1
|
Zhang H, Zhang J, Pan H, Yang K, Hu C. Astragaloside IV promotes the pyroptosis of airway smooth muscle cells in childhood asthma by suppressing HMGB1/RAGE axis to inactivate NF-κb pathway. Autoimmunity 2024; 57:2387100. [PMID: 39097915 DOI: 10.1080/08916934.2024.2387100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
Childhood asthma, a common chronic childhood disease, leads to high mortality and morbidity in the world. Airway smooth muscle cells (ASMCs) is a group of multifunctional cells that has been found to be correlated with the pathogenesis of asthma. Astragaloside IV (AS-IV) is a compound extracted from Astragalus membranaceus, which has the anti-asthmatic effect. However, the role of molecular mechanisms regulated by AS-IV in the biological processes of ASMCs in asthma remains unclear. Our current study aims to investigate the downstream molecular mechanism of AS-IV in modulating the aberrant proliferation and pyroptosis of ASMCs in asthma. At first, we determined that the viability of ASMCs could be efficiently suppressed by AS-IV treatment (200 μM). Moreover, AS-IV promoted the pyroptosis and suppressed PDGF-BB-induced aberrant proliferation. Through mechanism investigation, we confirmed that AS-IV could suppress high mobility group box 1 (HMGB1) expression and prevent it from entering the cytoplasm. Subsequently, AS-IV blocked the interaction between HMGB1 and advanced glycosylation end product-specific receptor (RAGE) to inactivate NF-κB pathway. Finally, in vivo experiments demonstrated that AS-IV treatment can alleviate the lung inflammation in asthma mice. Collectively, AS-IV alleviates asthma and suppresses the pyroptosis of AMSCs through blocking HMGB1/RAGE axis to inactivate NF-κB pathway.
Collapse
Affiliation(s)
- Huahong Zhang
- Department of Pediatrics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Zhang
- Department of Pediatrics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Hangli Pan
- Department of Pediatrics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ke Yang
- Department of Pediatrics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Chongwei Hu
- Department of Pediatrics, First People's Hospital of Chun'an County, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Cui YF, Lu QH, Huang X, Lin WN, Huang T, Yang Q. [Effects of inhibition of Rho/ROCK pathway on proliferation and migration of airway smooth muscle cells and related mechanisms]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:974-981. [PMID: 39267514 PMCID: PMC11404462 DOI: 10.7499/j.issn.1008-8830.2405119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
OBJECTIVES To investigate the effects and molecular mechanisms of inhibition of the Ras homolog gene (Rho)/Rho-associated coiled-coil forming protein kinase (ROCK) pathway on the proliferation and migration of airway smooth muscle cells involving myocardin (MYOCD). METHODS Human airway smooth muscle cells were infected with the adenoviral vector Ad-ZsGreen-shRNA-hROCK1 in vitro. The cells were randomly divided into four groups: ROCK1 gene silencing control (shNC) group, shNC + arachidonic acid (AA, Rho/ROCK pathway activator) group, ROCK1 gene silencing (shROCK1) group, and shROCK1 + AA group (n=3 each). Quantitative real-time polymerase chain reaction and Western blot were used to detect the expression levels of ROCK1 and MYOCD mRNA and protein. ELISA was employed to measure the levels of globular actin and filamentous actin, while immunofluorescent staining and scratch assays were utilized to assess cell proliferation and migration. RESULTS Compared to the shNC + AA group, the shROCK1 + AA group exhibited decreased levels of ROCK1 and MYOCD mRNA and protein expression, reduced expression levels of globular actin and filamentous actin, and diminished cell proliferation and migration capabilities (P<0.05). CONCLUSIONS Inhibition of the Rho/ROCK pathway suppresses the proliferation and migration of airway smooth muscle cells, which may be associated with the downregulation of MYOCD.
