, autophagy helps the podocytes from cell death and may contribute to sustain the longevity as a highly differentiated cell lineage.
Collapse
Affiliation(s)
- Yu-Chi Cheng
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jer-Ming Chang
- Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 80708, Taiwan Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-An Chen
- Division of Nephrology, Tainan Sinlau Hospital, Tainan 70142, Taiwan
| | - Hung-Chun Chen
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|