1
|
Cañizo CG, Guerrero-Ramos F, Perez Escavy M, Lodewijk I, Suárez-Cabrera C, Morales L, Nunes SP, Munera-Maravilla E, Rubio C, Sánchez R, Rodriguez-Izquierdo M, Martínez de Villarreal J, Real FX, Castellano D, Martín-Arriscado C, Lora Pablos D, Rodríguez Antolín A, Dueñas M, Paramio JM, Martínez VG. Characterisation of the tumour microenvironment and PD-L1 granularity reveals the prognostic value of cancer-associated myofibroblasts in non-invasive bladder cancer. Oncoimmunology 2025; 14:2438291. [PMID: 39698899 DOI: 10.1080/2162402x.2024.2438291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/29/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
High-risk non-muscle-invasive bladder cancer (NMIBC) presents high recurrence and progression rates. Despite the use of Bacillus Calmette-Guérin gold-standard immunotherapy and the recent irruption of anti-PD-1/PD-L1 drugs, we are missing a comprehensive understanding of the tumor microenvironment (TME) that may help us find biomarkers associated to treatment outcome. Here, we prospectively analyzed TME composition and PD-L1 expression of tumor and non-tumoral tissue biopsies from 73 NMIBC patients and used scRNA-seq, transcriptomic cohorts and tissue micro-array to validate the prognostic value of cell types of interest. Compared to non-tumoral tissue, NMIBC presented microvascular alterations, increased cancer-associated fibroblast (CAF) and myofibroblast (myoCAF) presence, and varied immune cell distribution, such as increased macrophage infiltration. Heterogeneous PD-L1 expression was observed across subsets, with macrophages showing the highest expression levels, but cancer cells as the primary potential anti-PD-L1 binding targets. Unbiased analysis revealed that myoCAF and M2-like macrophages are specifically enriched in high-grade NMIBC tumors. The topological distribution of these two cell types changed as NMIBC progresses, as shown by immunofluorescence. Only myoCAFs were associated with higher rates of progression and recurrence in three independent cohorts (888 total patients), reaching prediction values comparable to transcriptomic classes, which we further validated using tissue micro-array. Our study provides a roadmap to establish the landscape of the NMIBC TME, highlighting myoCAFs as potential prognostic markers.
Collapse
Affiliation(s)
- Carmen G Cañizo
- Urology Department, University Hospital '12 de Octubre', Madrid, Spain
| | | | - Mercedes Perez Escavy
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Iris Lodewijk
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Cristian Suárez-Cabrera
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Lucía Morales
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Sandra P Nunes
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network) Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
| | - Ester Munera-Maravilla
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Carolina Rubio
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Rebeca Sánchez
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Madrid, Spain
| | | | - Jaime Martínez de Villarreal
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Epithelial Carcinogenesis Group, Spanish National Cancer Centre-CNIO, Madrid, Spain
| | - Francisco X Real
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Epithelial Carcinogenesis Group, Spanish National Cancer Centre-CNIO, Madrid, Spain
- Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Daniel Castellano
- Oncology Department, University Hospital '12 de Octubre', Madrid, Spain
| | | | - David Lora Pablos
- Scientific Support Unit, Research Institute I+12, University Hospital 12 de Octubre, Madrid, Spain
| | | | - Marta Dueñas
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Jesús M Paramio
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Victor G Martínez
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| |
Collapse
|
2
|
Hu L, Wu N, Wang J, Yao M, Han B. Network Pharmacology Combined with Bioinformatics Analysis to Texplore the Potential Mechanism of Phellodendri Chinensis Cortex Against Bladder Cancer. Cell Biochem Biophys 2024; 82:3317-3331. [PMID: 39023680 DOI: 10.1007/s12013-024-01414-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
The pharmacological mechanism of Phellodendri Chinensis cortex (PCC) against diseases, especially bladder cancer (BC), has never been reported systematically. This study was designed to explore potential mechanism of PCC in treatment of BC. First, we used network pharmacology to discover the potential mechanism of Phellodendri Chinensis cortex and phellodendrine against bladder cancer. Then, we used bioinformatics analysis to verify the correlation between gene expression analysis, survival analysis and common targets. Finally, molecular docking was used to calculate the binding energies of phellodendrine and common targets.A total of 264 targets for PCC were predicted, and 391 BC-related targets were obtained from 4 databases. There were 54 potential targets, 315 biological processes, and 120 signaling pathways involved for PCC against BC. The CDKN2A expression increased and the ESR1, JUN, IL6, AR, and PTGS2 levels decreased in BC according to Gene Expression Profiling Interactive Analysis version 2. The high expression of JUN, MYC, EGFR, and EGF and low expression of VEGFA and PPARG were associated with short overall survival (OS). The high expression of AKT1, EGFR, and EGF and low expression of IL1β were associated with poor disease-free survival (DFS). The search of the intersection of phellodendrine and BC targets yielded 11 common targets, 50 biological processes, and 13 signaling pathways involved. High AURKA and FASN and low ESR1, JUN, ABCB1, and PTGS1 were expressed in BC. The high expression of FASN, ABCC1, PTGS1, JUN, and PIK3CA was associated with short OS, the high expression of PIK3CA and ABCC1 was associated with poor DFS prognosis. Phellodendrine showed a better binding affinity for PTGS2 protein with a docking score of -7.183 and a MM-GBSA result of -46.47 kcal/mol. This study revealed potential mechanism of PCC and phellodendrine against BC through network pharmacology and bioinformatics.
Collapse
Affiliation(s)
- Lili Hu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
- College of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
- Shanxi Di'an Medical Inspection Center Co., Ltd., Taiyuan, 030006, China.
| | - Na Wu
- College of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Jue Wang
- College of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Mingze Yao
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Bo Han
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
- College of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
| |
Collapse
|
3
|
Huang L, Xie Q, Deng J, Wei WF. The role of cancer-associated fibroblasts in bladder cancer progression. Heliyon 2023; 9:e19802. [PMID: 37809511 PMCID: PMC10559166 DOI: 10.1016/j.heliyon.2023.e19802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key stromal cells in the tumor microenvironment (TME) that critically contribute to cancer initiation and progression. In bladder cancer (BCa), there is emerging evidence that BCa CAFs are actively involved in cancer cell proliferation, invasion, metastasis, and chemotherapy resistance. This review outlines the present knowledge of BCa CAFs, with a particular emphasis on their origin and function in BCa progression, and provides further insights into their clinical application.
