1
|
Xiang QM, Chang L, Zhu JQ, Mu CK, Wang CL, Hou CC. The function of the cytoplasmic dynein light chain PTKM23 in the transport of PTSMAD2 during spermatogenesis in Portunus trituberculatus†. Biol Reprod 2024; 111:942-958. [PMID: 38900909 DOI: 10.1093/biolre/ioae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/12/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024] Open
Abstract
Cytoplasmic dynein participates in transport functions and is essential in spermatogenesis. KM23 belongs to the dynein light chain family. The TGFβ signaling pathway is indispensable in spermatogenesis, and Smad2 is an important member of this pathway. We cloned PTKM23 and PTSMAD2 from Portunus trituberculatus and measured their expression during spermatogenesis. PTKM23 may be related to cell division, acrosome formation, and nuclear remodeling, and PTSMAD2 may participate in regulating the expression of genes related to spermatogenesis. We assessed the localization of PTKM23 with PTDHC and α-tubulin, and the results suggested that PTKM23 functions in intracellular transport during spermatogenesis. We knocked down PTKM23 in vivo, and the expression of p53, B-CATAENIN and CYCLIN B decreased significantly, further suggesting a role of PTKM23 in transport and cell division. The localization of PTDIC with α-tubulin and that of PTSMAD2 with PTDHC changed after PTKM23 knockdown. We transfected PTKM23 and PTSMAD2 into HEK-293 T cells and verified their colocalization. These results indicate that PTKM23 is involved in the assembly of cytoplasmic dynein and microtubules during spermatogenesis and that PTKM23 mediates the participation of cytoplasmic dynein in the transport of PTSMAD2 during spermatogenesis.
Collapse
Affiliation(s)
- Qiu-Meng Xiang
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, Department of Aquaculture, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Le Chang
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, Department of Aquaculture, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Jun-Quan Zhu
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, Department of Aquaculture, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Chang-Kao Mu
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, Department of Aquaculture, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Chun-Lin Wang
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, Department of Aquaculture, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Cong-Cong Hou
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, Department of Aquaculture, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Honrath S, Scherer D, Burger M, Leroux JC. Interaction proteomics analysis to provide insight into TFAMoplex-mediated transfection. J Control Release 2024; 373:252-264. [PMID: 39009084 DOI: 10.1016/j.jconrel.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/06/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
In an earlier investigation, our group introduced the TFAMoplex, a transfection agent based on the mitochondrial transcription factor A (TFAM) protein, which complexes DNA into nanoparticles. The original TFAMoplex further contained a bacterial phospholipase to achieve endosomal escape, and the vaccinia-related kinase 1 (VRK1), which significantly boosted the transfection efficiency of the system by an unknown mechanism. This study aims at replacing VRK1 within the TFAMoplex with dynein light chain proteins, specifically RP3, to directly tether the complexes to the dynein motor complex for enhanced cytosolic transport. To confirm the interaction between the dynein complex and the resulting fusion protein, we examined the binding kinetics of TFAM-RP3 to the dynein intermediate chains 1 and 2. Furthermore, we established a proteomics-based assay to compare cytosolic protein interactions of different TFAMoplex variants, including the RP3-modified version and the original VRK1-containing system. In the group of the VRK1-containing TFAMoplex, significant shifts of protein interactors were observed, especially for nucleolar proteins. Leveraging this knowledge, we incorporated one of these nuclear proteins, leucine-rich repeat-containing protein 59 (LRRC59), into the TFAMoplex, resulting in a significant improvement of transfection properties compared to the RP3-modified system and comparable levels versus the original, VRK1-containing version. This study not only advances our comprehension of the TFAMoplex system but also offers broader insights into the potential of protein engineering for designing effective gene delivery systems.
Collapse
Affiliation(s)
- Steffen Honrath
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - David Scherer
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Michael Burger
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland..
| | - Jean-Christophe Leroux
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland..
| |
Collapse
|
3
|
Nagpal S, Swaminathan K, Beaudet D, Verdier M, Wang S, Berger CL, Berger F, Hendricks AG. Optogenetic control of kinesin-1, -2, -3 and dynein reveals their specific roles in vesicular transport. Cell Rep 2024; 43:114649. [PMID: 39159044 DOI: 10.1016/j.celrep.2024.114649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/04/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024] Open
Abstract
Each cargo in a cell employs a unique set of motor proteins for its transport. To dissect the roles of each type of motor, we developed optogenetic inhibitors of endogenous kinesin-1, -2, -3 and dynein motors and examined their effect on the transport of early endosomes, late endosomes, and lysosomes. While kinesin-1, -3, and dynein transport vesicles at all stages of endocytosis, kinesin-2 primarily drives late endosomes and lysosomes. Transient optogenetic inhibition of kinesin-1 or dynein causes both early and late endosomes to move more processively by relieving competition with opposing motors. Kinesin-2 and -3 support long-range transport, and optogenetic inhibition reduces the distances that their cargoes move. These results suggest that the directionality of transport is controlled through regulating kinesin-1 and dynein activity. On vesicles transported by several kinesin and dynein motors, modulating the activity of a single type of motor on the cargo is sufficient to direct motility.
Collapse
Affiliation(s)
- Sahil Nagpal
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | | | - Daniel Beaudet
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Maud Verdier
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; Department of Biomedical Engineering and Health, Episen, Université Paris-Est Créteil, 94010 Créteil Cedex, France
| | - Samuel Wang
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Christopher L Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405-0075, USA
| | - Florian Berger
- Cell Biology, Neurobiology, and Biophysics, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Adam G Hendricks
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada.
| |
Collapse
|
4
|
Houston BJ, Nguyen J, Merriner DJ, O'Connor AE, Lopes AM, Nagirnaja L, Friedrich C, Kliesch S, Tüttelmann F, Aston KI, Conrad DF, Hobbs RM, Dunleavy JEM, O'Bryan MK. AXDND1 is required to balance spermatogonial commitment and for sperm tail formation in mice and humans. Cell Death Dis 2024; 15:499. [PMID: 38997255 PMCID: PMC11245616 DOI: 10.1038/s41419-024-06874-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
Dynein complexes are large, multi-unit assemblies involved in many biological processes via their critical roles in protein transport and axoneme motility. Using next-generation sequencing of infertile men presenting with low or no sperm in their ejaculates, we identified damaging variants in the dynein-related gene AXDND1. We thus hypothesised that AXDND1 is a critical regulator of male fertility. To test this hypothesis, we produced a knockout mouse model. Axdnd1-/- males were sterile at all ages but presented with an evolving testis phenotype wherein they could undergo one round of histologically replete spermatogenesis followed by a rapid depletion of the seminiferous epithelium. Marker experiments identified a role for AXDND1 in maintaining the balance between differentiation-committed and self-renewing spermatogonial populations, resulting in disproportionate production of differentiating cells in the absence of AXDND1 and increased sperm production during initial spermatogenic waves. Moreover, long-term spermatogonial maintenance in the Axdnd1 knockout was compromised, ultimately leading to catastrophic germ cell loss, destruction of blood-testis barrier integrity and immune cell infiltration. In addition, sperm produced during the first wave of spermatogenesis were immotile due to abnormal axoneme structure, including the presence of ectopic vesicles and abnormalities in outer dense fibres and microtubule doublet structures. Sperm output was additionally compromised by a severe spermiation defect and abnormal sperm individualisation. Collectively these data identify AXDND1 as an atypical dynein complex-related protein with a role in protein/vesicle transport of relevance to spermatogonial function and sperm tail formation in mice and humans. This study underscores the importance of studying the consequences of gene loss-of-function on both the establishment and maintenance of male fertility.
