1
|
Khan A, Sharma P, Dahiya S, Sharma B. Plexins: Navigating through the neural regulation and brain pathology. Neurosci Biobehav Rev 2025; 169:105999. [PMID: 39756719 DOI: 10.1016/j.neubiorev.2024.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Plexins are a family of transmembrane receptors known for their diverse roles in neural development, axon guidance, neuronal migration, synaptogenesis, and circuit formation. Semaphorins are a class of secreted and membrane proteins that act as primary ligands for plexin receptors. Semaphorins play a crucial role in central nervous system (CNS) development by regulating processes such as axonal growth, neuronal positioning, and synaptic connectivity. Various types of semaphorins like sema3A, sema4A, sema4C, sema4D, and many more have a crucial role in developing brain diseases. Likewise, various evidence suggests that plexin receptors are of four types: plexin A, plexin B, plexin C, and plexin D. Plexins have emerged as crucial regulators of neurogenesis and neuronal development and connectivity. When bound to semaphorins, these receptors trigger two major networking cascades, namely Rho and Ras GTPase networks. Dysregulation of plexin networking has been implicated in a myriad of brain disorders, including autism spectrum disorder (ASD), Schizophrenia, Alzheimer's disease (AD), Parkinson's disease (PD), and many more. This review synthesizes findings from molecular, cellular, and animal model studies to elucidate the mechanisms by which plexins contribute to the pathogenesis of various brain diseases.
Collapse
Affiliation(s)
- Ariba Khan
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India; Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, 201306 Uttar Pradesh, India.
| | - Sarthak Dahiya
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India.
| |
Collapse
|
2
|
Modelling and Refining Neuronal Circuits with Guidance Cues: Involvement of Semaphorins. Int J Mol Sci 2021; 22:ijms22116111. [PMID: 34204060 PMCID: PMC8201269 DOI: 10.3390/ijms22116111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
The establishment of neuronal circuits requires neurons to develop and maintain appropriate connections with cellular partners in and out the central nervous system. These phenomena include elaboration of dendritic arborization and formation of synaptic contacts, initially made in excess. Subsequently, refinement occurs, and pruning takes places both at axonal and synaptic level, defining a homeostatic balance maintained throughout the lifespan. All these events require genetic regulations which happens cell-autonomously and are strongly influenced by environmental factors. This review aims to discuss the involvement of guidance cues from the Semaphorin family.
Collapse
|
3
|
Sah RK, Yang A, Bah FB, Adlat S, Bohio AA, Oo ZM, Wang C, Myint MZZ, Bahadar N, Zhang L, Feng X, Zheng Y. Transcriptome profiling of mouse brain and lung under Dip2a regulation using RNA-sequencing. PLoS One 2019; 14:e0213702. [PMID: 31291246 PMCID: PMC6619597 DOI: 10.1371/journal.pone.0213702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
Disconnected interacting protein 2 homolog A (DIP2A) is highly expressed in nervous system and respiratory system of developing embryos. However, genes regulated by Dip2a in developing brain and lung have not been systematically studied. Transcriptome of brain and lung in embryonic 19.5 day (E19.5) were compared between wild type and Dip2a-/- mice. An average of 50 million reads per sample was mapped to the reference sequence. A total of 214 DEGs were detected in brain (82 up and 132 down) and 1900 DEGs in lung (1259 up and 641 down). GO enrichment analysis indicated that DEGs in both Brain and Lung were mainly enriched in biological processes ‘DNA-templated transcription and Transcription from RNA polymerase II promoter’, ‘multicellular organism development’, ‘cell differentiation’ and ‘apoptotic process’. In addition, COG classification showed that both were mostly involved in ‘Replication, Recombination, and Repair’, ‘Signal transduction and mechanism’, ‘Translation, Ribosomal structure and Biogenesis’ and ‘Transcription’. KEGG enrichment analysis showed that brain was mainly enriched in ‘Thyroid cancer’ pathway whereas lung in ‘Complement and Coagulation Cascades’ pathway. Transcription factor (TF) annotation analysis identified Zinc finger domain containing (ZF) proteins were mostly regulated in lung and brain. Interestingly, study identified genes Skor2, Gpr3711, Runx1, Erbb3, Frmd7, Fut10, Sox11, Hapln1, Tfap2c and Plxnb3 from brain that play important roles in neuronal cell maturation, differentiation, and survival; genes Hoxa5, Eya1, Errfi1, Sox11, Shh, Igf1, Ccbe1, Crh, Fgf9, Lama5, Pdgfra, Ptn, Rbp4 and Wnt7a from lung are important in lung development. Expression levels of the candidate genes were validated by qRT-PCR. Genome wide transcriptional analysis using wild type and Dip2a knockout mice in brain and lung at embryonic day 19.5 (E19.5) provided a genetic basis of molecular function of these genes.