Collapse
Affiliation(s)
- Long Huang
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Qun Xie
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Jian Deng
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Wen-Fei Wei
- Department of Gynecology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Patwardhan MV, Mahendran R. The Bladder Tumor Microenvironment Components That Modulate the Tumor and Impact Therapy. Int J Mol Sci 2023; 24:12311. [PMID: 37569686 PMCID: PMC10419109 DOI: 10.3390/ijms241512311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The tumor microenvironment (TME) is complex and involves many different cell types that seemingly work together in helping cancer cells evade immune monitoring and survive therapy. The advent of single-cell sequencing has greatly increased our knowledge of the cell types present in the tumor microenvironment and their role in the developing cancer. This, coupled with clinical data showing that cancer development and the response to therapy may be influenced by drugs that indirectly influence the tumor environment, highlights the need to better understand how the cells present in the TME work together. This review looks at the different cell types (cancer cells, cancer stem cells, endothelial cells, pericytes, adipose cells, cancer-associated fibroblasts, and neuronal cells) in the bladder tumor microenvironment. Their impact on immune activation and on shaping the microenvironment are discussed as well as the effects of hypertensive drugs and anesthetics on bladder cancer.
Collapse
Affiliation(s)
| | - Ratha Mahendran
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| |
Collapse
|
5
|
Wieder R. Fibroblasts as Turned Agents in Cancer Progression. Cancers (Basel) 2023; 15:2014. [PMID: 37046676 PMCID: PMC10093070 DOI: 10.3390/cancers15072014] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Differentiated epithelial cells reside in the homeostatic microenvironment of the native organ stroma. The stroma supports their normal function, their G0 differentiated state, and their expansion/contraction through the various stages of the life cycle and physiologic functions of the host. When malignant transformation begins, the microenvironment tries to suppress and eliminate the transformed cells, while cancer cells, in turn, try to resist these suppressive efforts. The tumor microenvironment encompasses a large variety of cell types recruited by the tumor to perform different functions, among which fibroblasts are the most abundant. The dynamics of the mutual relationship change as the sides undertake an epic battle for control of the other. In the process, the cancer "wounds" the microenvironment through a variety of mechanisms and attracts distant mesenchymal stem cells to change their function from one attempting to suppress the cancer, to one that supports its growth, survival, and metastasis. Analogous reciprocal interactions occur as well between disseminated cancer cells and the metastatic microenvironment, where the microenvironment attempts to eliminate cancer cells or suppress their proliferation. However, the altered microenvironmental cells acquire novel characteristics that support malignant progression. Investigations have attempted to use these traits as targets of novel therapeutic approaches.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
6
|
Caramelo B, Zagorac S, Corral S, Marqués M, Real FX. Cancer-associated Fibroblasts in Bladder Cancer: Origin, Biology, and Therapeutic Opportunities. Eur Urol Oncol 2023:S2588-9311(23)00043-3. [PMID: 36890105 DOI: 10.1016/j.euo.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/28/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023]
Abstract
CONTEXT Bladder cancer (BLCA) is a highly prevalent tumour and a health problem worldwide, especially among men. Recent work has highlighted the relevance of the tumour microenvironment (TME) in cancer biology with translational implications. Cancer-associated fibroblasts (CAFs) are a prominent, heterogeneous population of cells in the TME. CAFs have been associated with tumour development, progression, and poor prognosis in several neoplasms. However, their role in BLCA has not yet been exploited deeply. OBJECTIVE To review the role of CAFs in BLCA biology and provide an understanding of CAF origin, subtypes, markers, and phenotypic and functional characteristics to improve patient management. EVIDENCE ACQUISITION A PubMed search was performed to review manuscripts published using the terms "cancer associated fibroblast" and "bladder cancer" or "urothelial cancer". All abstracts were reviewed, and the full content of all relevant manuscripts was analysed. In addition, selected manuscripts on CAFs in other tumours were considered. EVIDENCE SYNTHESIS CAFs have been studied less extensively in BLCA than in other tumours. Thanks to new techniques, such as single-cell RNA-seq and spatial transcriptomics, it is now possible to accurately map and molecularly define the phenotype of fibroblasts in normal bladder and BLCA. Bulk transcriptomic analyses have revealed the existence of subtypes among both non-muscle-invasive and muscle-invasive BLCA; these subtypes display distinct features regarding their CAF content. We provide a higher-resolution map of the phenotypic diversity of CAFs in these tumour subtypes. Preclinical studies and recent promising clinical trials leverage on this knowledge through the combined targeting of CAFs or their effectors and the immune microenvironment. CONCLUSIONS Current knowledge of BLCA CAFs and the TME is being increasingly applied to improve BLCA therapy. There is a need to acquire a deeper understanding of CAF biology in BLCA. PATIENT SUMMARY Tumour cells are surrounded by nontumoural cells that contribute to the determination of the behaviour of cancers. Among them are cancer-associated fibroblasts. The "neighbourhoods" established through these cellular interactions can now be studied with much greater resolution. Understanding these features of tumours will contribute to the designing of more effective therapies, especially in relationship to bladder cancer immunotherapy.
Collapse
Affiliation(s)
- Belén Caramelo
- Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain; Hospital Sierrallana, Torrelavega, Spain
| | - Sladjana Zagorac
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Sonia Corral
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Miriam Marqués
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain; CIBERONC, Madrid, Spain.
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain; CIBERONC, Madrid, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
7
|
Burley A, Rullan A, Wilkins A. A review of the biology and therapeutic implications of cancer-associated fibroblasts (CAFs) in muscle-invasive bladder cancer. Front Oncol 2022; 12:1000888. [PMID: 36313650 PMCID: PMC9608345 DOI: 10.3389/fonc.2022.1000888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/22/2022] [Indexed: 10/04/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a fundamental role in the development of cancers and their response to therapy. In recent years, CAFs have returned to the spotlight as researchers work to unpick the mechanisms by which they impact tumour evolution and therapy responses. However, study of CAFs has largely been restricted to a select number of common cancers, whereas research into CAF biology in bladder cancer has been relatively neglected. In this review, we explore the basics of CAF biology including the numerous potential cellular origins of CAFs, alongside mechanisms of CAF activation and their diverse functionality. We find CAFs play an important role in the progression of bladder cancer with significant implications on tumour cell signaling, epithelial to mesenchymal transition and the capacity to modify components of the immune system. In addition, we highlight some of the landmark papers describing CAF heterogeneity and find trends in the literature to suggest that the iCAF and myCAF subtypes defined in bladder cancer share common characteristics with CAF subtypes described in other settings such as breast and pancreatic cancer. Moreover, based on findings in other common cancers we identify key therapeutic challenges associated with CAFs, such as the lack of specific CAF markers, the paucity of research into bladder-specific CAFs and their relationship with therapies such as radiotherapy. Of relevance, we describe a variety of strategies used to target CAFs in several common cancers, paying particular attention to TGFβ signaling as a prominent regulator of CAF activation. In doing so, we find parallels with bladder cancer that suggest CAF targeting may advance therapeutic options in this setting and improve the current poor survival outcomes in bladder cancer which sadly remain largely unchanged over recent decades.