Collapse
Affiliation(s)
- Brendan J Houston
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - Joseph Nguyen
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - D Jo Merriner
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Anne E O'Connor
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Alexandra M Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Centro de Genética Preditiva e Preventiva, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Liina Nagirnaja
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
- Genetics of Male Infertility Initiative (GEMINI) Consortium, Beaverton, OR, USA
| | - Corinna Friedrich
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Frank Tüttelmann
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
- International Male Infertility Genomics Consortium (IMIGC), Newcastle-upon-Tyne, UK
| | - Kenneth I Aston
- Genetics of Male Infertility Initiative (GEMINI) Consortium, Beaverton, OR, USA
- International Male Infertility Genomics Consortium (IMIGC), Newcastle-upon-Tyne, UK
- Department of Surgery (Urology), University of Utah, Salt Lake City, UT, USA
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
- Genetics of Male Infertility Initiative (GEMINI) Consortium, Beaverton, OR, USA
- International Male Infertility Genomics Consortium (IMIGC), Newcastle-upon-Tyne, UK
| | - Robin M Hobbs
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Jessica E M Dunleavy
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Moira K O'Bryan
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
- Genetics of Male Infertility Initiative (GEMINI) Consortium, Beaverton, OR, USA.
- International Male Infertility Genomics Consortium (IMIGC), Newcastle-upon-Tyne, UK.
| |
Collapse
|
5
|
Rao L, Gennerich A. Structure and Function of Dynein's Non-Catalytic Subunits. Cells 2024; 13:330. [PMID: 38391943 PMCID: PMC10886578 DOI: 10.3390/cells13040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Dynein, an ancient microtubule-based motor protein, performs diverse cellular functions in nearly all eukaryotic cells, with the exception of land plants. It has evolved into three subfamilies-cytoplasmic dynein-1, cytoplasmic dynein-2, and axonemal dyneins-each differentiated by their cellular functions. These megadalton complexes consist of multiple subunits, with the heavy chain being the largest subunit that generates motion and force along microtubules by converting the chemical energy of ATP hydrolysis into mechanical work. Beyond this catalytic core, the functionality of dynein is significantly enhanced by numerous non-catalytic subunits. These subunits are integral to the complex, contributing to its stability, regulating its enzymatic activities, targeting it to specific cellular locations, and mediating its interactions with other cofactors. The diversity of non-catalytic subunits expands dynein's cellular roles, enabling it to perform critical tasks despite the conservation of its heavy chains. In this review, we discuss recent findings and insights regarding these non-catalytic subunits.
Collapse
Affiliation(s)
- Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
6
|
Wang SY, Xiang QM, Zhu JQ, Mu CK, Wang CL, Hou CC. The Functions of Pt-DIC and Pt-Lamin B in Spermatogenesis of Portunus trituberculatus. Int J Mol Sci 2023; 25:112. [PMID: 38203284 PMCID: PMC10778907 DOI: 10.3390/ijms25010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Cytoplasmic Dynein is a multiple-subunit macromolecular motor protein involved in the transport process of cells. The Dynein intermediate chain (DIC) is one of the subunits of Dynein-1. In our previous studies, we showed that Pt-DIC may play an important role in the nuclear deformation of spermiogenesis in Portunus trituberculatus. Lamin B is essential for maintaining nuclear structure and functions. Surprisingly, Pt-Lamin B was expressed not only in the perinucleus but also in the pro-acrosome during spermiogenesis in P. trituberculatus. Studies have also shown that Dynein-1 can mediate the transport of Lamin B in mammals. Thus, to study the relationship of Pt-DIC and Pt-Lamin B in the spermatogenesis of P. trituberculatus, we knocked down the Pt-DIC gene in P. trituberculatus by RNAi. The results showed that the distribution of Pt-DIC and Pt-Lamin B in spermiogenesis was abnormal, and the colocalization was weakened. Moreover, we verified the interaction of Pt-DIC and Pt-Lamin B via coimmunoprecipitation. Therefore, our results suggested that both Pt-DIC and Pt-Lamin B were involved in the spermatogenesis of P. trituberculatus, and one of the functions of Dynein-1 is to mediate the transport of Lamin B in the spermiogenesis of P. trituberculatus.
Collapse
Affiliation(s)
| | | | | | | | | | - Cong-Cong Hou
- Key Laboratory of Aquacultural Biotechnology, Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China; (S.-Y.W.); (Q.-M.X.); (J.-Q.Z.); (C.-K.M.); (C.-L.W.)
| |
Collapse
|
7
|
Houston BJ, Nguyen J, Merriner DJ, O’Connor AE, Lopes AM, Nagirnaja L, Friedrich C, Kliesch S, Tüttelmann F, Aston KI, Conrad DF, Hobbs RM, Dunleavy JEM, O’Bryan MK. AXDND1 is required to balance spermatogonial commitment and for sperm tail formation in mice and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565050. [PMID: 38014244 PMCID: PMC10680566 DOI: 10.1101/2023.11.02.565050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Dynein complexes are large, multi-unit assemblies involved in many biological processes including male fertility via their critical roles in protein transport and axoneme motility. Previously we identified a pathogenic variant in the dynein gene AXDND1 in an infertile man. Subsequently we identified an additional four potentially compound heterozygous variants of unknown significance in AXDND1 in two additional infertile men. We thus tested the role of AXDND1 in mammalian male fertility by generating a knockout mouse model. Axdnd1-/- males were sterile at all ages but could undergo one round of histologically complete spermatogenesis. Subsequently, a progressive imbalance of spermatogonial commitment to spermatogenesis over self-renewal occurred, ultimately leading to catastrophic germ cell loss, loss of blood-testis barrier patency and immune cell infiltration. Sperm produced during the first wave of spermatogenesis were immotile due to abnormal axoneme structure, including the presence of ectopic vesicles and abnormalities in outer dense fibres and microtubule doublet structures. Sperm output was additionally compromised by a severe spermiation defect and abnormal sperm individualisation. Collectively, our data highlight the essential roles of AXDND1 as a regulator of spermatogonial commitment to spermatogenesis and during the processes of spermiogenesis where it is essential for sperm tail development, release and motility.