Collapse
Affiliation(s)
- Yun-Fei Cui
- Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, Guangdong 518036, China
| | - Qing-Hua Lu
- Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, Guangdong 518036, China
| | - Xiao Huang
- Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, Guangdong 518036, China
| | - Wei-Nan Lin
- Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, Guangdong 518036, China
| | - Ting Huang
- Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, Guangdong 518036, China
| | - Qin Yang
- Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, Guangdong 518036, China
| |
Collapse
|
3
|
Cui Y, Yu C, Lu Q, Huang X, Lin W, Huang T, Cao L, Yang Q. The Function of RhoA/ROCK Pathway and MYOCD in Airway Remodeling in Asthma. Int Arch Allergy Immunol 2024:1-17. [PMID: 39260358 DOI: 10.1159/000540963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
INTRODUCTION Asthma is a common chronic respiratory disease characterized by chronic airway inflammation and abnormal airway remodeling. The RhoA/ROCK pathway and myocardin-related transcription factor A (MRTF-A) demonstrate significant associations with the proliferation of airway smooth muscle cells (ASCMs), which tightly correlates with the process of airway remodeling. MYOCD, which is homologous to MRTF-A but specifically expressed in smooth muscle cells, potentially regulates RhoA/ROCK activated cell proliferation and subsequent airway remodeling. METHODS The RhoA/ROCK overexpression and silencing cell lines were constructed in vitro, as well as MYOCD overexpression/silencing. The cytoskeleton alterations induced by RhoA/ROCK pathway were identified by the measuring of globular actin and filamentous actin. RESULTS The comparison between controls for overexpression/silencing and ROCK overexpression/silencing revealed that MYOCD presented consistent change trends with cytoskeleton and RhoA/ROCK pathway. The ROCK1 facilitates the proliferation and migration of ASCMs. The MYOCD enhanced the proliferation and migration of HASMCs. CONCLUSION Our study indicates that Rho/ROCK/MYOCD is a key pathway involved in the migration and proliferation of airway smooth muscle cells. Inhibition of Rho/ROCK may be an effective approach to breaking the vicious cycle of asthmatic ASCMs proliferation, providing a novel strategy in treating asthma airway remodeling.
Collapse
Affiliation(s)
- Yunfei Cui
- Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, China
| | - Chendi Yu
- Department of Research and Development, Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, China,
| | - Qinghua Lu
- Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, China
| | - Xiao Huang
- Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, China
| | - Weinan Lin
- Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, China
| | - Ting Huang
- Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, China
| | - Lichao Cao
- Department of Research and Development, Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, China
| | - Qin Yang
- Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
4
|
Gurusamy M, Nasseri S, Rampa DR, Feng H, Lee D, Pekcec A, Doods H, Wu D. Triple-tyrosine kinase inhibition by BIBF1000 attenuates airway and pulmonary arterial remodeling following chronic allergen challenges in mice. Eur J Med Res 2023; 28:71. [PMID: 36755351 PMCID: PMC9909896 DOI: 10.1186/s40001-023-01037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Airway remodeling is an important pathological feature of chronic airway diseases, which leads to a progressive decline in lung function. The present study examined the anti-remodeling and anti- inflammatory effect of BIBF1000, a triple-tyrosine kinase inhibitor that targets VEGF, PDGF, and FGF receptor signaling in a mouse model of repeated ovalbumin (OVA) challenges. METHODS Female Balb-c mice were immunized intraperitoneally on days 0 and 12 with 50 µg ovalbumin plus 1 mg of Al(OH)3 in 200 μl saline. Intranasal OVA challenges (20 µg/50 µl in PBS) were administered on days 26, 29, and 31, and were repeated twice a week for 3 months. Animals received vehicle or BIBF1000 (25 mg/kg, b.i.d.) through gavage from day 26 to the end of fourth month. On day 120, bronchoalveolar lavage (BAL) and lung tissue were collected for biochemical and immunohistological analysis. RESULTS Compared to vehicle controls, treatment with BIBF1000 reduced the numbers of BAL eosinophils, macrophages, neutrophils, and lymphocytes by 70.0%, 57.9%, 47.5%, and 63.0%, respectively, and reduced IL-5 and IL-13 in BAL. Treatment with BIBF1000 reduced airway mucus secretion, peribronchial fibrosis, small airway, and pulmonary arterial wall thickness, compared to vehicle controls. Furthermore, treatment with BIBF1000 also reduced the expression of inflammatory mediators (TNF-α, IL-1β, IL-5, IL-13, MMP-2, MMP-9, COX-2, and iNOS) and inhibited ERK and AKT phosphorylation. CONCLUSIONS The protective effect afforded by triple-tyrosine kinase inhibition with BIBF1000 in reducing allergen-induced airway and arterial remodeling was associated with down-regulation of inflammatory mediators, as well as inhibition of ERK and AKT signaling pathways.
Collapse
Affiliation(s)
- Malarvizhi Gurusamy
- grid.411545.00000 0004 0470 4320Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea
| | - Saeed Nasseri
- grid.411545.00000 0004 0470 4320Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea ,grid.411701.20000 0004 0417 4622Present Address: Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Dileep Reddy Rampa
- grid.411545.00000 0004 0470 4320Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea
| | - Huiying Feng
- grid.411545.00000 0004 0470 4320Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea ,grid.410396.90000 0004 0430 4458Department of Research, Mount Sinai Medical Center, Miami Beach, FL USA
| | - Dongwon Lee
- Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea.
| | - Anton Pekcec
- grid.420061.10000 0001 2171 7500Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Henri Doods
- grid.420061.10000 0001 2171 7500Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Dongmei Wu
- Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea. .,Department of Research, Mount Sinai Medical Center, Miami Beach, FL, USA.