Collapse
Affiliation(s)
- Amy Burley
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom
| | - Antonio Rullan
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom
- Head and Neck Unit, Royal Marsden National Health Service (NHS) Hospital Trust, London, United Kingdom
| | - Anna Wilkins
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom
- Department of Radiotherapy, Royal Marsden National Health Service (NHS) Hospital Trust, London, United Kingdom
| |
Collapse
|
8
|
Bladder Cancer Cells Exert Pleiotropic Effects on Human Adipose-Derived Stem Cells. Life (Basel) 2022; 12:life12040549. [PMID: 35455040 PMCID: PMC9025060 DOI: 10.3390/life12040549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
Stem cell-based therapies are considered one of the most promising disciplines in biomedicine. Bladder cancer patients could benefit from therapies directed to promote healing after invasive surgeries or to lessen urinary incontinence, a common side effect of both cancer itself and the treatment. However, the local delivery of cells producing large amounts of paracrine factors may alter interactions within the microenvironment. For this reason, reconstructive cellular therapies for patients with a history of cancer carry a potential risk of tumor reactivation. We used an indirect co-culture model to characterize the interplay between adipose-derived stem cells and bladder cancer cells. Incubation with ASCs increased MCP-1 secretion by bladder cancer cells (from 2.1-fold to 8.1-fold, depending on the cell line). Cancer cell-derived factors altered ASC morphology. Cells with atypical shapes and significantly enlarged volumes appeared within the monolayer. Incubation in a conditioned medium (CM) containing soluble mediators secreted by 5637 and HB-CLS-1 bladder cancer cell lines decreased ASC numbers by 47.5% and 45.7%. A significant increase in adhesion to ECM components, accompanied by reduced motility and sheet migration, was also observed after incubation in CM from 5637 and HB-CLS-1 cells. No differences were observed when ASCs were co-cultured with HT-1376 cells. Our previous and present results indicate that soluble mediators secreted by ASCs and bladder cancer cells induce opposite effects influencing cells that represent the non-muscle-invasive urinary bladder.
Collapse
|
9
|
Nonphosphorylatable PEA15 mutant inhibits epithelial-mesenchymal transition in triple-negative breast cancer partly through the regulation of IL-8 expression. Breast Cancer Res Treat 2021; 189:333-345. [PMID: 34241740 PMCID: PMC8357760 DOI: 10.1007/s10549-021-06316-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/24/2021] [Indexed: 11/05/2022]
Abstract
Background Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that lacks targeted therapies. Patients with TNBC have a very poor prognosis because the disease often metastasizes. New treatment approaches addressing drivers of metastasis and tumor growth are crucial to improving patient outcomes. Developing targeted gene therapy is thus a high priority for TNBC patients. PEA15 (phosphoprotein enriched in astrocytes, 15 kDa) is known to bind to ERK, preventing ERK from being translocated to the nucleus and hence blocking its activity. The biological function of PEA15 is tightly regulated by its phosphorylation at Ser104 and Ser116. However, the function and impact of phosphorylation status of PEA15 in the regulation of TNBC metastasis and in epithelial-to-mesenchymal transition (EMT) are not well understood. Methods We established stable cell lines overexpressing nonphosphorylatable (PEA15-AA) and phospho-mimetic (PEA15-DD) mutants. To dissect specific cellular mechanisms regulated by PEA15 phosphorylation status, we performed RT-PCR immune and metastasis arrays. In vivo mouse models were used to determine the effects of PEA15 phosphorylation on tumor growth and metastasis. Results We found that the nonphosphorylatable mutant PEA15-AA prevented formation of mammospheres and expression of EMT markers in vitro and decreased tumor growth and lung metastasis in in vivo experiments when compared to control, PEA15-WT and phosphomimetic PEA15-DD. However, phosphomimetic mutant PEA15-DD promoted migration, mesenchymal marker expression, tumorigenesis, and lung metastasis in the mouse model. PEA15-AA-mediated inhibition of breast cancer cell migratory capacity and tumorigenesis was the partial result of decreased expression of interleukin-8 (IL-8). Further, we identified that expression of IL-8 was possibly mediated through one of the ERK downstream molecules, Ets-1. Conclusions Our results show that PEA15 phosphorylation status serves as an important regulator for PEA15’s dual role as an oncogene or tumor suppressor and support the potential of PEA15-AA as a therapeutic strategy for treatment of TNBC. Supplementary Information The online version contains supplementary material available at 10.1007/s10549-021-06316-2.
Collapse
|
10
|
Schneider L, Liu J, Zhang C, Azoitei A, Meessen S, Zheng X, Cremer C, Gorzelanny C, Kempe-Gonzales S, Brunner C, Wezel F, Bolenz C, Gunes C, John A. The Role of Interleukin-1-Receptor-Antagonist in Bladder Cancer Cell Migration and Invasion. Int J Mol Sci 2021; 22:ijms22115875. [PMID: 34070905 PMCID: PMC8198563 DOI: 10.3390/ijms22115875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 11/30/2022] Open
Abstract
Background: The interleukin-1-receptor antagonist IL1RA (encoded by the IL1RN gene) is a potent competitive antagonist to interleukin-1 (IL1) and thereby is mainly involved in the regulation of inflammation. Previous data indicated a role of IL1RA in muscle-invasive urothelial carcinoma of the bladder (UCB) as well as an IL1-dependent decrease in tissue barrier function, potentially contributing to cancer cell invasion. Objective: Based on these observations, here we investigated the potential roles of IL1RA, IL1A, and IL1B in bladder cancer cell invasion in vitro. Methods: Cell culture, real-time impedance sensing, invasion assays (Boyden chamber, pig bladder model), qPCR, Western blot, ELISA, gene overexpression. Results: We observed a loss of IL1RA expression in invasive, high-grade bladder cancer cell lines T24, UMUC-3, and HT1197 while IL1RA expression was readily detectable in the immortalized UROtsa cells, the non-invasive bladder cancer cell line RT4, and in benign patient urothelium. Thus, we modified the invasive human bladder cancer cell line T24 to ectopically express IL1RA, and measured changes in cell migration/invasion using the xCELLigence Real-Time-Cell-Analysis (RTCA) system and the Boyden chamber assay. The real-time observation data showed a significant decrease of cell migration and invasion in T24 cells overexpressing IL1RA (T24-IL1RA), compared to cells harboring an empty vector (T24-EV). Concurrently, tumor cytokines, e.g., IL1B, attenuated the vascular endothelial barrier, which resulted in a reduction of the Cell Index (CI), an impedance-based dimensionless unit. This reduction could be reverted by the simultaneous incubation with IL1RA. Moreover, we used an ex vivo porcine organ culture system to evaluate cell invasion capacity and showed that T24-IL1RA cells showed significantly less invasive capacity compared to parental T24 cells or T24-EV. Conclusions: Taken together, our results indicate an inverse correlation between IL1RA expression and tumor cell invasive capacity and migration, suggesting that IL1RA plays a role in bladder carcinogenesis, while the exact mechanisms by which IL1RA influences tumor cells migration/invasion remain to be clarified in future studies. Furthermore, we confirmed that real-time impedance sensing and the porcine ex vivo organ culture methods are powerful tools to discover differences in cancer cell migration and invasion.