Collapse
Affiliation(s)
- Brendan J. Houston
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Joseph Nguyen
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - D. Jo Merriner
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Anne E. O’Connor
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Alexandra M. Lopes
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- CGPP-IBMC – Centro de Genética Preditiva e Preventiva, Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Liina Nagirnaja
- Division of Genetics, Oregon National Primate Research Center, Beaverton, USA
- Genetics of Male Infertility Initiative (GEMINI) consortium
| | - Corinna Friedrich
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
- International Male Infertility Genomics Consortium (IMIGC)
| | - Kenneth I. Aston
- Genetics of Male Infertility Initiative (GEMINI) consortium
- International Male Infertility Genomics Consortium (IMIGC)
- Department of Surgery (Urology), University of Utah, Salt Lake City, Utah, USA
| | - Donald F. Conrad
- Division of Genetics, Oregon National Primate Research Center, Beaverton, USA
- Genetics of Male Infertility Initiative (GEMINI) consortium
- International Male Infertility Genomics Consortium (IMIGC)
| | - Robin M. Hobbs
- Centre for Reproductive Health, Hudson Institute of Medical Research, Monash University, Clayton, Australia
| | - Jessica EM Dunleavy
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Moira K. O’Bryan
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
- Genetics of Male Infertility Initiative (GEMINI) consortium
- International Male Infertility Genomics Consortium (IMIGC)
| |
Collapse
|
8
|
Adeniyi OO, Medugorac I, Grochowska E, Düring RA, Lühken G. Single-Locus and Multi-Locus Genome-Wide Association Studies Identify Genes Associated with Liver Cu Concentration in Merinoland Sheep. Genes (Basel) 2023; 14:genes14051053. [PMID: 37239413 DOI: 10.3390/genes14051053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Economic losses due to copper intoxication or deficiency is a problem encountered by sheep farmers. The aim of this study was to investigate the ovine genome for genomic regions and candidate genes responsible for variability in liver copper concentration. Liver samples were collected from slaughtered lambs of the Merinoland breed from two farms, and used for measurement of copper concentration and genome-wide association study (GWAS). A total of 45,511 SNPs and 130 samples were finally used for analysis, in which single-locus and several multi-locus GWAS (SL-GWAS; ML-GWAS) methods were employed. Gene enrichment analysis was performed for identified candidate genes to detect gene ontology (GO) terms significantly associated with hepatic copper levels. The SL-GWAS and a minimum of two ML-GWAS identified two and thirteen significant SNPs, respectively. Within genomic regions surrounding identified SNPs, we observed nine promising candidate genes such as DYNC1I2, VPS35, SLC38A9 and CHMP1A. GO terms such as lysosomal membrane, mitochondrial inner membrane and sodium:proton antiporter activity were significantly enriched. Genes involved in these identified GO terms mediate multivesicular body (MVB) fusion with lysosome for degradation and control mitochondrial membrane permeability. This reveals the polygenic status of this trait and candidate genes for further studies on breeding for copper tolerance in sheep.
Collapse
Affiliation(s)
- Olusegun O Adeniyi
- Institute of Animal Breeding and Genetics, Justus Liebig University Giessen, Ludwigstrasse 21, 35390 Giessen, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximilian University Munich, Lena-Christ-Str. 48, 82152 Martinsried, Germany
| | - Ewa Grochowska
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka 28 St., 85-084 Bydgoszcz, Poland
| | - Rolf-Alexander Düring
- Institute of Soil Science and Soil Conservation, Interdisciplinary Research Center for Biosystems, Land Use and Nutrition (IFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Gesine Lühken
- Institute of Animal Breeding and Genetics, Justus Liebig University Giessen, Ludwigstrasse 21, 35390 Giessen, Germany
| |
Collapse
|
9
|
Wang PY, Kuo TY, Wang LH, Liang WH, Wang GS. Loss of MBNL1-mediated retrograde BDNF signaling in the myotonic dystrophy brain. Acta Neuropathol Commun 2023; 11:44. [PMID: 36922901 PMCID: PMC10018927 DOI: 10.1186/s40478-023-01540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Reduced brain volume including atrophy in grey and white matter is commonly seen in myotonic dystrophy type 1 (DM1). DM1 is caused by an expansion of CTG trinucleotide repeats in the 3' untranslated region (UTR) of the Dystrophia Myotonica Protein Kinase (DMPK) gene. Mutant DMPK mRNA containing expanded CUG RNA (DMPK-CUGexp) sequesters cytoplasmic MBNL1, resulting in morphological impairment. How DMPK-CUGexp and loss of MBNL1 cause histopathological phenotypes in the DM1 brain remains elusive. Here, we show that BDNF-TrkB retrograde transport is impaired in neurons expressing DMPK-CUGexp due to loss of cytoplasmic MBNL1 function. We reveal that mature BDNF protein levels are reduced in the brain of the DM1 mouse model EpA960/CaMKII-Cre. Exogenous BDNF treatment did not rescue impaired neurite outgrowth in neurons expressing DMPK-CUGexp, whereas overexpression of the cytoplasmic MBNL1 isoform in DMPK-CUGexp-expressing neurons improved their responsiveness to exogenous BDNF. We identify dynein light chain LC8-type 2, DYNLL2, as an MBNL1-interacting protein and demonstrate that their interaction is RNA-independent. Using time-lapse imaging, we show that overexpressed MBNL1 and DYNLL2 move along axonal processes together and that MBNL1-knockdown impairs the motility of mCherry-tagged DYNLL2, resulting in a reduced percentage of retrograde DYNLL2 movement. Examination of the distribution of DYNLL2 and activated phospho-TrkB (pTrkB) receptor in EpA960/CaMKII-Cre brains revealed an increase in the postsynaptic membrane fraction (LP1), indicating impaired retrograde transport. Finally, our neuropathological analysis of postmortem DM1 tissue reveals that reduced cytoplasmic MBNL1 expression is associated with an increase in DYNLL2 and activated pTrkB receptor levels in the synaptosomal fraction. Together, our results support that impaired MBNL1-mediated retrograde BDNF-TrkB signaling may contribute to the histopathological phenotypes of DM1.