| |
Collapse
|
5
|
Xing G, Li D, Woo AYH, Zhi Z, Ji L, Xing R, Lv H, He B, An H, Zhao H, Lin B, Pan L, Cheng M. Discovery of a Highly Selective β 2-Adrenoceptor Agonist with a 2-Amino-2-phenylethanol Scaffold as an Oral Antiasthmatic Agent. J Med Chem 2022; 65:5514-5527. [PMID: 35360904 DOI: 10.1021/acs.jmedchem.1c02006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Asthma patients in resource-poor countries cannot obtain adequate basic asthma medications because most asthma medications are supplied as inhalants. An alternative approach is to create oral antiasthmatic drugs with high β2/β1-selectivity, which should reduce treatment costs. In this study, we designed a cohort of compounds 1 using 2-(4-amino-3-chloro-5-(trifluoromethyl)phenyl)-2-(tert-butylamino)ethan-1-ol hydrogen chloride (1a) as the lead compound with an aim to expand the library of compounds possessing the 2-amino-2-phenylethanol scaffold. Structure-activity relationship studies on these compounds revealed that compounds created showed remarkable β2 selectivity compared to isoproterenol and gave additional insights on the rational design of β2-adrenoceptor agonists. Moreover, 1a was found as the best candidate compound showing the greatest potential for drug development. Cell-based assays showed that 1a was about 10 times more selective than salbutamol toward the β2-adrenoceptor. Moreover, 1a exhibited good oral bioavailability and low acute oral toxicity. These data reveal 1a as an oral antiasthmatic agent.
Collapse
Affiliation(s)
- Gang Xing
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dahong Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Anthony Yiu-Ho Woo
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhengxing Zhi
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lei Ji
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruijuan Xing
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hailiang Lv
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin He
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hui An
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haiyan Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li Pan
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
6
|
Song D, Jiang Y, Zhao Q, Li J, Zhao Y. lncRNA-NEAT1 Sponges miR-128 to Promote Inflammatory Reaction and Phenotypic Transformation of Airway Smooth Muscle Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7499911. [PMID: 35082915 PMCID: PMC8786537 DOI: 10.1155/2022/7499911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Pediatric asthma is still a health threat to the children. Long noncoding RNA-NEAT1 (lncRNA-NEAT1) was reported to be positively correlated with the severity of asthma. We aimed to study the effects and mechanism of lncRNA-NEAT1on inflammatory reaction and phenotypic transformation of airway smooth muscle cells (ASMCs) in the bronchial asthma. METHOD The degree of lncRNA-NEAT1 and miR-128 mRNA in children with bronchial asthma and healthy individuals was tested by qRT-PCR. After the inflammatory reaction and phenotypic transformation of PDGF-BB-induced ASMCs, the expression of lncRNA-NEAT1 or miR-128 in the AMSC was disturbed in the AMSC. Subsequently, the expression of lncRNA-NEAT1 and miR-128 was detected by the way of qRT-PCR, and western blot was applied to measure the expression of MMP-2, MMP-9, α-SMA, calponin, NF-κB, and so on in the cells. The content of TNF-α, IL-1β, IL-6, and IL-8 in the cell culture supernatant was checked by ELISA. MTT, Transwell, and flow cytometry were used to detect cell proliferation, migration, and apoptosis. Further, the targeting relations between lncRNA-NEAT1 and miR-128 were evaluated by the dual-luciferase reporter assay. RESULT In the sputum of children with bronchial asthma, lncRNA-NEAT1 was significantly upregulated while miR-128 was rapidly downregulated. Besides, lncRNA-NEAT1 and miR-128 were competitively combined and, for their expression, negatively correlated. CONCLUSION lncRNA-NEAT1 sponges miR-128 to boost PDGF-BB-induced inflammatory reaction and phenotypic transformation of ASMCs to aggravate the occurrence and development of childhood bronchial asthma.
