1
|
Plotkin LI, Asad I, Kritikos AE, Sanz N. Role of Cx43 on the Bone Cell Generation, Function, and Survival. Bioelectricity 2023; 5:188-195. [PMID: 37746312 PMCID: PMC10517329 DOI: 10.1089/bioe.2023.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
The presence of gap junction intercellular communication structures in bone cells has been known since the early 1970s, further confirmed by Doty and Marotti at the structural level in the 1980-1990s. Work by Civitelli, Donahue, and others showed the expression of Cx43 at the mRNA and protein levels in all bone cell types: osteoclasts (bone resorbing cells), osteoblasts (bone forming cells), and osteocytes (mature osteoblasts embedded in the bone matrix that regulate the function of both osteoclasts and osteoblasts). While Cx45, Cx46, and Cx37 were also shown to be expressed in bone cells, most studies have focused on Cx43, the most abundant member of the connexin (Cx) family of proteins expressed in bone. The role of Cx43 has been shown to be related to the formation of gap junction intercellular channels, to unopposed hemichannels, and to channel independent functions of the molecule. Cx43 participates in the response of bone cells to pharmacological, hormonal, and mechanical stimuli, and it is involved in the skeletal phenotype with old age. Human and murine studies have shown that mutations of Cx43 lead to oculodentodigital dysplasia and craniometaphyseal dysplasia, both conditions associated with abnormalities in the skeleton. However, whereas substantial advances have been made on the skeletal role of Cx43, further research is needed to understand the basis for the effects of mutated Cx43 and potential ways to prevent the effects of these mutations on bone.
Collapse
Affiliation(s)
- Lilian I. Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, USA
| | - Iqra Asad
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Alex E. Kritikos
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Natasha Sanz
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Protein tyrosine phosphatases in skeletal development and diseases. Bone Res 2022; 10:10. [PMID: 35091552 PMCID: PMC8799702 DOI: 10.1038/s41413-021-00181-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Skeletal development and homeostasis in mammals are modulated by finely coordinated processes of migration, proliferation, differentiation, and death of skeletogenic cells originating from the mesoderm and neural crest. Numerous molecular mechanisms are involved in these regulatory processes, one of which is protein posttranslational modifications, particularly protein tyrosine phosphorylation (PYP). PYP occurs mainly through the action of protein tyrosine kinases (PTKs), modifying protein enzymatic activity, changing its cellular localization, and aiding in the assembly or disassembly of protein signaling complexes. Under physiological conditions, PYP is balanced by the coordinated action of PTKs and protein tyrosine phosphatases (PTPs). Dysregulation of PYP can cause genetic, metabolic, developmental, and oncogenic skeletal diseases. Although PYP is a reversible biochemical process, in contrast to PTKs, little is known about how this equilibrium is modulated by PTPs in the skeletal system. Whole-genome sequencing has revealed a large and diverse superfamily of PTP genes (over 100 members) in humans, which can be further divided into cysteine (Cys)-, aspartic acid (Asp)-, and histidine (His)-based PTPs. Here, we review current knowledge about the functions and regulatory mechanisms of 28 PTPs involved in skeletal development and diseases; 27 of them belong to class I and II Cys-based PTPs, and the other is an Asp-based PTP. Recent progress in analyzing animal models that harbor various mutations in these PTPs and future research directions are also discussed. Our literature review indicates that PTPs are as crucial as PTKs in supporting skeletal development and homeostasis.