Collapse
Affiliation(s)
- Pei-Ying Wang
- Institute of Biomedical Sciences, Academia Sinica, 128, Section 2, Academia Rd. Nangang, Taipei, 115, Taiwan
| | - Ting-Yu Kuo
- Institute of Biomedical Sciences, Academia Sinica, 128, Section 2, Academia Rd. Nangang, Taipei, 115, Taiwan
| | - Lee-Hsin Wang
- Institute of Biomedical Sciences, Academia Sinica, 128, Section 2, Academia Rd. Nangang, Taipei, 115, Taiwan
| | - Wen-Hsing Liang
- Institute of Biomedical Sciences, Academia Sinica, 128, Section 2, Academia Rd. Nangang, Taipei, 115, Taiwan
| | - Guey-Shin Wang
- Institute of Biomedical Sciences, Academia Sinica, 128, Section 2, Academia Rd. Nangang, Taipei, 115, Taiwan. .,Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan. .,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
10
|
Richards A, Berth SH, Brady S, Morfini G. Engagement of Neurotropic Viruses in Fast Axonal Transport: Mechanisms, Potential Role of Host Kinases and Implications for Neuronal Dysfunction. Front Cell Neurosci 2021; 15:684762. [PMID: 34234649 PMCID: PMC8255969 DOI: 10.3389/fncel.2021.684762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022] Open
Abstract
Much remains unknown about mechanisms sustaining the various stages in the life cycle of neurotropic viruses. An understanding of those mechanisms operating before their replication and propagation could advance the development of effective anti-viral strategies. Here, we review our current knowledge of strategies used by neurotropic viruses to undergo bidirectional movement along axons. We discuss how the invasion strategies used by specific viruses might influence their mode of interaction with selected components of the host’s fast axonal transport (FAT) machinery, including specialized membrane-bounded organelles and microtubule-based motor proteins. As part of this discussion, we provide a critical evaluation of various reported interactions among viral and motor proteins and highlight limitations of some in vitro approaches that led to their identification. Based on a large body of evidence documenting activation of host kinases by neurotropic viruses, and on recent work revealing regulation of FAT through phosphorylation-based mechanisms, we posit a potential role of host kinases on the engagement of viruses in retrograde FAT. Finally, we briefly describe recent evidence linking aberrant activation of kinase pathways to deficits in FAT and neuronal degeneration in the context of human neurodegenerative diseases. Based on these findings, we speculate that neurotoxicity elicited by viral infection may involve deregulation of host kinases involved in the regulation of FAT and other cellular processes sustaining neuronal function and survival.
Collapse
Affiliation(s)
- Alexsia Richards
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
| | - Sarah H Berth
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Scott Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
11
|
Kumari A, Kumar C, Wasnik N, Mylavarapu SVS. Dynein light intermediate chains as pivotal determinants of dynein multifunctionality. J Cell Sci 2021; 134:268315. [PMID: 34014309 DOI: 10.1242/jcs.254870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In animal cells, a single cytoplasmic dynein motor mediates microtubule minus-end-directed transport, counterbalancing dozens of plus-end-directed kinesins. The remarkable ability of dynein to interact with a diverse cargo spectrum stems from its tightly regulated recruitment of cargo-specific adaptor proteins, which engage the dynactin complex to make a tripartite processive motor. Adaptor binding is governed by the homologous dynein light intermediate chain subunits LIC1 (DYNC1LI1) and LIC2 (DYNC1LI2), which exist in mutually exclusive dynein complexes that can perform both unique and overlapping functions. The intrinsically disordered and variable C-terminal domains of the LICs are indispensable for engaging a variety of structurally divergent adaptors. Here, we hypothesize that numerous spatiotemporally regulated permutations of posttranslational modifications of the LICs, as well as of the adaptors and cargoes, exponentially expand the spectrum of dynein-adaptor-cargo complexes. We thematically illustrate the possibilities that could generate a vast set of biochemical variations required to support the wide range of dynein functions.
Collapse
Affiliation(s)
- Amrita Kumari
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Chandan Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Neeraj Wasnik
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
12
|
A role for Dynlt3 in melanosome movement, distribution, acidity and transfer. Commun Biol 2021; 4:423. [PMID: 33772156 PMCID: PMC7997999 DOI: 10.1038/s42003-021-01917-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Skin pigmentation is dependent on cellular processes including melanosome biogenesis, transport, maturation and transfer to keratinocytes. However, how the cells finely control these processes in space and time to ensure proper pigmentation remains unclear. Here, we show that a component of the cytoplasmic dynein complex, Dynlt3, is required for efficient melanosome transport, acidity and transfer. In Mus musculus melanocytes with decreased levels of Dynlt3, pigmented melanosomes undergo a more directional motion, leading to their peripheral location in the cell. Stage IV melanosomes are more acidic, but still heavily pigmented, resulting in a less efficient melanosome transfer. Finally, the level of Dynlt3 is dependent on β-catenin activity, revealing a function of the Wnt/β-catenin signalling pathway during melanocyte and skin pigmentation, by coupling the transport, positioning and acidity of melanosomes required for their transfer.
Collapse
|
13
|
Torisawa T, Kimura A. The Generation of Dynein Networks by Multi-Layered Regulation and Their Implication in Cell Division. Front Cell Dev Biol 2020; 8:22. [PMID: 32083077 PMCID: PMC7004958 DOI: 10.3389/fcell.2020.00022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cytoplasmic dynein-1 (hereafter referred to as dynein) is a major microtubule-based motor critical for cell division. Dynein is essential for the formation and positioning of the mitotic spindle as well as the transport of various cargos in the cell. A striking feature of dynein is that, despite having a wide variety of functions, the catalytic subunit is coded in a single gene. To perform various cellular activities, there seem to be different types of dynein that share a common catalytic subunit. In this review, we will refer to the different kinds of dynein as “dyneins.” This review attempts to classify the mechanisms underlying the emergence of multiple dyneins into four layers. Inside a cell, multiple dyneins generated through the multi-layered regulations interact with each other to form a network of dyneins. These dynein networks may be responsible for the accurate regulation of cellular activities, including cell division. How these networks function inside a cell, with a focus on the early embryogenesis of Caenorhabditis elegans embryos, is discussed, as well as future directions for the integration of our understanding of molecular layering to understand the totality of dynein’s function in living cells.