Collapse
Affiliation(s)
- Danyang Song
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| | - Yajing Jiang
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| | - Qiuju Zhao
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| | - Jinling Li
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| | - Yuqi Zhao
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| |
Collapse
|
7
|
Li C, Deng C, Zhou T, Hu J, Dai B, Yi F, Tian N, Jiang L, Dong X, Zhu Q, Zhang S, Cui H, Cao L, Shang Y. MicroRNA-370 carried by M2 macrophage-derived exosomes alleviates asthma progression through inhibiting the FGF1/MAPK/STAT1 axis. Int J Biol Sci 2021; 17:1795-1807. [PMID: 33994863 PMCID: PMC8120458 DOI: 10.7150/ijbs.59715] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence has suggested the functions of exosomes in allergic diseases including asthma. By using a mouse model with asthma induced by ovalbumin (OVA), we explored the roles of M2 macrophage-derived exosomes (M2Φ-Exos) in asthma progression. M2Φ-Exos significantly alleviated OVA-induced fibrosis and inflammatory responses in mouse lung tissues, as well as inhibited abnormal proliferation, invasion, and fibrosis-related protein production in platelet derived growth factor (PDGF-BB) treated primary mouse airway smooth muscle cells (ASMCs). The OVA administration in mice or the PDGF-BB treatment in ASMCs reduced the expression of miR-370, which was detected in M2Φ-Exos by miRNA sequencing. However, treating the mice or ASMCs with M2Φ-Exos reversed the inhibitory effect of OVA or PDGF-BB on miR-370 expression. We identified that the target of miR-370 was fibroblast growth factor 1 (FGF1). Downregulation of miR-370 by Lv-miR-370 inhibitor or overexpression of FGF1 by Lv-FGF1 blocked the protective roles of M2Φ-Exos in asthma-like mouse and cell models. M2Φ-Exos were found to inactivate the MAPK signaling pathway, which was recovered by miR-370 inhibition or FGF1 overexpression. Collectively, we conclude that M2Φ-Exos carry miR-370 to alleviate asthma progression through downregulating FGF1 expression and the MAPK/STAT1 signaling pathway. Our study may offer a novel insight into asthma treatment.
Collapse
Affiliation(s)
- Chunlu Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Chengsi Deng
- College of Basic Medicine Science, China Medical University, Shenyang 110122, China
| | - Tingting Zhou
- College of Basic Medicine Science, China Medical University, Shenyang 110122, China
| | - Jiapeng Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Bing Dai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Fei Yi
- College of Basic Medicine Science, China Medical University, Shenyang 110122, China
| | - Na Tian
- Jilin Tuohua Biotechnology Co., Ltd. Changchun, Jilin 13000, China
| | - Lijun Jiang
- Jilin Tuohua Biotechnology Co., Ltd. Changchun, Jilin 13000, China
| | - Xiang Dong
- College of Basic Medicine Science, China Medical University, Shenyang 110122, China
| | - Qingfeng Zhu
- College of Basic Medicine Science, China Medical University, Shenyang 110122, China
| | - Siyi Zhang
- College of Basic Medicine Science, China Medical University, Shenyang 110122, China
| | - Hongyan Cui
- College of Basic Medicine Science, China Medical University, Shenyang 110122, China
| | - Liu Cao
- College of Basic Medicine Science, China Medical University, Shenyang 110122, China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
8
|
Galectin-1 inhibits PDGF-BB-induced proliferation and migration of airway smooth muscle cells through the inactivation of PI3K/Akt signaling pathway. Biosci Rep 2021; 40:225155. [PMID: 32495835 PMCID: PMC7295633 DOI: 10.1042/bsr20193899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
Childhood asthma is one of the most common chronic childhood diseases. Platelet-derived growth factor BB (PDGF-BB) induced airway smooth muscle cell (ASMC) proliferation and migration are involved in the pathogenesis of asthma. Galectin-1 (Gal-1) is a glycan-binding protein that has been found to be involved in the progression of asthma. However, the mechanism remains unclear. In the current study, we aimed to evaluate the role of Gal-1 in regulating the phenotype switching of ASMCs, which is an important mechanism in the pathogenesis of asthma. Our results showed that Gal-1 was markedly down-regulated in the samples from asthma patients. In vitro study also proved that Gal-1 expression was decreased in PDGF-BB-stimulated ASMCs. In addition, Gal-1 overexpression significantly inhibited PDGF-BB-induced ASMCs proliferation and migration, while Gal-1 knockdown exhibits opposite effects of Gal-1 overexpression. The PDGF-BB-caused reductions in expressions of α-smooth muscle actin (α-SMA), specific muscle myosin heavy chain (SM-MHC), and calponin were elevated by Gal-1 overexpression, but were deteriorated by Gal-1 knockdown in ASMCs. Furthermore, overexpression of Gal-1 inhibited PDGF-BB-stimulated PI3K/Akt activation in ASMCs. Notably, treatment with IGF-1, an activator of PI3K, reversed the effects of Gal-1 on ASMCs proliferation, migration, and phenotype switching. In conclusion, these findings showed that Gal-1 exerted inhibitory effects on PDGF-BB-stimulated proliferation, migration, and phenotype switching of ASMCs via inhibiting the PI3K/Akt signaling pathway. Thus, Gal-1 might be a promising target for the treatment of asthma.