Collapse
|
3
|
Mukherjee S, Park JP, Yun JW. Carboxylesterase3 (Ces3) Interacts with Bone Morphogenetic Protein 11 and Promotes Differentiation of Osteoblasts via Smad1/5/9 Pathway. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Xue Y, Li R, Zhao Y, Li L, Zhou Y. Effects of sleeve gastrectomy on bone mass, microstructure of femurs and bone metabolism associated serum factors in obese rats. BMC Endocr Disord 2021; 21:173. [PMID: 34445970 PMCID: PMC8394165 DOI: 10.1186/s12902-021-00843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sleeve gastrectomy (SG) is a profoundly effective operation for severe obese patients, but is closely associated with bone mass loss. Previous studies have reported changes of various serum factors which may be associated with bone mass loss after SG. However, those results are contradictory. In this study, we assessed the effects of SG on bone mass, microstructure of femurs, and changes in bone turnover markers (BTMs), serum adipokines, inflammatory factors and gastrointestinal hormones after SG in high-fat diet (HFD) induced obese rats. METHODS Eight-week-old male Sprague-Dawley (SD) rats were fed with HFD to induce obesity. Then, SG and sham surgery were performed in anesthetized obese rats. SD rats in control group were fed with standard chow. Microstructure of femurs was scanned and analyzed by micro-computed tomography in control group, HFD sham group and HFD SG group. Serum inflammatory factors, adipokines markers, gastrointestinal hormones and BTMs were also measured. RESULTS Bone mineral density (BMD) of trabecular bone in both HFD sham group and HFD SG group were remarkably decreased compared with control group. All serum BTMs were significantly higher in HFD SG group than HFD sham group. In the meantime, serum levels of several important inflammatory factors, gastrointestinal hormones and adipokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, monocyte chemoattractant protein-1(MCP-1), ghrelin, insulin and leptin in HFD SG group were remarkably reduced compared with HFD sham group, whereas glucagon-like peptide-1 (GLP-1), adiponectin, fibroblast growth factor (FGF)-19 and FGF-21 were dramatically increased after SG. Protein tyrosine phosphatase 1B (PTP1B) was significantly increased in the HFD sham group than control group. Spearman's correlation analysis indicated that serum osteocalcin (OC) and 25-hydroxy vitamin D3 (25(OH)D3) were positively correlated with BMD of trabecular bone, whereas serum PTP1B and TNF-α were negatively related to BMD of trabecular bone. CONCLUSIONS SG aggravates bone mass loss and activates bone remodeling in obese rats. Levels of BTMs, adipokines, inflammatory factors, and gastrointestinal hormones could be affected by SG in obese rats. Serum PTP1B level might be associated with abnormal bone mass in obese rats.
Collapse
Affiliation(s)
- Ying Xue
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, No. 389, Xincun Road, Shanghai, 200065 China
| | - Ran Li
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, No. 389, Xincun Road, Shanghai, 200065 China
| | - Yong Zhao
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, No. 389, Xincun Road, Shanghai, 200065 China
| | - Ling Li
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, No. 389, Xincun Road, Shanghai, 200065 China
| | - Yun Zhou
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, No. 389, Xincun Road, Shanghai, 200065 China
| |
Collapse
|
5
|
Plotkin LI, Buvinic S, Balanta-Melo J. In vitro and in vivo studies using non-traditional bisphosphonates. Bone 2020; 134:115301. [PMID: 32112989 PMCID: PMC7138726 DOI: 10.1016/j.bone.2020.115301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/06/2020] [Accepted: 02/22/2020] [Indexed: 01/26/2023]
Abstract
Non-traditional bisphosphonates, that is, bisphosphonates that do not inhibit osteoclast viability or function, were initially reported in the 1990s by Socrates Papapoulos' group. Originally designed to study the role of the R1 residue of aminobisphosphonates on bisphosphonate affinity for hydroxyapatite, these modified bisphosphonates retained similar affinity for mineralized bone as their parent compounds, but they lacked the potential to inhibit the mevalonate pathway or bone resorption. We found that, similar to classical bisphosphonates, these non-traditional compounds prevented osteoblast and osteocyte apoptosis in vitro through a pathway that requires the expression of the gap junction protein connexin 43, and the activation of the Src/MEK/ERK signaling pathway. Furthermore, one of