Collapse
Affiliation(s)
- Takayuki Torisawa
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
| | - Akatsuki Kimura
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
| |
Collapse
|
14
|
Raza A, Pandey MS, Jin Q, Mulder KM. km23-1/DYNLRB1 regulation of MEK/ERK signaling and R-Ras in invasive human colorectal cancer cells. Cell Biol Int 2020; 44:155-165. [PMID: 31393067 PMCID: PMC7007335 DOI: 10.1002/cbin.11215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/03/2019] [Indexed: 01/25/2023]
Abstract
We previously found that km23-1/DYNLRB1 is required for transforming growth factor-β (TGFβ) production through Ras/ERK pathways in TGFβ-sensitive epithelial cells and in human colorectal cancer (CRC) cells. Here we demonstrate that km23-1/DYNLRB1 is required for mitogen-activated protein kinase kinase (MEK) activation in human CRC cells, detected by km23-1/DYNLRB1-siRNA inhibition of phospho-(p)-MEK immunostaining in RKO cells. Furthermore, we show that CRISPR-Cas9 knock-out (KO) of km23-1/DYNLRB1 reduced cell migration in two additional CRC models, HCT116 and DLD-1. Of interest, in contrast to our previous work showing that dynein motor activity was required for TGFβ-mediated nuclear translocation of Smad2, in the current report, we demonstrate for the first time that disruption of dynein motor activity did not reduce TGFβ-mediated activation of MEK1/2 or c-Jun N-terminal kinase (JNK). Moreover, size exclusion chromatography of RKO cell lysates revealed that B-Raf, extracellular signal-regulated kinase (ERK), and p-ERK were not present in the large molecular weight fractions containing dynein holocomplex components. Furthermore, sucrose gradient fractionation of cell lysates from both HCT116 and CBS CRC cells demonstrated that km23-1/DYNLRB1 co-sedimented with Ras, p-ERK, and ERK in fractions that did not contain components of holo-dynein. Thus, km23-1/DYNLRB1 may be associated with activated Ras/ERK signaling complexes in cell compartments that do not contain the dynein holoprotein complex, suggesting dynein-independent km23-1/DYNLRB1 functions in Ras/ERK signaling. Finally, of the Ras isoforms, R-Ras is most often associated with cell migration, adhesion, and protrusive activity. Here, we show that a significant fraction of km23-1/DYNLRB1 and RRas wase co-localized at the protruding edges of migrating HCT116 cells, suggesting an important role for the km23-1/DYNLRB1-R-Ras complex in CRC invasion.
Collapse
Affiliation(s)
| | | | | | - Kathleen M. Mulder
- To whom correspondence should be addressed: Dr. Kathleen M. Mulder, Professor, Department of Biochemistry and Molecular Biology-MC H171, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, Telephone: 1-717-531-6789; FAX: 1-717-531-0939
| |
Collapse
|
15
|
Ansar M, Ullah F, Paracha SA, Adams DJ, Lai A, Pais L, Iwaszkiewicz J, Millan F, Sarwar MT, Agha Z, Shah SF, Qaisar AA, Falconnet E, Zoete V, Ranza E, Makrythanasis P, Santoni FA, Ahmed J, Katsanis N, Walsh C, Davis EE, Antonarakis SE. Bi-allelic Variants in DYNC1I2 Cause Syndromic Microcephaly with Intellectual Disability, Cerebral Malformations, and Dysmorphic Facial Features. Am J Hum Genet 2019; 104:1073-1087. [PMID: 31079899 PMCID: PMC6556908 DOI: 10.1016/j.ajhg.2019.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/01/2019] [Indexed: 12/30/2022] Open
Abstract
Cargo transport along the cytoplasmic microtubular network is essential for neuronal function, and cytoplasmic dynein-1 is an established molecular motor that is critical for neurogenesis and homeostasis. We performed whole-exome sequencing, homozygosity mapping, and chromosomal microarray studies in five individuals from three independent pedigrees and identified likely-pathogenic variants in DYNC1I2 (Dynein Cytoplasmic 1 Intermediate Chain 2), encoding a component of the cytoplasmic dynein 1 complex. In a consanguineous Pakistani family with three affected individuals presenting with microcephaly, severe intellectual disability, simplification of cerebral gyration, corpus callosum hypoplasia, and dysmorphic facial features, we identified a homozygous splice donor site variant (GenBank: NM_001378.2:c.607+1G>A). We report two additional individuals who have similar neurodevelopmental deficits and craniofacial features and harbor deleterious variants; one individual bears a c.740A>G (p.Tyr247Cys) change in trans with a 374 kb deletion encompassing DYNC1I2, and an unrelated individual harbors the compound-heterozygous variants c.868C>T (p.Gln290∗) and c.740A>G (p.Tyr247Cys). Zebrafish larvae subjected to CRISPR-Cas9 gene disruption or transient suppression of dync1i2a displayed significantly altered craniofacial patterning with concomitant reduction in head size. We monitored cell death and cell cycle progression in dync1i2a zebrafish models and observed significantly increased apoptosis, likely due to prolonged mitosis caused by abnormal spindle morphology, and this finding offers initial insights into the cellular basis of microcephaly. Additionally, complementation studies in zebrafish demonstrate that p.Tyr247Cys attenuates gene function, consistent with protein structural analysis. Our genetic and functional data indicate that DYNC1I2 dysfunction probably causes an autosomal-recessive microcephaly syndrome and highlight further the critical roles of the dynein-1 complex in neurodevelopment.
Collapse
Affiliation(s)
- Muhammad Ansar
- Department of Genetic Medicine and Development, University of Geneva, 1206 Geneva, Switzerland
| | - Farid Ullah
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27701, USA; Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, 38000 Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences, 45650 Islamabad, Pakistan
| | - Sohail A Paracha
- Institute of Basic Medical Sciences, Khyber Medical University, 25100 Peshawar, Pakistan
| | - Darius J Adams
- Atlantic Health System, Goryeb Children's Hospital, Morristown, NJ 07960, USA
| | - Abbe Lai
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Neurology and Pediatrics, Harvard Medical School, Center for Life Sciences, Blackfan Circle, Boston, MA 02115, USA
| | - Lynn Pais
- Medical and Population Genetics Program, Broad Institute of MIT, Cambridge, MA 02142, USA; Center for Mendelian Genomics, Harvard University, Cambridge, MA 02142, USA
| | - Justyna Iwaszkiewicz
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Batiment Genopode, Unil Sorge, 1015 Lausanne, Switzerland
| | | | - Muhammad T Sarwar
- Institute of Basic Medical Sciences, Khyber Medical University, 25100 Peshawar, Pakistan
| | - Zehra Agha
- Department of Biosciences, COMSATS University, 45500 Islamabad, Pakistan
| | - Sayyed Fahim Shah
- Department of Medicine, KMU Institute of Medical Sciences, 26000 Kohat, Pakistan
| | - Azhar Ali Qaisar
- Radiology Department, Lady Reading Hospital, 25000 Peshawar, Pakistan
| | - Emilie Falconnet
- Department of Genetic Medicine and Development, University of Geneva, 1206 Geneva, Switzerland
| | - Vincent Zoete
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Batiment Genopode, Unil Sorge, 1015 Lausanne, Switzerland; Department of Fundamental Oncology, Lausanne University, Ludwig Institute for Cancer Research, Route de la Corniche 9A, 1066 Epalinges, Switzerland
| | - Emmanuelle Ranza
- Department of Genetic Medicine and Development, University of Geneva, 1206 Geneva, Switzerland; Service of Genetic Medicine, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva, 1206 Geneva, Switzerland; Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
| | - Federico A Santoni
- Department of Genetic Medicine and Development, University of Geneva, 1206 Geneva, Switzerland; Department of Endocrinology Diabetes and Metabolism, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Jawad Ahmed
- Institute of Basic Medical Sciences, Khyber Medical University, 25100 Peshawar, Pakistan
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27701, USA
| | - Christopher Walsh
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Neurology and Pediatrics, Harvard Medical School, Center for Life Sciences, Blackfan Circle, Boston, MA 02115, USA; Medical and Population Genetics Program, Broad Institute of MIT, Cambridge, MA 02142, USA; Center for Mendelian Genomics, Harvard University, Cambridge, MA 02142, USA
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27701, USA.