Collapse
|
9
|
Li C, Dai B, Hu J, Shang Y. WITHDRAWN: M2 macrophage-derived exosomes carry microRNA-370 to alleviate asthma progression through inhibiting the FGF1/MAPK/STAT1 axis. Exp Cell Res 2020:112285. [PMID: 32941809 DOI: 10.1016/j.yexcr.2020.112285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 01/16/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Chunlu Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R. China
| | - Bing Dai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R. China
| | - Jiapeng Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R. China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R. China
| |
Collapse
|
10
|
Wu Y, Lu Y, Zou F, Fan X, Li X, Zhang H, Chen H, Sun X, Liu Y. PTEN participates in airway remodeling of asthma by regulating CD38/Ca 2+/CREB signaling. Aging (Albany NY) 2020; 12:16326-16340. [PMID: 32889801 PMCID: PMC7485701 DOI: 10.18632/aging.103664] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
Abstract
Both phosphatase and tensin homologue deleted on chromosome ten (PTEN) and cluster of differentiation 38 (CD38) have been suggested to be key regulators of the pathogenesis of asthma. However, the precise role and molecular mechanisms by which PTEN and CD38 are involved in airway remodeling throughout asthma pathogenesis remains poorly understood. This study aimed to elucidate the role of PTEN and CD38 in airway remodeling of asthma. Exposure to tumor necrosis factor-α (TNF-α) in airway smooth muscle (ASM) cells markedly decreased PTEN expression, and increased expression of CD38. Overexpression of PTEN suppressed the expression of CD38 and downregulated proliferation and migration induced by TNF-α stimulation, which was partially reversed by CD38 overexpression. PTEN/CD38 axis regulated Ca2+ levels and cyclic AMP response-element binding protein (CREB) phosphorylation in TNF-α-stimulated ASM cells. The in vitro knockdown of CD38 or overexpression of PTEN remarkably restricted airway remodeling and decreased Ca2+ concentrations and CREB phosphorylation in asthmatic mice. CD38 overexpression abolished the inhibitory effects of PTEN overexpression on airway remodeling. These findings demonstrate that PTEN inhibits airway remodeling of asthma through the downregulation of CD38-mediated Ca2+/CREB signaling, highlighting a key role of PTEN/CD38/Ca2+/CREB signaling in the molecular pathogenesis of asthma.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Yiyi Lu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Fan Zou
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Xinping Fan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Xudong Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Hongni Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Haijuan Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Xiuzhen Sun
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Yun Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| |
Collapse
|
11
|
Pan J, Yang Q, Zhou Y, Deng H, Zhu Y, Zhao D, Liu F. MicroRNA-221 Modulates Airway Remodeling via the PI3K/AKT Pathway in OVA-Induced Chronic Murine Asthma. Front Cell Dev Biol 2020; 8:495. [PMID: 32714925 PMCID: PMC7344209 DOI: 10.3389/fcell.2020.00495] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/25/2020] [Indexed: 12/05/2022] Open
Abstract
Background Airway remodeling is one of the most important pathological features of chronic asthma. This study aimed to determine whether microRNA-221 (hereafter, miR-221) can affect airway remodeling in a mouse model of ovalbumin (OVA)-induced chronic asthma. Methods Adeno-associated viruses (AAVs) “Bearing miR-221 sponges” were used to downregulate miR-221 in asthmatic mice. Staining with hematoxylin and eosin (H&E), Masson trichrome, and periodic acid–Schiff reagent was used to assess histological changes. The affected signaling pathway in mouse airway smooth muscle cells (ASMCs) was also identified by gene chip technology. A PI3K/AKT-inhibitor (LY294002) was used to confirm the role of the pathway in ASMCs. Results The inhibition of miR-221 in a murine asthma model was found to reduce airway hyper-responsiveness, mucus metaplasia, airway inflammation, and airway remodeling (p < 0.05). Furthermore, miR-221 was found to regulate collagen deposition in the extracellular matrix (ECM) of ASMCs. Bioinformatics analysis and western blot analysis confirmed that the PI3K-AKT pathway was involved in ECM deposition in ASMCs. Conclusion miR-221 might play a crucial role in the mechanism of remodeling via the PI3K/AKT pathway in chronic asthma and it could be considered as a potential target for developing therapeutic strategies.