those compounds named IG9402 (also known as amino-olpadronate or lidadronate), was able to inhibit osteoblast and osteocyte apoptosis, without affecting osteoclast number or bone resorption in vivo in a model of glucocorticoid-induced osteoporosis. IG9402 administration also ameliorated the decrease in bone mass and in bone mechanical properties induced by glucocorticoids. Similarly, IG9402 prevented apoptosis of osteoblastic cells in a model of immobilization due to hindlimb unloading. However, in this case, the bisphosphonate was not able to preserve the bone mass, and only partially prevented the decrease in bone mechanical properties induced by immobilization. The effect of IG9402 administration was also tested in a mouse model of masticatory hypofunction through the induction of masseter muscle atrophy by unilateral injection of botulinum toxin type A (BoNTA). IG9402 partially inhibited the loss of trabecular bone microstructure in the mandibular condyle, but not the decrease in masseter muscle mass induced by BoNTA administration. In summary, these non-traditional bisphosphonates that lack anti-resorptive activity but are able to preserve osteoblast and osteocyte viability could constitute useful tools to study the consequences of preventing apoptosis of osteoblastic cells in animal models. Furthermore, they could be used to treat conditions associated with reduced bone mass and increased bone fragility in which a reduction of bone remodeling is not desirable.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States of America.
| | - Sonja Buvinic
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Center for Exercise, Metabolism and Cancer CEMC2016, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Julián Balanta-Melo
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile; School of Dentistry, Universidad del Valle, Cali, Colombia; Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
6
|
Lee KK, Lee JG, Park CS, Lee SH, Raja N, Yun HS, Lee JS, Lee CS. Bone-targeting carbon dots: effect of nitrogen-doping on binding affinity. RSC Adv 2019; 9:2708-2717. [PMID: 35520477 PMCID: PMC9059868 DOI: 10.1039/c8ra09729a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/01/2019] [Indexed: 11/23/2022] Open
Abstract
Novel fluorescent carbon dots (CDs) for bone imaging were fabricated via a facile hydrothermal method using alendronate in the absence of a nitrogen-doping precursor to enhance bone affinity. One-step synthesized alendronate-based CDs (Alen-CDs) had strong binding activity for calcium-deficient hydroxyapatite (CDHA, the mineral component of bones) scaffold, rat femur, and bone structures of live zebrafish. This was attributed to the bisphosphonate group present on the CD surface, even after carbonization. For comparison, the surface effects of nitrogen-doped CDs obtained using ethylenediamine (EDA), i.e., Alen-EDA-CDs, were also investigated, focusing on the targeting ability of distinct surface functional groups when compared with Alen-CDs. An in vivo study to assess the impact on bone affinity revealed that Alen-CDs effectively accumulated in the bone structures of live zebrafish larvae after microinjections, as well as in the bone tissues of femur extracted from rats. Moreover, Alen-CD-treated zebrafish larvae had superior toleration, retaining skeletal fluorescence for 7 days post-injection (dpi). The sustainable capability, surpassing that of Alizarin Red S, suggests that Alen-CDs have the potential for targeted drug delivery to damaged bone tissues and provides motivation for additional in vivo investigations. To our knowledge, this is the first in vitro, ex vivo, and in vivo demonstration of direct bone-targeted deliveries, supporting the use of fluorescent CDs in the treatment of various bone diseases such as osteoporosis, Paget's disease, and metastatic bone cancer. Fluorescent carbon dots selectively bind to skull tissues with high affinity, including a strong binding activity for calcium deficient hydroxyapatite, and rat femur, for bone targeted imaging.![]()
Collapse
Affiliation(s)
- Kyung Kwan Lee
- Hazards Monitoring BNT Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon 34141
- Republic of Korea
- Department of Chemical Engineering and Applied Chemistry
| | - Jae-Geun Lee
- Disease Target Structure Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon
- Republic of Korea
- Department of Biotechnology
| | - Chul Soon Park
- Department of Polymer Engineering
- Chonnam National University
- Gwangju 61186
- Republic of Korea
| | - Sun Hyeok Lee