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva, 1206 Geneva, Switzerland; Service of Genetic Medicine, University Hospitals of Geneva, 1205 Geneva, Switzerland; iGE3 Institute of Genetics and Genomics of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
16
|
Effects of α-synuclein on axonal transport. Neurobiol Dis 2017; 105:321-327. [DOI: 10.1016/j.nbd.2016.12.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 11/22/2022] Open
|
17
|
Brady ST, Morfini GA. Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases. Neurobiol Dis 2017; 105:273-282. [PMID: 28411118 DOI: 10.1016/j.nbd.2017.04.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/17/2017] [Accepted: 04/10/2017] [Indexed: 01/07/2023] Open
Abstract
Neurons affected in a wide variety of unrelated adult-onset neurodegenerative diseases (AONDs) typically exhibit a "dying back" pattern of degeneration, which is characterized by early deficits in synaptic function and neuritic pathology long before neuronal cell death. Consistent with this observation, multiple unrelated AONDs including Alzheimer's disease, Parkinson's disease, Huntington's disease, and several motor neuron diseases feature early alterations in kinase-based signaling pathways associated with deficits in axonal transport (AT), a complex cellular process involving multiple intracellular trafficking events powered by microtubule-based motor proteins. These pathogenic events have important therapeutic implications, suggesting that a focus on preservation of neuronal connections may be more effective to treat AONDs than addressing neuronal cell death. While the molecular mechanisms underlying AT abnormalities in AONDs are still being analyzed, evidence has accumulated linking those to a well-established pathological hallmark of multiple AONDs: altered patterns of neuronal protein phosphorylation. Here, we present a short overview on the biochemical heterogeneity of major motor proteins for AT, their regulation by protein kinases, and evidence revealing cell type-specific AT specializations. When considered together, these findings may help explain how independent pathogenic pathways can affect AT differentially in the context of each AOND.
Collapse
Affiliation(s)
- Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Gerardo A Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
18
|
Barisic M, Maiato H. Dynein prevents erroneous kinetochore-microtubule attachments in mitosis. Cell Cycle 2016; 14:3356-61. [PMID: 26397382 DOI: 10.1080/15384101.2015.1089369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Equal distribution of the genetic material during cell division relies on efficient congression of chromosomes to the metaphase plate. Prior to their alignment, the Dynein motor recruited to kinetochores transports a fraction of laterally-attached chromosomes along microtubules toward the spindle poles. By doing that, Dynein not only contributes to chromosome movements, but also prevents premature stabilization of end-on kinetochore-microtubule attachments. This is achieved by 2 parallel mechanisms: 1) Dynein-mediated poleward movement of chromosomes counteracts opposite polar-ejection forces (PEFs) on chromosome arms by the microtubule plus-end-directed motors chromokinesins. Otherwise, they could stabilize erroneous syntelic kinetochore-microtubule attachments and lead to the random ejection of chromosomes away from the spindle poles; and 2) By transporting chromosomes to the spindle poles, Dynein brings the former to the zone of highest Aurora A kinase activity, further destabilizing kinetochore-microtubule attachments. Thus, Dynein plays an important role in keeping chromosome segregation error-free by preventing premature stabilization of kinetochore-microtubule attachments near the spindle poles.
Collapse
Affiliation(s)
- Marin Barisic
- a Chromosome Instability & Dynamics Laboratory; Instituto de Biologia Molecular e Celular; Universidade do Porto ; Porto , Portugal.,b Instituto de Investigação e Inovação em Saúde - i3S; Universidade do Porto ; Portugal
| | - Helder Maiato
- a Chromosome Instability & Dynamics Laboratory; Instituto de Biologia Molecular e Celular; Universidade do Porto ; Porto , Portugal.,b Instituto de Investigação e Inovação em Saúde - i3S; Universidade do Porto ; Portugal.,c Cell Division Unit ; Department of Experimental Biology; Faculdade de Medicina; Universidade do Porto ; Porto , Portugal
| |
Collapse
|
19
|
Law ME, Ferreira RB, Davis BJ, Higgins PJ, Kim JS, Castellano RK, Chen S, Luesch H, Law BK. CUB domain-containing protein 1 and the epidermal growth factor receptor cooperate to induce cell detachment. Breast Cancer Res 2016; 18:80. [PMID: 27495374 PMCID: PMC4974783 DOI: 10.1186/s13058-016-0741-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/22/2016] [Indexed: 01/01/2023] Open
Abstract
Background While localized malignancies often respond to available therapies, most disseminated cancers are refractory. Novel approaches, therefore, are needed for the treatment of metastatic disease. CUB domain-containing protein1 (CDCP1) plays an important role in metastasis and drug resistance; the mechanism however, is poorly understood. Methods Breast cancer cell lines were engineered to stably express EGFR, CDCP1 or phosphorylation site mutants of CDCP1. These cell lines were used for immunoblot analysis or affinity purification followed by immunoblot analysis to assess protein phosphorylation and/or protein complex formation with CDCP1. Kinase activity was evaluated using phosphorylation site-specific antibodies and immunoblot analysis in in vitro kinase assays. Protein band excision and mass spectrometry was utilized to further identify proteins complexed with CDCP1 or ΔCDCP1, which is a mimetic of the cleaved form of CDCP1. Cell detachment was assessed using cell counting. Results This paper reports that CDCP1 forms ternary protein complexes with Src and EGFR, facilitating Src activation and Src-dependent EGFR transactivation. Importantly, we have discovered that a class of compounds termed Disulfide bond Disrupting Agents (DDAs) blocks CDCP1/EGFR/Src ternary complex formation and downstream signaling. CDCP1 and EGFR cooperate to induce detachment of breast cancer cells from the substratum and to disrupt adherens junctions. Analysis of CDCP1-containing complexes using proteomics techniques reveals that CDCP1 associates with several proteins involved in cell adhesion, including adherens junction and desmosomal cadherins, and cytoskeletal elements. Conclusions Together, these results suggest that CDCP1 may facilitate loss of adhesion by promoting activation of EGFR and Src at sites of cell-cell and cell-substratum contact. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0741-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mary E Law
- Department of Pharmacology and Therapeutics, University of Florida, Acad. Res. Bldg., Room R5-210, 1200 Newell Drive, P.O. Box 100267, Gainesville, FL, 32610, USA.,UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Renan B Ferreira
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Bradley J Davis
- Department of Pharmacology and Therapeutics, University of Florida, Acad. Res. Bldg., Room R5-210, 1200 Newell Drive, P.O. Box 100267, Gainesville, FL, 32610, USA.,UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Paul J Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, 12208, USA
| | - Jae-Sung Kim