Collapse
Affiliation(s)
- Lisa Schneider
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | - Junnan Liu
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | - Cheng Zhang
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | - Anca Azoitei
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | - Sabine Meessen
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | - Xi Zheng
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | - Catharina Cremer
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | | | - Sybille Kempe-Gonzales
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Hospital, 89075 Ulm, Germany; (S.K.-G.); (C.B.)
| | - Cornelia Brunner
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Hospital, 89075 Ulm, Germany; (S.K.-G.); (C.B.)
| | - Felix Wezel
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | - Christian Bolenz
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| | - Cagatay Gunes
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
- Correspondence: ; Tel.: +49-731-500-58019
| | - Axel John
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (L.S.); (J.L.); (C.Z.); (A.A.); (S.M.); (X.Z.); (C.C.); (F.W.); (C.B.); (A.J.)
| |
Collapse
|
11
|
John A, Günes C, Bolenz C, Vidal-Y-Sy S, Bauer AT, Schneider SW, Gorzelanny C. Bladder cancer-derived interleukin-1 converts the vascular endothelium into a pro-inflammatory and pro-coagulatory surface. BMC Cancer 2020; 20:1178. [PMID: 33267794 PMCID: PMC7709388 DOI: 10.1186/s12885-020-07548-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022] Open
Abstract
Background Bladder cancer cells orchestrate tumour progression by pro-inflammatory cytokines. Cytokines modulate the local tumour microenvironment and increase the susceptibility of tumour distant tissues for metastasis. Here, we investigated the impact of human bladder cancer cell derived factors on the ability to modulate and activate human vascular endothelial cells. Methods The pro-inflammatory and pro-coagulatory potential of four different bladder cancer cell lines was accessed by qRT-PCR arrays and ELISA. Modulation and activation of endothelial cells was studied in microfluidic devices. Clinical relevance of our findings was confirmed by immune histology in tissue samples of bladder cancer patients and public transcriptome data. Results The unbalanced ratio between interleukin (IL)-1 and IL-1 receptor antagonist (IL-1ra) in the secretome of bladder cancer cells converted the quiescent vascular endothelium into a pro-adhesive, pro-inflammatory, and pro-coagulatory surface. Microfluidic experiments showed that tumour cell induced endothelial cell activation promoted leukocyte recruitment and platelet adhesion. Human bladder cancer tissue analysis confirmed that loss of IL-1ra and elevated IL-1 expression was associated with enhanced cancer progression. Conclusions Our data indicate that IL-1 and IL-1ra were dysregulated in bladder cancer and could facilitate tumour dissemination through endothelial cell activation. Targeting the IL-1/IL-1ra axis might attenuate tumour-mediated inflammation and metastasis formation. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07548-z.
Collapse
Affiliation(s)
- A John
- Department of Urology, University of Ulm, Ulm, Germany
| | - C Günes
- Department of Urology, University of Ulm, Ulm, Germany
| | - C Bolenz
- Department of Urology, University of Ulm, Ulm, Germany
| | - S Vidal-Y-Sy
- Department of Dermatology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - A T Bauer
- Department of Dermatology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - S W Schneider
- Department of Dermatology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - C Gorzelanny
- Department of Dermatology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
12
|
CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of the Ligands of Receptors CCR1, CCR2, CCR3, and CCR4. Int J Mol Sci 2020; 21:ijms21218412. [PMID: 33182504 PMCID: PMC7665155 DOI: 10.3390/ijms21218412] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
CC chemokines, a subfamily of 27 chemotactic cytokines, are a component of intercellular communication, which is crucial for the functioning of the tumor microenvironment. Although many individual chemokines have been well researched, there has been no comprehensive review presenting the role of all known human CC chemokines in the hallmarks of cancer, and this paper aims at filling this gap. The first part of this review discusses the importance of CCL1, CCL3, CCL4, CCL5, CCL18, CCL19, CCL20, CCL21, CCL25, CCL27, and CCL28 in cancer. Here, we discuss the significance of CCL2 (MCP-1), CCL7, CCL8, CCL11, CCL13, CCL14, CCL15, CCL16, CCL17, CCL22, CCL23, CCL24, and CCL26. The presentation of each chemokine includes its physiological function and then the role in tumor, including proliferation, drug resistance, migration, invasion, and organ-specific metastasis of tumor cells, as well as the effects on angiogenesis and lymphangiogenesis. We also discuss the effects of each CC chemokine on the recruitment of cancer-associated cells to the tumor niche (eosinophils, myeloid-derived suppressor cells (MDSC), tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), regulatory T cells (Treg)). On the other hand, we also present the anti-cancer properties of CC chemokines, consisting in the recruitment of tumor-infiltrating lymphocytes (TIL).
Collapse
|
13
|
Trained immunity as a molecular mechanism for BCG immunotherapy in bladder cancer. Nat Rev Urol 2020; 17:513-525. [PMID: 32678343 DOI: 10.1038/s41585-020-0346-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 01/01/2023]
Abstract
Intravesical BCG instillation is the gold-standard adjuvant immunotherapy for patients with high-risk non-muscle-invasive bladder cancer. However, the precise mechanism of action by which BCG asserts its beneficial effects is still unclear. BCG has been shown to induce a non-specific enhancement of the biological function in cells of the innate immune system, creating a de facto heterologous immunological memory that has been termed trained immunity. Trained immunity or innate immune memory enables innate immune cells to mount a more robust response to secondary non-related stimuli after being initially primed (or trained) by a challenge such as BCG. BCG-induced trained immunity is characterized by the metabolic rewiring of monocyte intracellular metabolism and epigenetic modifications, which subsequently lead to functional reprogramming effects, such as an increased production of cytokines, on restimulation. Results from BCG vaccination studies in humans show that trained immunity might at least partly account for the heterologous beneficial effects of BCG vaccination. Additionally, immunity might have a role in the effect of BCG immunotherapy for bladder cancer. Based on these indications, we propose that trained immunity could be one of the important mechanisms mediating BCG immunotherapy and could provide a basis for further improvements towards a personalized approach to BCG therapy in non-muscle-invasive bladder cancer.