- Hazards Monitoring BNT Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon 34141
- Republic of Korea
- Department of Biotechnology
| | - Naren Raja
- Department of Biotechnology
- University of Science & Technology (UST)
- Daejeon 34113
- Republic of Korea
- Powder and Ceramics Division
| | - Hui-suk Yun
- Department of Biotechnology
- University of Science & Technology (UST)
- Daejeon 34113
- Republic of Korea
- Powder and Ceramics Division
| | - Jeong-Soo Lee
- Disease Target Structure Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon
- Republic of Korea
- Department of Biotechnology
| | - Chang-Soo Lee
- Hazards Monitoring BNT Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon 34141
- Republic of Korea
- Department of Biotechnology
| |
Collapse
|
7
|
Osipova ED, Semyachkina-Glushkovskaya OV, Morgun AV, Pisareva NV, Malinovskaya NA, Boitsova EB, Pozhilenkova EA, Belova OA, Salmin VV, Taranushenko TE, Noda M, Salmina AB. Gliotransmitters and cytokines in the control of blood-brain barrier permeability. Rev Neurosci 2018; 29:567-591. [DOI: 10.1515/revneuro-2017-0092] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/26/2017] [Indexed: 11/15/2022]
Abstract
AbstractThe contribution of astrocytes and microglia to the regulation of neuroplasticity or neurovascular unit (NVU) is based on the coordinated secretion of gliotransmitters and cytokines and the release and uptake of metabolites. Blood-brain barrier (BBB) integrity and angiogenesis are influenced by perivascular cells contacting with the abluminal side of brain microvessel endothelial cells (pericytes, astrocytes) or by immune cells existing (microglia) or invading the NVU (macrophages) under pathologic conditions. The release of gliotransmitters or cytokines by activated astroglial and microglial cells is provided by distinct mechanisms, affects intercellular communication, and results in the establishment of microenvironment controlling BBB permeability and neuroinflammation. Glial glutamate transporters and connexin and pannexin hemichannels working in the tight functional coupling with the purinergic system serve as promising molecular targets for manipulating the intercellular communications that control BBB permeability in brain pathologies associated with excessive angiogenesis, cerebrovascular remodeling, and BBB-mediated neuroinflammation. Substantial progress in deciphering the molecular mechanisms underlying the (patho)physiology of perivascular glia provides promising approaches to novel clinically relevant therapies for brain disorders. The present review summarizes the current understandings on the secretory machinery expressed in glial cells (glutamate transporters, connexin and pannexin hemichannels, exocytosis mechanisms, membrane-derived microvesicles, and inflammasomes) and the role of secreted gliotransmitters and cytokines in the regulation of NVU and BBB permeability in (patho)physiologic conditions.
Collapse
|
8
|
Sorgen PL, Trease AJ, Spagnol G, Delmar M, Nielsen MS. Protein⁻Protein Interactions with Connexin 43: Regulation and Function. Int J Mol Sci 2018; 19:E1428. [PMID: 29748463 PMCID: PMC5983787 DOI: 10.3390/ijms19051428] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Connexins are integral membrane building blocks that form gap junctions, enabling direct cytoplasmic exchange of ions and low-molecular-mass metabolites between adjacent cells. In the heart, gap junctions mediate the propagation of cardiac action potentials and the maintenance of a regular beating rhythm. A number of connexin interacting proteins have been described and are known gap junction regulators either through direct effects (e.g., kinases) or the formation of larger multifunctional complexes (e.g., cytoskeleton scaffold proteins). Most connexin partners can be categorized as either proteins promoting coupling by stimulating forward trafficking and channel opening or inhibiting coupling by inducing channel closure, internalization, and degradation. While some interactions have only been implied through co-localization using immunohistochemistry, others have been confirmed by biophysical methods that allow detection of a direct interaction. Our understanding of these interactions is, by far, most well developed for connexin 43 (Cx43) and the scope of this review is to summarize our current knowledge of their functional and regulatory roles. The significance of these interactions is further exemplified by demonstrating their importance at the intercalated disc, a major hub for Cx43 regulation and Cx43 mediated effects.