Collapse
Affiliation(s)
- Jing Pan
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Emergency/Critical Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qianyuan Yang
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Pediatrics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yao Zhou
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Huan Deng
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yifan Zhu
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Deyu Zhao
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Liu
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Kardas G, Daszyńska-Kardas A, Marynowski M, Brząkalska O, Kuna P, Panek M. Role of Platelet-Derived Growth Factor (PDGF) in Asthma as an Immunoregulatory Factor Mediating Airway Remodeling and Possible Pharmacological Target. Front Pharmacol 2020; 11:47. [PMID: 32116722 PMCID: PMC7033439 DOI: 10.3389/fphar.2020.00047] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
Asthma is a chronic and heterogenic disease of the respiratory system, one of the most common lung diseases worldwide. The underlying pathologies, which are chronic inflammatory process and airway remodeling (AR), are mediated by numerous cells and cytokines. Particularly interesting in this field is the platelet-derived growth factor (PDGF), one of the members of the human growth factor family. In this article, the authors analyze the available data on the role of PDGF in asthma in experimental models and in human research. PDGF is expressed in airway by various cells contributing to asthma pathogenesis—mast cells, eosinophils, and airway epithelial cells. Research confirms the thesis that this factor is also secreted by these cells in the course of asthma. The main effects of PDGF on bronchi are the proliferation of airway smooth muscle (ASM) cells, migration of ASM cells into the epithelium and enhanced collagen synthesis by lung fibroblasts. The importance of AR in asthma is well recognized and new therapies should also aim to manage it, possibly targeting PDGFRs. Further studies on new and already existing drugs, mediating the PDGF signaling and related to asthma are necessary. Several promising drugs from the tyrosine kinase inhibitors group, including nilotinib, imatinib masitinib, and sunitinib, are currently being clinically tested and other molecules are likely to emerge in this field.
Collapse
Affiliation(s)
- Grzegorz Kardas
- Clinic of Internal Diseases, Asthma and Allergy, Medical University of Lodz, Łódź, Poland
| | | | - Mateusz Marynowski
- Clinic of Internal Diseases, Asthma and Allergy, Medical University of Lodz, Łódź, Poland
| | - Oliwia Brząkalska
- Clinic of Internal Diseases, Asthma and Allergy, Medical University of Lodz, Łódź, Poland
| | - Piotr Kuna
- Clinic of Internal Diseases, Asthma and Allergy, Medical University of Lodz, Łódź, Poland
| | - Michał Panek
- Clinic of Internal Diseases, Asthma and Allergy, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
13
|
Lin L, Li Q, Hao W, Zhang Y, Zhao L, Han W. Upregulation of LncRNA Malat1 Induced Proliferation and Migration of Airway Smooth Muscle Cells via miR-150-eIF4E/Akt Signaling. Front Physiol 2019; 10:1337. [PMID: 31695627 PMCID: PMC6817469 DOI: 10.3389/fphys.2019.01337] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/08/2019] [Indexed: 01/07/2023] Open
Abstract
The increased proliferation and migration of airway smooth muscle cells (ASMCs) are critical processes in the formation of airway remodeling in asthma. Long non-coding RNAs (lncRNAs) have emerged as key mediators of diverse physiological and pathological processes, and are involved in the pathogenesis of various diseases, including asthma. LncRNA Malat1 has been widely reported to regulate the proliferation and migration of multiple cell types and be involved in the pathogenesis of various human diseases. However, it remains unknown whether Malat1 regulates ASMC proliferation and migration. Here, we explored the function of Malat1 in ASMC proliferation and migration in vitro stimulated by platelet-derived growth factor BB (PDGF-BB), and the underlying molecular mechanism involved. The results showed that Malat1 was significantly upregulated in ASMCs treated with PDGF-BB, and knockdown of Malat1 effectively inhibited ASMC proliferation and migration induced by PDGF-BB. Our data also showed that miR-150 was a target of Malat1 in ASMCs, and inhibited PDGF-BB-induced ASMC proliferation and migration, whereas the inhibition effect was effectively reversed by Malat1 overexpression. Additionally, translation initiation factor 4E (eIF4E), an important regulator of Akt signaling, was identified to be a target of miR-150, and both eIF4E knockdown and Akt inhibitor GSK690693 inhibited PDGF-BB-induced ASMC proliferation and migration. Collectively, these data indicate that Malat1, as a competing endogenous RNA (ceRNA) for miR-150, derepresses eIF4E expression and activates Akt signaling, thereby being involved in PDGF-BB-induced ASMC proliferation and migration. These findings suggest that Malat1 knockdown may present a new target to limit airway remodeling in asthma.