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | | | - Sixue Chen
- Department of Biology, Interdisciplinary Center for Biotechnology, University of Florida, Gainesville, FL, 32611, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| | - Brian K Law
- Department of Pharmacology and Therapeutics, University of Florida, Acad. Res. Bldg., Room R5-210, 1200 Newell Drive, P.O. Box 100267, Gainesville, FL, 32610, USA. .,UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA. .,Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
20
|
Inositol hexakisphosphate kinase 1 (IP6K1) activity is required for cytoplasmic dynein-driven transport. Biochem J 2016; 473:3031-47. [PMID: 27474409 PMCID: PMC5095903 DOI: 10.1042/bcj20160610] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 07/28/2016] [Indexed: 12/17/2022]
Abstract
Inositol pyrophosphates, such as diphosphoinositol pentakisphosphate (IP7), are conserved eukaryotic signaling molecules that possess pyrophosphate and monophosphate moieties. Generated predominantly by inositol hexakisphosphate kinases (IP6Ks), inositol pyrophosphates can modulate protein function by posttranslational serine pyrophosphorylation. Here, we report inositol pyrophosphates as novel regulators of cytoplasmic dynein-driven vesicle transport. Mammalian cells lacking IP6K1 display defects in dynein-dependent trafficking pathways, including endosomal sorting, vesicle movement, and Golgi maintenance. Expression of catalytically active but not inactive IP6K1 reverses these defects, suggesting a role for inositol pyrophosphates in these processes. Endosomes derived from slime mold lacking inositol pyrophosphates also display reduced dynein-directed microtubule transport. We demonstrate that Ser51 in the dynein intermediate chain (IC) is a target for pyrophosphorylation by IP7, and this modification promotes the interaction of the IC N-terminus with the p150(Glued) subunit of dynactin. IC-p150(Glued) interaction is decreased, and IC recruitment to membranes is reduced in cells lacking IP6K1. Our study provides the first evidence for the involvement of IP6Ks in dynein function and proposes that inositol pyrophosphate-mediated pyrophosphorylation may act as a regulatory signal to enhance dynein-driven transport.
Collapse
|
21
|
Peters MJ, Ramos YFM, den Hollander W, Schiphof D, Hofman A, Uitterlinden AG, Oei EHG, Slagboom PE, Kloppenburg M, Bloem JL, Bierma-Zeinstra SMA, Meulenbelt I, van Meurs JBJ. Associations between joint effusion in the knee and gene expression levels in the circulation: a meta-analysis. F1000Res 2016; 5:109. [PMID: 27134727 PMCID: PMC4837985 DOI: 10.12688/f1000research.7763.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2016] [Indexed: 01/16/2023] Open
Abstract
Objective: To identify molecular biomarkers for early knee osteoarthritis (OA), we examined whether joint effusion in the knee associated with different gene expression levels in the circulation. Materials and Methods: Joint effusion grades measured with magnetic resonance (MR) imaging and gene expression levels in blood were determined in women of the Rotterdam Study (N=135) and GARP (N=98). Associations were examined using linear regression analyses, adjusted for age, fasting status, RNA quality, technical batch effects, blood cell counts, and BMI. To investigate enriched pathways and protein-protein interactions, we used the DAVID and STRING webtools. Results: In a meta-analysis, we identified 257 probes mapping to 189 unique genes in blood that were nominally significantly associated with joint effusion grades in the knee. Several compelling genes were identified such as
C1orf38 and
NFATC1. Significantly enriched biological pathways were: response to stress, gene expression, negative regulation of intracellular signal transduction, and antigen processing and presentation of exogenous pathways. Conclusion: Meta-analyses and subsequent enriched biological pathways resulted in interesting candidate genes associated with joint effusion that require further characterization. Associations were not transcriptome-wide significant most likely due to limited power. Additional studies are required to replicate our findings in more samples, which will greatly help in understanding the pathophysiology of OA and its relation to inflammation, and may result in biomarkers urgently needed to diagnose OA at an early stage.
Collapse
Affiliation(s)
| | - Yolande F M Ramos
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Wouter den Hollander
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Dieuwke Schiphof
- Department of General Practice, Erasmus MC, Rotterdam, Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, Netherlands; Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
| | - Edwin H G Oei
- Department of Radiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - P Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Margreet Kloppenburg
- Department of Clinical Epidemiology and Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Johan L Bloem
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Sita M A Bierma-Zeinstra
- Department of General Practice, Erasmus MC, Rotterdam, Netherlands; Department of Orthopedics, Erasmus MC, Rotterdam, Netherlands
| | - Ingrid Meulenbelt
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
22
|
Gershoni-Emek N, Mazza A, Chein M, Gradus-Pery T, Xiang X, Li KW, Sharan R, Perlson E. Proteomic Analysis of Dynein-Interacting Proteins in Amyotrophic Lateral Sclerosis Synaptosomes Reveals Alterations in the RNA-Binding Protein Staufen1. Mol Cell Proteomics 2015; 15:506-22. [PMID: 26598648 DOI: 10.1074/mcp.m115.049965] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Indexed: 12/12/2022] Open
Abstract
Synapse disruption takes place in many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). However, the mechanistic understanding of this process is still limited. We set out to study a possible role for dynein in synapse integrity. Cytoplasmic dynein is a multisubunit intracellular molecule responsible for diverse cellular functions, including long-distance transport of vesicles, organelles, and signaling factors toward the cell center. A less well-characterized role dynein may play is the spatial clustering and anchoring of various factors including mRNAs in distinct cellular domains such as the neuronal synapse. Here, in order to gain insight into dynein functions in synapse integrity and disruption, we performed a screen for novel dynein interactors at the synapse. Dynein immunoprecipitation from synaptic fractions of the ALS model mSOD1(G93A) and wild-type controls, followed by mass spectrometry analysis on synaptic fractions of the ALS model mSOD1(G93A) and wild-type controls, was performed. Using advanced network analysis, we identified Staufen1, an RNA-binding protein required for the transport and localization of neuronal RNAs, as a major mediator of dynein interactions via its interaction with protein phosphatase 1-beta (PP1B). Both in vitro and in vivo validation assays demonstrate the interactions of Staufen1 and PP1B with dynein, and their colocalization with synaptic markers was altered as a result of two separate ALS-linked mutations: mSOD1(G93A) and TDP43(A315T). Taken together, we suggest a model in which dynein's interaction with Staufen1 regulates mRNA localization along the axon and the synapses, and alterations in this process may correlate with synapse disruption and ALS toxicity.