Collapse
|
14
|
Liu B, Zhan Y, Chen X, Hu X, Wu B, Pan S. Weighted gene co-expression network analysis can sort cancer-associated fibroblast-specific markers promoting bladder cancer progression. J Cell Physiol 2020; 236:1321-1331. [PMID: 32657439 DOI: 10.1002/jcp.29939] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
Abstract
The role of cancer-associated fibroblasts (CAFs) has been thoroughly investigated in tumour microenvironments but not in bladder urothelial carcinoma (BLCA). The cell fraction of CAFs gradually increased with BLCA progression. Weighted gene co-expression network analysis (WGCNA) revealed a specific gene expression module of CAFs that are relevant to cancer progression and survival status. Fifteen key genes of the module were consistent with a fibroblast signature in single-cell RNA sequencing, functionally related to the extracellular matrix, and significant in survival analysis and tumour staging. A comparison of the luminal-infiltrated versus luminal-papillary subtypes and fibroblast versus urothelial carcinoma cell lines and immunohistochemical data analysis demonstrated that the key genes were specifically expressed in CAFs. Moreover, these genes are highly correlated with previously reported CAF markers. In summary, CAFs play a major role in the progression of BLCA, and the 15 key genes act as BLCA-specific CAF markers and can predict CAF changes. WGCNA can, therefore, be used to sort CAF-specific gene set in cancer tissues.
Collapse
Affiliation(s)
- Bitian Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunhong Zhan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoru Hu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bin Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shen Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Pausch TM, Aue E, Wirsik NM, Freire Valls A, Shen Y, Radhakrishnan P, Hackert T, Schneider M, Schmidt T. Metastasis-associated fibroblasts promote angiogenesis in metastasized pancreatic cancer via the CXCL8 and the CCL2 axes. Sci Rep 2020; 10:5420. [PMID: 32214219 PMCID: PMC7096431 DOI: 10.1038/s41598-020-62416-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
The characteristic desmoplastic stroma of pancreatic ductal adenocarcinoma (PDAC) is a key contributor to its lethality. This stromal microenvironment is populated by cancer-associated fibroblasts (CAFs) that interact with cancer cells to drive progression and chemo-resistance. Research has focused on CAFs in the primary tumour but not in metastases, calling into question the role of analogous metastasis-associated fibroblasts (MAFs). We infer a role of MAFs in murine hepatic metastases following untargeted treatment with the anti-angiogenic drug sunitinib in vivo. Treated metastases were smaller and had fewer stromal cells, but were able to maintain angiogenesis and metastasis formation in the liver. Furthermore, sunitinib was ineffective at reducing MAFs alongside other stromal cells. We speculate that cancer cells interact with MAFs to maintain angiogenesis and tumour progression. Thus, we tested interactions between metastatic pancreatic cancer cells and fibroblasts using in vitro co-culture systems. Co-cultures enhanced fibroblast proliferation and induced angiogenesis. We identify carcinoma-educated fibroblasts as the source of angiogenesis via secretions of CXCL8 (aka IL-8) and CCL2 (aka MCP-1). Overall, we demonstrate that metastasis-associated fibroblasts have potential as a therapeutic target and highlight the CXCL8 and CCL2 axes for further investigation.
Collapse
Affiliation(s)
- Thomas M Pausch
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Elisa Aue
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Naita M Wirsik
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Aida Freire Valls
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Ying Shen
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
16
|
Fibroblasts in urothelial bladder cancer define stroma phenotypes that are associated with clinical outcome. Sci Rep 2020; 10:281. [PMID: 31937798 PMCID: PMC6959241 DOI: 10.1038/s41598-019-55013-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Little attention was given to the interaction between tumor and stromal cells in urothelial bladder carcinoma (UBC). While recent studies point towards the existence of different fibroblast subsets, no comprehensive analyses linking different fibroblast markers to UBC patient survival have been performed so far. Through immunohistochemical analysis of five selected fibroblast markers, namely alpha smooth muscle actin (ASMA), CD90/Thy-1, fibroblast activation protein (FAP), platelet derived growth factor receptor-alpha and -beta (PDGFRa,-b), this study investigates their association with survival and histopathological characteristics in a cohort of 344 UBC patients, involving both, muscle-invasive and non-muscle-invasive cases. The data indicates that combinations of stromal markers are more suited to identify prognostic patient subgroups than single marker analysis. Refined stroma-marker-based patient stratification was achieved through cluster analysis and identified a FAP-dominant patient cluster as independent marker for shorter 5-year-survival (HR(95% CI)2.25(1.08–4.67), p = 0.030). Analyses of interactions between fibroblast and CD8a-status identified a potential minority of cases with CD90-defined stroma and high CD8a infiltration showing a good prognosis of more than 80% 5-year-survival. Presented analyses point towards the existence of different stroma-cell subgroups with distinct tumor-modulatory properties and motivate further studies aiming to better understand the molecular tumor–stroma crosstalk in UBC.
Collapse
|
17
|
Martinez VG, Munera-Maravilla E, Bernardini A, Rubio C, Suarez-Cabrera C, Segovia C, Lodewijk I, Dueñas M, Martínez-Fernández M, Paramio JM. Epigenetics of Bladder Cancer: Where Biomarkers and Therapeutic Targets Meet. Front Genet 2019; 10:1125. [PMID: 31850055 PMCID: PMC6902278 DOI: 10.3389/fgene.2019.01125] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer (BC) is the most common neoplasia of the urothelial tract. Due to its high incidence, prevalence, recurrence and mortality, it remains an unsolved clinical and social problem. The treatment of BC is challenging and, although immunotherapies have revealed potential benefit in a percentage of patients, it remains mostly an incurable disease at its advanced state. Epigenetic alterations, including aberrant DNA methylation, altered chromatin remodeling and deregulated expression of non-coding RNAs are common events in BC and can be driver events in BC pathogenesis. Accordingly, these epigenetic alterations are now being used as potential biomarkers for these disorders and are being envisioned as potential therapeutic targets for the future management of BC. In this review, we summarize the recent findings in these emerging and exciting new aspects paving the way for future clinical treatment of this disease.