Collapse
Affiliation(s)
- Li Lin
- Department of Pulmonary Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Qinghai Li
- Department of Pulmonary Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Wanming Hao
- Department of Pulmonary Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Yu Zhang
- Department of Ophthalmology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Long Zhao
- Department of Clinical Laboratory, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Wei Han
- Department of Pulmonary Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
14
|
He M, Cui T, Cai Q, Wang H, Kong H, Xie W. Iptakalim ameliorates hypoxia-impaired human endothelial colony-forming cells proliferation, migration, and angiogenesis via Akt/eNOS pathways. Pulm Circ 2019; 9:2045894019875417. [PMID: 31692706 DOI: 10.1177/2045894019875417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/21/2019] [Indexed: 12/31/2022] Open
Abstract
Hypoxia-associated pulmonary hypertension is characterized by pulmonary vascular remodeling. Pulmonary arterial endothelial cells dysfunction is considered as the initial event. As precursor of endothelial cells, endothelial colony-forming cells (ECFCs) play significant roles in maintenance of endothelium integrity and restoration of normal endothelial cell function. Accumulating data have indicated that hypoxia leads to a decrease in the number and function of ECFCs with defective capacity of endothelial regeneration. Previous studies have reported that the activation of ATP-sensitive potassium channels (KATP) shows therapeutic effects in pulmonary hypertension. However, there have been few reports focusing on the impact of KATP on ECFC function under hypoxic condition. Therefore, the aim of this study was to investigate whether the opening of KATP could regulate hypoxia-induced ECFC dysfunction. Using ECFCs derived from adult peripheral blood, we observed that Iptakalim (Ipt), a novel KATP opener (KCO), significantly promoted ECFC function including cellular viability, proliferation, migration, angiogenesis, and apoptosis compared with ECFCs exposed to hypoxia. Glibenclamide (Gli), a nonselective KATP blocker, could eliminate the effects. The protective role of Ipt is attributed to an increased production of nitric oxide (NO), as well as an enhanced activation of angiogenic transduction pathways, containing Akt and endothelial nitric oxide synthase. Our observations demonstrated that KATP activation could improve ECFC function in hypoxia via Akt/endothelial nitric oxide synthase pathways, which may constitute increase ECFC therapeutic potential for hypoxia-associated pulmonary hypertension treatment.
Collapse
Affiliation(s)
- Mengyu He
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ting Cui
- The Inspection Department of the first Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qing Cai
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Kong
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiping Xie
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Gu Y, Yu X, Li X, Wang X, Gao X, Wang M, Wang S, Li X, Zhang Y. Inhibitory effect of mabuterol on proliferation of rat ASMCs induced by PDGF-BB via regulating [Ca2+]i and mitochondrial fission/fusion. Chem Biol Interact 2019; 307:63-72. [DOI: 10.1016/j.cbi.2019.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/19/2019] [Accepted: 04/17/2019] [Indexed: 02/08/2023]
|
16
|
Wang C, Liu Y, He D. Diverse effects of platelet-derived growth factor-BB on cell signaling pathways. Cytokine 2019; 113:13-20. [DOI: 10.1016/j.cyto.2018.10.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
|
17
|
MicroRNA-20b-5p inhibits platelet-derived growth factor-induced proliferation of human fetal airway smooth muscle cells by targeting signal transducer and activator of transcription 3. Biomed Pharmacother 2018; 102:34-40. [PMID: 29549727 DOI: 10.1016/j.biopha.2018.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 02/08/2023] Open
Abstract
Pediatric asthma is still a health threat to the pediatric population in recent years. The airway remodeling induced by abnormal airway smooth muscle (ASM) cell proliferation is an important cause of asthma. MicroRNAs (miRNAs) are important regulators of ASM cell proliferation. Numerous studies have reported that miR-20b-5p is a critical regulator for cell proliferation. However, whether miR-20b-5p is involved in regulating ASM cell proliferation remains unknown. In this study, we aimed to investigate the potential role of miR-20b-5p in regulating the proliferation of fetal ASM cell induced by platelet-derived growth factor (PDGF). Here, we showed that miR-20b-5p was significantly decreased in fetal ASM cells treated with PDGF. Biological experiments showed that the overexpression of miR-20b-5p inhibited the proliferation while miR-20b-5p inhibition markedly promoted the proliferation of fetal ASM cells. Bioinformatics analysis and luciferase reporter assay showed that miR-20b-5p directly targeted the 3'-UTR of signal transducer and activator of transcription 3 (STAT3). Further data showed that miR-20b-5p negatively regulated the expression of STAT3 in fetal ASM cells. Moreover, miR-20b-5p regulates the transcriptional activity of STAT3 in fetal ASM cells. Overexpression of STAT3 reversed the inhibitory effect of miR-20b-5p overexpression on fetal ASM cell proliferation while the knockdown of STAT3 abrogated the promoted effect of miR-20b-5p inhibition on fetal ASM cell proliferation. Overall, our results show that miR-20b-5p impedes PDGF-induced proliferation of fetal ASM cells through targeting STAT3. Our study suggests that miR-20b-5p may play an important role in airway remodeling during asthma and suggests that miR-20b-5p may serve as a potential therapeutic target for pediatric asthma.