Collapse
Affiliation(s)
- Noga Gershoni-Emek
- From the ‡Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler School of Medicine and
| | - Arnon Mazza
- §Blavatnik School of Computer Science, Tel Aviv University, Israel
| | - Michael Chein
- From the ‡Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler School of Medicine and
| | - Tal Gradus-Pery
- From the ‡Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler School of Medicine and
| | - Xin Xiang
- ¶Department of Biochemistry and Molecular Biology, the Uniformed Services University of Health Sciences, Bethesda, MD
| | - Ka Wan Li
- ‖Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, the Netherlands
| | - Roded Sharan
- §Blavatnik School of Computer Science, Tel Aviv University, Israel
| | - Eran Perlson
- From the ‡Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler School of Medicine and
| |
Collapse
|
23
|
Jaarsma D, Hoogenraad CC. Cytoplasmic dynein and its regulatory proteins in Golgi pathology in nervous system disorders. Front Neurosci 2015; 9:397. [PMID: 26578860 PMCID: PMC4620150 DOI: 10.3389/fnins.2015.00397] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/09/2015] [Indexed: 12/15/2022] Open
Abstract
The Golgi apparatus is a dynamic organelle involved in processing and sorting of lipids and proteins. In neurons, the Golgi apparatus is important for the development of axons and dendrites and maintenance of their highly complex polarized morphology. The motor protein complex cytoplasmic dynein has an important role in Golgi apparatus positioning and function. Together, with dynactin and other regulatory factors it drives microtubule minus-end directed motility of Golgi membranes. Inhibition of dynein results in fragmentation and dispersion of the Golgi ribbon in the neuronal cell body, resembling the Golgi abnormalities observed in some neurodegenerative disorders, in particular motor neuron diseases. Mutations in dynein and its regulatory factors, including the dynactin subunit p150Glued, BICD2 and Lis-1, are associated with several human nervous system disorders, including cortical malformation and motor neuropathy. Here we review the role of dynein and its regulatory factors in Golgi function and positioning, and the potential role of dynein malfunction in causing Golgi apparatus abnormalities in nervous system disorders.
Collapse
Affiliation(s)
- Dick Jaarsma
- Department of Neuroscience, Erasmus MC Rotterdam, Netherlands
| | | |
Collapse
|
24
|
Steinman L. Parsing Physiological Functions of Erythropoietin One Domain at a Time. Neurotherapeutics 2015; 12:848-9. [PMID: 26311151 PMCID: PMC4604186 DOI: 10.1007/s13311-015-0384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A domain of erythropoietin (EPO), separate from the domain involved in red blood cell development, has been identified. This region of EPO has anti-inflammatory and neuroprotective effects. Use of a peptide sequence from this region provides the potential for an effective therapeutic without effects on erythropoiesis.
Collapse
Affiliation(s)
- Lawrence Steinman
- Neurology and Neuroscience, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
25
|
Ross MW, Mitchell DJ, Cain JC, Blasier KR, Pfister KK. Live cell imaging of cytoplasmic dynein movement in transfected embryonic rat neurons. Methods Cell Biol 2015; 131:253-67. [PMID: 26794518 DOI: 10.1016/bs.mcb.2015.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Live cell imaging of the movement of various membrane-bounded organelle cargos has enhanced our understanding of their function. Eukaryotic cells utilize microtubules and two classes of microtubule-based motor proteins, cytoplasmic dynein and members of the kinesin family, to deliver a variety of membrane-bounded organelles and other cargos to their appropriate locations. In order to better understand the functions and regulation of cytoplasmic dynein, we developed a method to study its location and motility in living cells. The technique takes advantage of the long thin axons of cultured hippocampal neurons. We use calcium phosphate to transfect fluorescent-tagged dynein intermediate chain (IC) subunits (DYNC1I) into cultured neurons. When the ICs are expressed at low levels, they are effective probes for the location of the cytoplasmic dynein complex in axons when living cells are imaged with fluorescence microscopy. The fluorescent subunit probes can be used to identify specific cargos of dynein complexes with different IC isoforms as well as the kinetic properties of cytoplasmic dynein.
Collapse
Affiliation(s)
- Mitchell W Ross
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - David J Mitchell
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - John C Cain
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Kiev R Blasier
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - K Kevin Pfister
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
26
|
Abstract
Dyneins are a small class of molecular motors that bind to microtubules and walk toward their minus ends. They are essential for the transport and distribution of organelles, signaling complexes and cytoskeletal elements. In addition dyneins generate forces on microtubule arrays that power the beating of cilia and flagella, cell division, migration and growth cone motility. Classical approaches to the study of dynein function in axons involve the depletion of dynein, expression of mutant/truncated forms of the motor, or interference with accessory subunits. By necessity, these approaches require prolonged time periods for the expression or manipulation of cellular dynein levels. With the discovery of the ciliobrevins, a class of cell permeable small molecule inhibitors of dynein, it is now possible to acutely disrupt dynein both globally and locally. In this review, we briefly summarize recent work using ciliobrevins to inhibit dynein and discuss the insights ciliobrevins have provided about dynein function in various cell types with a focus on neurons. We temper this with a discussion of the need for studies that will elucidate the mechanism of action of ciliobrevin and as well as the need for experiments to further analyze the specificity of ciliobreviens for dynein. Although much remains to be learned about ciliobrevins, these small molecules are proving themselves to be valuable novel tools to assess the cellular functions of dynein.
Collapse
Affiliation(s)
- Douglas H Roossien
- Department of Cell and Developmental Biology, University of Michigan Ann Arbor, MI, USA
| | - Kyle E Miller
- Department of Integrative Biology, Michigan State University East Lansing, MI, USA
| | - Gianluca Gallo
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine Philadelphia, PA, USA
| |
Collapse
|