Collapse
Affiliation(s)
- Victor G. Martinez
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Ester Munera-Maravilla
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Alejandra Bernardini
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Carolina Rubio
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Cristian Suarez-Cabrera
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Cristina Segovia
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Iris Lodewijk
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Marta Dueñas
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Mónica Martínez-Fernández
- Genomes & Disease Lab, CiMUS (Center for Research in Molecular Medicine and Chronic Diseases), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesus Maria Paramio
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
18
|
Kondoh N, Mizuno-Kamiya M, Umemura N, Takayama E, Kawaki H, Mitsudo K, Muramatsu Y, Sumitomo S. Immunomodulatory aspects in the progression and treatment of oral malignancy. JAPANESE DENTAL SCIENCE REVIEW 2019; 55:113-120. [PMID: 31660091 PMCID: PMC6806653 DOI: 10.1016/j.jdsr.2019.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/28/2022] Open
Abstract
Inflammation substantially affects the risk of oral malignancy. Pro-inflammatory cytokine, interferon (IFN)-γ, confers anti-tumor activity using several different mechanisms. Conversely, higher expression of interleukin (IL)-17 is associated with worse prognosis. Monocyte chemotactic protein (MCP)-1 correlates positively with poor long-term survival of head and neck squamous cell carcinoma (HNSCC) patients. IL-1α affects cancer associated fibroblasts and macrophages, and promote several malignant phenotypes including immune suppression. Some anti-inflammatory cytokines, including IL-10 and transforming growth factor (TGF)-β, relate to pro-tumoral activities. Among immune checkpoint modulators, programmed death (PD-)1 and PD-ligand (L)1 facilitate oral squamous cell carcinoma (OSCC) cell evasion from immune surveillance, and the expression status of these has a prognostic value. OSCCs contain tumor associated macrophages (TAMs) as major stromal cells of their tumor microenvironment. Among the two distinctive states, M2 macrophages support tumor invasion, metastasis and immune suppression. Crosstalk between TAMs and OSCC or cancer-associated fibroblasts (CAF) plays an important role in the progression of OSCC. Clinical trials with blocking antibodies against IL-1α or melanoma-associated antigens have been reported as therapeutic approaches against OSCCs. The most promising approach activating antitumor immunity is the blockade of PD-1/PD-L1 axis. Manipulating the polarization of pro-tumorigenic macrophages has been reported as a novel therapeutic approach.
Collapse
Affiliation(s)
- Nobuo Kondoh
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Masako Mizuno-Kamiya
- Chemistry Laboratory, Department of Business Administration, Asahi University School of Business Administration, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Naoki Umemura
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Eiji Takayama
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Harumi Kawaki
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yasunori Muramatsu
- Department of Oral and Maxillofacial Surgery, Division of Oral Pathogenesis and Disease Control, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Shinichiro Sumitomo
- Department of Oral and Maxillofacial Surgery, Division of Oral Pathogenesis and Disease Control, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| |
Collapse
|
19
|
Mu L, Yu W, Su H, Lin Y, Sui W, Yu X, Qin C. Relationship between the expressions of PD-L1 and tumour-associated fibroblasts in gastric cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1036-1042. [PMID: 30983436 DOI: 10.1080/21691401.2019.1573741] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Previous studies have focused on the changes of tumour cells in immune escape, and less is known about the effect of tumour microenvironment (TME) on immune escape. Tumour-associated fibroblasts (TAF) is an important part of the TME and has special physiological and biochemical characteristics, but the specific mechanism has not been clarified. In order to investigate the effect of TAF on the expression of PD-L1 in gastric cancer cells, gastric cancer cell lines MNK45, SGC7901 were non-contact co-culturing with TAF 1, 3 and 7 d via transwell. PD-L1 mRNA and protein expression were detected using qRT-PCR and FCM. Then, 95 cases of gastric cancer tissues were selected and evaluated PD-L1 and TAF expressions by immunohistochemical examination. The results showed that the mRNA and protein expression of PD-L1 in the experiment group were significantly higher than that in the control group. PD-L1 expression was associated with massive lymphocyte infiltration, diffuse/mixed histology and intratumoral TAFs in gastric cancers. In conclusion, TAFs promoted the growth in gastric cancer cell lines by increased the PD-L1 expression.
Collapse
Affiliation(s)
- Linsong Mu
- a Department of General Surgery , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , 250021 , China.,b Department of General Surgery , The Affiliated Yantai Yuhuangding Hospital of Qingdao University , Yantai , 264000 , China
| | - Wentao Yu
- b Department of General Surgery , The Affiliated Yantai Yuhuangding Hospital of Qingdao University , Yantai , 264000 , China
| | - Hailong Su
- b Department of General Surgery , The Affiliated Yantai Yuhuangding Hospital of Qingdao University , Yantai , 264000 , China
| | - Yang Lin
- b Department of General Surgery , The Affiliated Yantai Yuhuangding Hospital of Qingdao University , Yantai , 264000 , China
| | - Wu Sui
- b Department of General Surgery , The Affiliated Yantai Yuhuangding Hospital of Qingdao University , Yantai , 264000 , China
| | - Xiang Yu
- b Department of General Surgery , The Affiliated Yantai Yuhuangding Hospital of Qingdao University , Yantai , 264000 , China
| | - Chengkun Qin
- c Department of Hepatological Surgery , Shandong Provincial Hospital affiliated to Shandong University , Jinan , 250021 , China
| |
Collapse
|
20
|
Li M, Zhang F, Su Y, Zhou J, Wang W. Nanoparticles designed to regulate tumor microenvironment for cancer therapy. Life Sci 2018; 201:37-44. [PMID: 29577880 DOI: 10.1016/j.lfs.2018.03.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/12/2018] [Accepted: 03/21/2018] [Indexed: 02/08/2023]
Abstract
Increasing understanding in tumor pathology reveals that tumor microenvironment (TME), which supports tumor progression and poses barriers for available therapies, takes a great responsibility in inefficient treatment and poor prognosis. In recent years, the versatile nanotechnology employed in TME regulation has made great progress. The nanoparticles (NPs) can be tailored as needed to accurately target TME components by distinguishing healthy tissues from malignancy, and to regulate TME to promote tumor regression. Meanwhile, the emerging microRNAs (miRNAs) demonstrate great potentials for TME regulation, but are regrettably restricted by quick degradation. NPs systems enable the successful delivery of miRNA to TME without the limitation, expanding the application of nucleic acid drug. In this review, we summarized recent NPs-based strategies aiming at regulating TME in different ways, including anti-angiogenesis, extracellular matrix (ECM) remodeling, tumor-associated fibroblasts (TAFs) treatment and tumor-associated macrophages (TAMs) treatment, along with the miRNAs-loaded NPs for TME regulation. Catching and utilizing the features of TME for NPs design can contribute to reversing drug-resistance, optimized drug distribution, and eventually more efficient cancer therapy.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Fangrong Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yujie Su