Collapse
Affiliation(s)
- Paul L Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Andrew J Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Gaelle Spagnol
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Mario Delmar
- Leon H Charney Division of Cardiology, NYU School of Medicine, New York, NY 10016, USA.
| | - Morten S Nielsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
9
|
Shao Y, Hernandez-Buquer S, Childress P, Stayrook KR, Alvarez MB, Davis H, Plotkin LI, He Y, Condon KW, Burr DB, Warden SJ, Robling AG, Yang FC, Wek RC, Allen MR, Bidwell JP. Improving Combination Osteoporosis Therapy in a Preclinical Model of Heightened Osteoanabolism. Endocrinology 2017; 158:2722-2740. [PMID: 28637206 PMCID: PMC5659666 DOI: 10.1210/en.2017-00355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/15/2017] [Indexed: 11/19/2022]
Abstract
Combining anticatabolic agents with parathyroid hormone (PTH) to enhance bone mass has yielded mixed results in osteoporosis patients. Toward the goal of enhancing the efficacy of these regimens, we tested their utility in combination with loss of the transcription factor Nmp4 because disabling this gene amplifies PTH-induced increases in trabecular bone in mice by boosting osteoblast secretory activity. We addressed whether combining a sustained anabolic response with an anticatabolic results in superior bone acquisition compared with PTH monotherapy. Additionally, we inquired whether Nmp4 interferes with anticatabolic efficacy. Wild-type and Nmp4-/- mice were ovariectomized at 12 weeks of age, followed by therapy regimens, administered from 16 to 24 weeks, and included individually or combined PTH, alendronate (ALN), zoledronate (ZOL), and raloxifene (RAL). Anabolic therapeutic efficacy generally corresponded with PTH + RAL = PTH + ZOL > PTH + ALN = PTH > vehicle control. Loss of Nmp4 enhanced femoral trabecular bone increases under PTH + RAL and PTH + ZOL. RAL and ZOL promoted bone restoration, but unexpectedly, loss of Nmp4 boosted RAL-induced increases in femoral trabecular bone. The combination of PTH, RAL, and loss of Nmp4 significantly increased bone marrow osteoprogenitor number, but did not affect adipogenesis or osteoclastogenesis. RAL, but not ZOL, increased osteoprogenitors in both genotypes. Nmp4 status did not influence bone serum marker responses to treatments, but Nmp4-/- mice as a group showed elevated levels of the bone formation marker osteocalcin. We conclude that the heightened osteoanabolism of the Nmp4-/- skeleton enhances the effectiveness of diverse osteoporosis treatments, in part by increasing hyperanabolic osteoprogenitors. Nmp4 provides a promising target pathway for identifying barriers to pharmacologically induced bone formation.
Collapse
Affiliation(s)
- Yu Shao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Selene Hernandez-Buquer
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Paul Childress
- Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Keith R. Stayrook
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Marta B. Alvarez
- Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hannah Davis
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Lilian I. Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yongzheng He
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Keith W. Condon
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - David B. Burr
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Stuart J. Warden
- Center for Translational Musculoskeletal Research, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana 46202
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana 46202
| | - Alexander G. Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Feng-Chun Yang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Ronald C. Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Matthew R. Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Richard A. Roudebush Veterans Administration Medical Center, Indianapolis, Indiana 46202
| | - Joseph P. Bidwell
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
10
|
Corrado A, Sanpaolo ER, Di Bello S, Cantatore FP. Osteoblast as a target of anti-osteoporotic treatment. Postgrad Med 2017; 129:858-865. [PMID: 28770650 DOI: 10.1080/00325481.2017.1362312] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Osteoblasts are mesenchymal cells that play a key role in maintaining bone homeostasis; they are responsible for the production of extracellular matrix proteins, regulation of matrix mineralization, control of bone remodeling and regulate osteoclast differentiation. Osteoblasts have an essential role in the pathogenesis of many bone diseases, particularly osteoporosis. For many decades, the main current available treatments for osteoporosis have been represented by anti-resorptive drugs, such as bisphosphonates, which act mainly by inhibiting osteoclasts maturation, proliferation and activity; nevertheless, in recent years much attention has been paid on anabolic aspects of osteoporosis treatment. Many experimental evidences support the hypothesis of direct effects of the classical anti-resorptive drugs also on osteoblasts, and recent progress in understanding bone physiology have led to the development of new pharmacological agents such as anti-sclerostin antibodies and teriparatide which directly target osteoblasts, inducing anabolic effects and promoting bone formation.