Collapse
Affiliation(s)
- Rajiv Kumar Sah
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Analn Yang
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Fatoumata Binta Bah
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Salah Adlat
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Ameer Ali Bohio
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Zin Mar Oo
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Chenhao Wang
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - May Zun Zaw Myint
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Noor Bahadar
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Luqing Zhang
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
- * E-mail: (LQZ); (XCF); (YWZ)
| | - Xuechao Feng
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
- * E-mail: (LQZ); (XCF); (YWZ)
| | - Yaowu Zheng
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
- * E-mail: (LQZ); (XCF); (YWZ)
| |
Collapse
|
4
|
Scott MK, Yue J, Biesemeier DJ, Lee JW, Fekete DM. Expression of class III Semaphorins and their receptors in the developing chicken (Gallus gallus) inner ear. J Comp Neurol 2019; 527:1196-1209. [PMID: 30520042 PMCID: PMC6401314 DOI: 10.1002/cne.24595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/15/2018] [Accepted: 11/23/2018] [Indexed: 12/22/2022]
Abstract
Class III Semaphorin (Sema) secreted ligands are known to repel neurites expressing Neuropilin (Nrp) and/or Plexin (Plxn) receptors. There is, however, a growing body of literature supporting that Sema signaling also has alternative roles in development such as synaptogenesis, boundary formation, and vasculogenesis. To evaluate these options during inner ear development, we used in situ hybridization or immunohistochemistry to map the expression of Sema3D, Sema3F, Nrp1, Nrp2, and PlxnA1 in the chicken (Gallus gallus) inner ear from embryonic day (E)5-E10. The resulting expression patterns in either the otic epithelium or its surrounding mesenchyme suggest that Sema signaling could be involved in each of the varied functions reported for other tissues. Sema3D expression flanking the sensory tissue in vestibular organs suggests that it may repel Nrp2- and PlxnA1-expressing neurites of the vestibular ganglion away from nonsensory epithelia, thus channeling them into the sensory domains at E5-E8. Expression of Sema signaling genes in the sensory hair cells of both the auditory and vestibular organs on E8-E10 may implicate Sema signaling in synaptogenesis. In the nonsensory regions of the cochlea, Sema3D in the future tegmentum vasculosum opposes Nrp1 and PlxnA1 in the future cuboidal cells; the abutment of ligand and receptors in adjacent domains may enforce or maintain the boundary between them. In the mesenchyme, Nrp1 colocalized with capillary-rich tissue. Sema3D immediately flanks this Nrp1-expressing tissue, suggesting a role in endothelial cell migration towards the inner ear. In summary, Sema signaling may play multiple roles in the developing inner ear.
Collapse
Affiliation(s)
- M. Katie Scott
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907
| | - Jia Yue
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | - Joo Won Lee
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Donna M. Fekete
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907
- Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
5
|
Gene expression changes in the ventral hippocampus and medial prefrontal cortex of adolescent alcohol-preferring (P) rats following binge-like alcohol drinking. Alcohol 2018; 68:37-47. [PMID: 29448234 DOI: 10.1016/j.alcohol.2017.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 11/23/2022]
Abstract
Binge drinking of alcohol during adolescence is a serious public health concern with long-term consequences, including decreased hippocampal and prefrontal cortex volume and deficits in memory. We used RNA sequencing to assess the effects of adolescent binge drinking on gene expression in these regions. Male adolescent alcohol-preferring (P) rats were exposed to repeated binge drinking (three 1-h sessions/day during the dark/cycle, 5 days/week for 3 weeks starting at 28 days of age; ethanol intakes of 2.5-3 g/kg/session). Ethanol significantly altered the expression of 416 of 11,727 genes expressed in the ventral hippocampus. Genes and pathways involved in neurogenesis, long-term potentiation, and axonal guidance were decreased, which could relate to the impaired memory function found in subjects with adolescent alcohol binge-like exposure. The decreased expression of myelin and cholesterol genes and apparent decrease in oligodendrocytes in P rats could result in decreased myelination. In the medial prefrontal cortex, 638 of 11,579 genes were altered; genes in cellular stress and inflammatory pathways were increased, as were genes involved in oxidative phosphorylation. Overall, the results of this study suggest that adolescent binge-like alcohol drinking may alter the development of the ventral hippocampus and medial prefrontal cortex and produce long-term consequences on learning and memory, and on control of impulsive behaviors.
Collapse
|