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
21
|
He X, Ding X, Wen D, Hou J, Ping J, He J. Exploration of the pathways and interaction network involved in bladder cancer cell line with knockdown of Opa interacting protein 5. Pathol Res Pract 2017; 213:1059-1066. [DOI: 10.1016/j.prp.2017.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 07/05/2017] [Accepted: 07/28/2017] [Indexed: 01/25/2023]
|
22
|
Jennek S, Mittag S, Reiche J, Westphal JK, Seelk S, Dörfel MJ, Pfirrmann T, Friedrich K, Schütz A, Heinemann U, Huber O. Tricellulin is a target of the ubiquitin ligase Itch. Ann N Y Acad Sci 2017; 1397:157-168. [DOI: 10.1111/nyas.13349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/08/2017] [Accepted: 03/14/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Susanne Jennek
- Department of Biochemistry II; Jena University Hospital, Friedrich Schiller University Jena; Jena Germany
| | - Sonnhild Mittag
- Department of Biochemistry II; Jena University Hospital, Friedrich Schiller University Jena; Jena Germany
| | - Juliane Reiche
- Department of Biochemistry II; Jena University Hospital, Friedrich Schiller University Jena; Jena Germany
| | - Julie K. Westphal
- Department of Biochemistry II; Jena University Hospital, Friedrich Schiller University Jena; Jena Germany
| | - Stefanie Seelk
- Department of Biochemistry II; Jena University Hospital, Friedrich Schiller University Jena; Jena Germany
| | - Max J. Dörfel
- Department of Biochemistry II; Jena University Hospital, Friedrich Schiller University Jena; Jena Germany
| | - Thorsten Pfirrmann
- Institute of Physiological Chemistry, University Hospital Halle; Martin Luther University Halle-Wittenberg; Halle/Saale Germany
| | - Karlheinz Friedrich
- Department of Biochemistry II; Jena University Hospital, Friedrich Schiller University Jena; Jena Germany
| | - Anja Schütz
- Helmholtz Protein Sample Production Facility; Max-Delbrück-Center for Molecular Medicine; Berlin Germany
| | - Udo Heinemann
- Helmholtz Protein Sample Production Facility; Max-Delbrück-Center for Molecular Medicine; Berlin Germany
- Crystallography; Max Delbrück Center for Molecular Medicine; Berlin Germany
- Chemistry and Biochemistry Institute; Freie Universität Berlin; Berlin Germany
| | - Otmar Huber
- Department of Biochemistry II; Jena University Hospital, Friedrich Schiller University Jena; Jena Germany
| |
Collapse
|
23
|
Hass R, Jennek S, Yang Y, Friedrich K. c-Met expression and activity in urogenital cancers - novel aspects of signal transduction and medical implications. Cell Commun Signal 2017; 15:10. [PMID: 28212658 PMCID: PMC5316205 DOI: 10.1186/s12964-017-0165-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/13/2017] [Indexed: 11/10/2022] Open
Abstract
C-Met is a receptor tyrosine kinase with multiple functions throughout embryonic development, organogenesis and wound healing and is expressed in various epithelia. The ligand of c-Met is Hepatocyte Growth Factor (HGF) which is secreted among others by mesenchymal stroma/stem (MSC) cells. Physiological c-Met functions are centred around processes that underly cellular motility and invasive growth. Aberrant c-Met expression and activity is observed in numerous cancers and makes major contributions to cell malignancy. Importantly, HGF/c-Met signaling is crucial in the context of communication between cancer cells and the the tumor stroma. Here, we review recent findings on roles of dysregulated c-Met in urogenital tumors such as cancers of the urinary bladder, prostate, and ovary. We put emphasis on novel aspects of cancer-associated c-Met expression regulation on both, HGF-dependent and HGF-independent non-canonical mechanisms. Moreover, this review focusses on c-Met-triggered signalling with potential relevance for urogenital oncogenesis, and on strategies to specifically inhibit c-Met activity.
Collapse
Affiliation(s)
- Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Gynecology, Hannover Medical School, Hannover, Germany
| | - Susanne Jennek
- Institute of Biochemistry II, University Hospital Jena, Nonnenplan 2-4, D-07743, Jena, Germany
| | - Yuanyuan Yang
- Biochemistry and Tumor Biology Lab, Department of Gynecology, Hannover Medical School, Hannover, Germany
| | - Karlheinz Friedrich
- Institute of Biochemistry II, University Hospital Jena, Nonnenplan 2-4, D-07743, Jena, Germany.
| |
Collapse
|
24
|
Leach DA, Buchanan G. Stromal Androgen Receptor in Prostate Cancer Development and Progression. Cancers (Basel) 2017; 9:cancers9010010. [PMID: 28117763 PMCID: PMC5295781 DOI: 10.3390/cancers9010010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 01/13/2023] Open
Abstract
Prostate cancer development and progression is the result of complex interactions between epithelia cells and fibroblasts/myofibroblasts, in a series of dynamic process amenable to regulation by hormones. Whilst androgen action through the androgen receptor (AR) is a well-established component of prostate cancer biology, it has been becoming increasingly apparent that changes in AR signalling in the surrounding stroma can dramatically influence tumour cell behavior. This is reflected in the consistent finding of a strong association between stromal AR expression and patient outcomes. In this review, we explore the relationship between AR signalling in fibroblasts/myofibroblasts and prostate cancer cells in the primary site, and detail the known functions, actions, and mechanisms of fibroblast AR signaling. We conclude with an evidence-based summary of how androgen action in stroma dramatically influences disease progression.
Collapse
Affiliation(s)
- Damien A Leach
- The Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Adelaide 5011, Australia.
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | - Grant Buchanan
- The Basil Hetzel Institute for Translational Health Research, The University of Adelaide, Adelaide 5011, Australia.
- Department of Radiation Oncology, Canberra Teaching Hospital, Canberra 2605, Australia.
| |
Collapse
|
25
|
Abstract
BACKGROUND The histopathological structure of malignant tumours involves two essential compartments - the tumour parenchyma with the actual transformed cells, and the supportive tumour stroma. The latter consists of specialized mesenchymal cells, such as fibroblasts, macrophages, lymphocytes and vascular cells, as well as of their secreted products, including components of the extracellular matrix, matrix modifying enzymes and numerous regulatory growth factors and cytokines. In consequence, the tumour stroma has the ability to influence virtually all aspects of tumour development and progression, including therapeutic response. AIM In this article we review the current knowledge of tumor stroma interactions in urothelial carcinoma and present various experimental systems that are currently in use to unravel the biological basis of these heterotypic cell interactions. RESULTS For urothelial carcinoma, an extensive tumour stroma is quite typical and markers of activated fibroblasts correlate significantly with clinical parameters of advanced disease. Another clinically important variable is provided by the stromal expression of syndecan-1. CONCLUSION Integration of markers of activated stroma into clinical risk evaluation could aid to better stratification of urothelial bladder carcinoma patients. Elucidation of biological mechanisms underlying tumour-stroma interactions could provide new therapeutical targets.