Collapse
Affiliation(s)
- Addolorata Corrado
- a Rheumatology Clinic Department of Medical and Surgical Sciences , University of Foggia , Foggia , Italy
| | - Eliana Rita Sanpaolo
- a Rheumatology Clinic Department of Medical and Surgical Sciences , University of Foggia , Foggia , Italy
| | - Silvana Di Bello
- a Rheumatology Clinic Department of Medical and Surgical Sciences , University of Foggia , Foggia , Italy
| | - Francesco Paolo Cantatore
- a Rheumatology Clinic Department of Medical and Surgical Sciences , University of Foggia , Foggia , Italy
| |
Collapse
|
11
|
Zheng D, Neoh KG, Kang ET. Immobilization of alendronate on titanium via its different functional groups and the subsequent effects on cell functions. J Colloid Interface Sci 2017; 487:1-11. [PMID: 27743540 DOI: 10.1016/j.jcis.2016.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022]
Abstract
Immobilization of alendronate on orthopedic implants offers the possibility of enhancing osteogenesis without potentially adverse effects associated with systemic administration of this drug. In this work, alendronate was immobilized on titanium (Ti) via either its phosphate (Method 1) or amino (Method 2) groups, and responses of osteoblasts and human mesenchymal stem cells (hMSCs) on these surfaces were investigated. These modified substrates have similar surface roughness and are negatively charged. With similar amounts of immobilized alendronate, these two types of modified substrates showed comparable osteogenic stimulating effects in enhancing osteoblasts' alkaline phosphatase (ALP) activity and calcium deposition for the first 10days. However, alendronate immobilized via its phosphate groups was less stable, and gradually leached into the medium. As a result, its stimulating effect on osteoblast differentiation diminished with time. On the other hand, alendronate immobilized via its amino group stimulated osteoblast differentiation over 21days, and with 1655ng/cm2 of immobilized alendronate on the Ti substrate, calcium deposition by osteoblasts and hMSCs increased by 30% and 69%, respectively, compared to pristine Ti after 21days. The expressions of runt-related transcription factor 2, osterix, osteopontin and osteocalcin in hMSCs cultured on this substrate were monitored. The up-regulation of these genes is postulated to play a role in the acceleration of osteogenic differentiation of hMSCs cultured on the alendronate-modified substrate over those on pristine Ti.
Collapse
Affiliation(s)
- Dong Zheng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576, Singapore
| | - Koon Gee Neoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576, Singapore.
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576, Singapore
| |
Collapse
|
12
|
Pannuzzo G, Graziano ACE, Pannuzzo M, Masman MF, Avola R, Cardile V. Zoledronate derivatives as potential inhibitors of uridine diphosphate-galactose ceramide galactosyltransferase 8: A combined molecular docking and dynamic study. J Neurosci Res 2016; 94:1318-1326. [DOI: 10.1002/jnr.23761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Affiliation(s)
- Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology; University of Catania; Catania Italy
| | | | - Martina Pannuzzo
- Department of Computational Biology; Universität Erlangen-Nürnberg; Erlangen Germany
| | - Marcelo Fabricio Masman
- Department of Biocatalysis and Biotransformation, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Groningen The Netherlands
| | - Rosanna Avola
- Department of Biomedical and Biotechnological Sciences, Section of Physiology; University of Catania; Catania Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Section of Physiology; University of Catania; Catania Italy
| |
Collapse
|
13
|
Mekhail GM, Kamel AO, Awad GA, Mortada ND, Rodrigo RL, Spagnuolo PA, Wettig SD. Synthesis and evaluation of alendronate-modified gelatin biopolymer as a novel osteotropic nanocarrier for gene therapy. Nanomedicine (Lond) 2016; 11:2251-73. [PMID: 27527003 DOI: 10.2217/nnm-2016-0151] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To synthesize an osteotropic alendronate functionalized gelatin (ALN-gelatin) biopolymer for nanoparticle preparation and targeted delivery of DNA to osteoblasts for gene therapy applications. MATERIALS & METHODS Alendronate coupling to gelatin was confirmed using Fourier transform IR, (31)PNMR, x-ray diffraction (XRD) and differential scanning calorimetry. ALN-gelatin biopolymers prepared at various alendronate/gelatin ratios were utilized to prepare nanoparticles and were optimized in combination with DNA and gemini surfactant for transfecting both HEK-293 and MG-63 cell lines. RESULTS Gelatin functionalization was confirmed using the above methods. Uniform nanoparticles were obtained from a nanoprecipitation technique. ALN-gelatin/gemini/DNA complexes exhibited higher transfection efficiency in MG-63 osteosarcoma cell line compared with the positive control. CONCLUSION ALN-gelatin is a promising biopolymer for bone targeting of either small molecules or gene therapy applications.
Collapse
Affiliation(s)
- George M Mekhail
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.,Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Khalifa El-Maamon Street, Abbasiya Square, Cairo 11566, Egypt
| | - Amany O Kamel
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.,Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Khalifa El-Maamon Street, Abbasiya Square, Cairo 11566, Egypt
| | - Gehanne As Awad
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Khalifa El-Maamon Street, Abbasiya Square, Cairo 11566, Egypt
| | - Nahed D Mortada
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Khalifa El-Maamon Street, Abbasiya Square, Cairo 11566, Egypt
| | - Rowena L Rodrigo
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Paul A Spagnuolo
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Shawn D Wettig
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
14
|
Ryu TK, Kang RH, Jeong KY, Jun DR, Koh JM, Kim D, Bae SK, Choi SW. Bone-targeted delivery of nanodiamond-based drug carriers conjugated with alendronate for potential osteoporosis treatment. J Control Release 2016; 232:152-60. [PMID: 27094604 DOI: 10.1016/j.jconrel.2016.04.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/12/2016] [Accepted: 04/15/2016] [Indexed: 12/26/2022]
Abstract
This paper describes the design of alendronate-conjugated nanodiamonds (Alen-NDs) and evaluation of their feasibility for bone-targeted delivery. Alen-NDs exhibited a high affinity to hydroxyapatite (HAp, the mineral component of bone) due to the presence of Alen. Unlike NDs (without Alen), Alen-NDs were preferentially taken up by MC3T3-E1 osteoblast-like cells, compared to NIH3T3 and HepG2 cells, suggesting their cellular specificity. In addition, NDs itself increased ALP activity of MC3T3-E1 cells, compared to control group (osteogenic medium) and Alen-NDs exhibited more enhanced ALP activity. In addition, an in vivo study revealed that Alen-NDs effectively accumulated in bone tissues after intravenous tail vein injection. These results confirm the superior properties of Alen-NDs with advantages of high HAp affinity, specific uptake for MC3T3-E1 cells, positive synergistic effect for ALP activity, and in vivo bone targeting ability. The Alen-NDs can potentially be employed for osteoporosis treatment by delivering both NDs and Alen to bone tissue.