Collapse
|
26
|
Alfano M, Canducci F, Nebuloni M, Clementi M, Montorsi F, Salonia A. The interplay of extracellular matrix and microbiome in urothelial bladder cancer. Nat Rev Urol 2016; 13:77-90. [PMID: 26666363 PMCID: PMC7097604 DOI: 10.1038/nrurol.2015.292] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many pathological changes in solid tumours are caused by the accumulation of genetic mutations and epigenetic molecular alterations. In addition, tumour progression is profoundly influenced by the environment surrounding the transformed cells. The interplay between tumour cells and their microenvironment has been recognized as one of the key determinants of cancer development and is being extensively investigated. Data suggest that both the extracellular matrix and the microbiota represent microenvironments that contribute to the onset and progression of tumours. Through the introduction of omics technologies and pyrosequencing analyses, a detailed investigation of these two microenvironments is now possible. In urological research, assessment of their dysregulation has become increasingly important to provide diagnostic, prognostic and predictive biomarkers for urothelial bladder cancer. Understanding the roles of the extracellular matrix and microbiota, two key components of the urothelial mucosa, in the sequelae of pathogenic events that occur in the development and progression of urothelial carcinomas will be important to overcome the shortcomings in current bladder cancer treatment strategies.
Collapse
Affiliation(s)
- Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan Italy
| | - Filippo Canducci
- Department of Biotechnology and Life Sciences, Università degli Studi dell'Insubria, Via Dunant 3, 21100 Varese Italy
| | - Manuela Nebuloni
- Department of Clinical Sciences, Pathology Unit, L. Sacco Hospital, Università degli Studi di Milano, Via Giovanni Battista Grassi 74, 20157 Milan Italy
| | - Massimo Clementi
- Università Vita-Salute San Raffaele, Via Olgettina 60, 20132 Milan Italy
| | - Francesco Montorsi
- Università Vita-Salute San Raffaele, Via Olgettina 60, 20132 Milan Italy
| | - Andrea Salonia
- Università Vita-Salute San Raffaele, Via Olgettina 60, 20132 Milan Italy
| |
Collapse
|
27
|
Knutti N, Kuepper M, Friedrich K. Soluble extracellular matrix metalloproteinase inducer (EMMPRIN, EMN) regulates cancer-related cellular functions by homotypic interactions with surface CD147. FEBS J 2015; 282:4187-200. [PMID: 26277583 DOI: 10.1111/febs.13414] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/12/2015] [Accepted: 08/12/2015] [Indexed: 12/27/2022]
Abstract
EMMPRIN (extracellular matrix metalloproteinase inducer) is a widely expressed glycoprotein and a member of the immunoglobulin superfamily which exists in both a membrane-spanning and a soluble form. Homotypic interactions of EMMPRIN underlie its multiple roles in normal development and pathological situations such as viral infections, Alzheimer's disease and cancer. This study employed a recombinant soluble, fully glycosylated EMMPRIN domain (rhsEMN) as a tool to characterize the structural basis of EMMPRIN-EMMPRIN receptor (EMNR) contacts and their functional effects on MCF-7 breast carcinoma cells. rhsEMN did not form dimers in solution but bound to surface EMMPRIN (EMN) on MCF-7 cells with high affinity and was readily internalized. The interaction interface for the homotypic contact was localized to the N-terminal Ig domain. rhsEMN exerted a stimulatory effect on proliferation of MCF-7 cells whereas it reduced cell migration in a dose-dependent manner. These effects were accompanied by an upregulation of endogenous EMMPRIN as well as of matrix metalloproteinase-14 (MMP-14), a membrane-bound protease involved in the extracellular release of soluble EMMPRIN, indicating a regulatory feedback mechanism. The proliferation-promoting activity of rhsEMN was mimicked by a novel functional antibody directed to EMMPRIN, underscoring that crosslinking of cell surface EMMPRIN (EMNR) is crucial for eliciting intracellular signalling. Addressing malignancy-related signal transduction in HEK-293 cells, we could show that rhsEMN triggers the oncogenic Wnt pathway.
Collapse
Affiliation(s)
- Nadine Knutti
- Institute of Biochemistry II, Jena University Hospital, Germany
| | | | | |
Collapse
|
28
|
Biswas A, Khanna S, Roy S, Pan X, Sen CK, Gordillo GM. Endothelial cell tumor growth is Ape/ref-1 dependent. Am J Physiol Cell Physiol 2015; 309:C296-307. [PMID: 26108661 DOI: 10.1152/ajpcell.00022.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/17/2015] [Indexed: 01/12/2023]
Abstract
Tumor-forming endothelial cells have highly elevated levels of Nox-4 that release H2O2 into the nucleus, which is generally not compatible with cell survival. We sought to identify compensatory mechanisms that enable tumor-forming endothelial cells to survive and proliferate under these conditions. Ape-1/ref-1 (Apex-1) is a multifunctional protein that promotes DNA binding of redox-sensitive transcription factors, such as AP-1, and repairs oxidative DNA damage. A validated mouse endothelial cell (EOMA) tumor model was used to demonstrate that Nox-4-derived H2O2 causes DNA oxidation that induces Apex-1 expression. Apex-1 functions as a chaperone to keep transcription factors in a reduced state. In EOMA cells Apex-1 enables AP-1 binding to the monocyte chemoattractant protein-1 (mcp-1) promoter and expression of that protein is required for endothelial cell tumor formation. Intraperitoneal injection of the small molecule inhibitor E3330, which specifically targets Apex-1 redox-sensitive functions, resulted in a 50% decrease in tumor volume compared with mice injected with vehicle control (n = 6 per group), indicating that endothelial cell tumor proliferation is dependent on Apex-1 expression. These are the first reported results to establish Nox-4 induction of Apex-1 as a mechanism promoting endothelial cell tumor formation.
Collapse
Affiliation(s)
- Ayan Biswas
- Department of Plastic Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Savita Khanna
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Sashwati Roy
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Xueliang Pan
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Chandan K Sen
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Gayle M Gordillo
- Department of Plastic Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| |
Collapse
|