Collapse
Affiliation(s)
- Tae-Kyung Ryu
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | - Rae-Hyoung Kang
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | - Ki-Young Jeong
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | - Dae-Ryong Jun
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea
| | - Doyun Kim
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | - Soo Kyung Bae
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | - Sung-Wook Choi
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea.
| |
Collapse
|
15
|
de Rooij KE, van der Velde M, de Wilt E, Deckers MML, Bezemer M, Waarsing JH, Que I, Chan AB, Kaijzel EL, Löwik CWGM. Identification of receptor-type protein tyrosine phosphatase μ as a new marker for osteocytes. Histochem Cell Biol 2015; 144:1-11. [PMID: 25850409 PMCID: PMC4468792 DOI: 10.1007/s00418-015-1319-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2015] [Indexed: 12/17/2022]
Abstract
Osteocytes are the predominant cells in bone, where they form a cellular network and display important functions in bone homeostasis, phosphate metabolism and mechanical transduction. Several proteins strongly expressed by osteocytes are involved in these processes, e.g., sclerostin, DMP-1, PHEX, FGF23 and MEPE, while others are upregulated during differentiation of osteoblasts into osteocytes, e.g., osteocalcin and E11. The receptor-type protein tyrosine phosphatase µ (RPTPμ) has been described to be expressed in cells which display a cellular network, e.g., endothelial and neuronal cells, and is implied in mechanotransduction. In a capillary outgrowth assay using metatarsals derived from RPTPμ-knock-out/LacZ knock-in mice, we observed that the capillary structures grown out of the metatarsals were stained blue, as expected. Surprisingly, cells within the metatarsal bone tissue were positive for LacZ activity as well, indicating that RPTPμ is also expressed by osteocytes. Subsequent histochemical analysis showed that within bone, RPTPμ is expressed exclusively in early-stage osteocytes. Analysis of bone marrow cell cultures revealed that osteocytes are present in the nodules and an enzymatic assay enabled the quantification of the amount of osteocytes. No apparent bone phenotype was observed when tibiae of RPTPμ-knock-out/LacZ knock-in mice were analyzed by μCT at several time points during aging, although a significant reduction in cortical bone was observed in RPTPμ-knock-out/LacZ knock-in mice at 20 weeks. Changes in trabecular bone were more subtle. Our data show that RPTPμ is a new marker for osteocytes.
Collapse
Affiliation(s)
- Karien E de Rooij
- Experimental Molecular Imaging, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mollazadeh S, Fazly Bazzaz BS, Kerachian MA. Role of apoptosis in pathogenesis and treatment of bone-related diseases. J Orthop Surg Res 2015; 10:15. [PMID: 25627748 PMCID: PMC4327805 DOI: 10.1186/s13018-015-0152-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/02/2015] [Indexed: 12/14/2022] Open
Abstract
In this article, bone cells and their intercellular communications have been reviewed. Gap junctions and hemichannels are the main routes of interactions in bone tissue. They play a substantial role in survival and cell death, since pro-apoptotic signals can propagate through them. Different adhesion molecules are required for apoptosis, particularly caspase family as well as noncaspase proteases. The disruption outcome of apoptosis could result in bone-related diseases such as osteonecrosis. Anti-apoptotic strategies include inhibition of caspase, poly [ADP-ribose] polymerase (PARP), and Bcl-2 proteins as well as induction of the PKB/Akt pathway and inhibitors of apoptosis (IAP) family of proteins. Thus, understanding the mechanism of apoptosis gives detailed insights of anti-apoptotic molecular targets. Based on these targets, different treatments were designed and produced such as estrogen replacement therapy, administration of different bisphosphonates, raloxifene, calcitonin, sodium fluoride, calcium, and vitamin D. As a result, new applicable drugs for treatment of related bone problems can be proposed for clinical approach especially in the early stage of diseases.
Collapse
|