Collapse
|
18
|
TRIM37 inhibits PDGF-BB-induced proliferation and migration of airway smooth muscle cells. Biomed Pharmacother 2018; 101:24-29. [PMID: 29477054 DOI: 10.1016/j.biopha.2018.02.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022] Open
Abstract
Tripartite motif 37 (TRIM37) belongs to the TRIM family of proteins and has been reported to be involved in the progression of asthma. However, the effects of TRIM37 on airway smooth muscle cells (ASMCs) proliferation and migration are still unknown. This study aimed to investigate the effects of TRIM37 on cell proliferation and migration in platelet-derived growth factor BB (PDGF-BB)-stimulated ASMCs, and the potential molecular mechanisms was also explored. Our data demonstrated that the expression of TRIM37 was significantly decreased in ASMCs stimulated with PDGF-BB. In addition, overexpression of TRIM37 efficiently suppressed PDGF-BB-induced ASMCs proliferation and migration. Furthermore, overexpression of TRIM37 obviously inhibited the protein expression levels of β-catenin, c-Myc and cyclinD1 in PDGF-BB-stimulated ASMCs. The Wnt/β-catenin pathway activator LiCl significantly reversed the inhibitory effects of TRIM37 on cell proliferation and migration in PDGF-BB-stimulated ASMCs. Taken together, these results demonstrate that TRIM37 inhibits the proliferation and invasion of ASMCs cultured with PDGF-BB through suppressing the Wnt/β-catenin signaling pathway.
Collapse
|
19
|
Zhou H, Wu Q, Wei L, Peng S. Paeoniflorin inhibits PDGF‑BB‑induced human airway smooth muscle cell growth and migration. Mol Med Rep 2017; 17:2660-2664. [PMID: 29207148 DOI: 10.3892/mmr.2017.8180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 03/21/2017] [Indexed: 11/05/2022] Open
Abstract
Abnormal proliferation and migration of airway smooth muscle cells (ASMCs) is important in the progression of asthma. Paeoniflorin (PF), one of the major active ingredients of Paeonia lactiflora, has been reported to exhibit anti‑asthmatic effects. However, the effects of PF in the regulation of platelet‑derived growth factor (PDGF)‑BB‑induced ASMC proliferation and migration remain unknown. The present study was designed to investigate the effects of PF on human ASMCs and the underlying mechanism. The results demonstrated that PF treatment significantly reduced the numbers of live ASMC cells and their PDGF‑BB‑induced migration. PF treatment also suppressed PDGF‑BB‑induced α‑smooth muscle actin expression in ASMCs. Furthermore, pretreatment with PF reduced PDGF‑BB‑induced phosphorylation of phosphoinositide 3‑kinase (PI3K) and AKT serine/threonine kinase 1 (Akt) in ASMCs. In conclusion, the present study demonstrated for the first time that PF inhibited ASMC growth and migration induced by PDGF‑BB, and that this effect may be partly due to inhibition of the PI3K/Akt signaling pathway. The results provide novel information regarding the role of PF as a potential therapeutic agent for the treatment of asthma.
Collapse
Affiliation(s)
- Hong Zhou
- Graduate School of Tianjin Medical University, Tianjin 300070, P.R. China
| | - Qi Wu
- Department of Respiration, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Luqing Wei
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Tianjin 300162, P.R. China
| | - Shouchun Peng
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Tianjin 300162, P.R. China
| |
Collapse
|
20
|
Deng Y, Zhang Y, Wu H, Shi Z, Sun X. Knockdown of FSTL1 inhibits PDGF‑BB‑induced human airway smooth muscle cell proliferation and migration. Mol Med Rep 2017; 15:3859-3864. [PMID: 28393245 DOI: 10.3892/mmr.2017.6439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/14/2016] [Indexed: 11/05/2022] Open
Abstract
Abnormal proliferation and migration of airway smooth muscle (ASM) cells serve roles in airway remodeling, and contribute to airway hyper‑responsiveness. Follistatin‑like protein 1 (FSTL1) is a secreted glycoprotein that belongs to the follistatin family of proteins. It was reported that in the lungs of patients suffering from severe asthma, FSTL1 is highly expressed by macrophages. However, the role of FSTL1 in ASM cell proliferation and migration remains unknown. The present study aimed to investigate the role of FSTL1 in cell proliferation and migration mediated by platelet‑derived growth factor subunit B (PDGF‑BB) in human ASM cells. The results of the present study demonstrated that PDGF‑BB stimulation upregulated FSTL1 expression levels in ASM cells in vitro. Knockdown of FSTL1 inhibited cell proliferation and arrested the cell cycle in the G2/M phase in PDGF‑BB‑stimulated ASM cells. Additionally, knockdown of FSTL1 inhibited PDGF‑BB‑induced ASM cell migration. Furthermore, FSTL1 knockdown caused the downregulation of phosphorylated (p)‑extracellular signal‑regulated kinase (ERK) and p‑protein kinase B (AKT) expression levels induced by PDGF‑BB in ASM cells. In conclusion, the present study demonstrated that knockdown of FSTL1 inhibited ASM cell proliferation and migration induced by PDGF‑BB, at least partially via inhibiting the activation of ERK and AKT. FSTL1 may therefore represent a novel therapeutic target for airway remodeling in childhood asthma.
Collapse
Affiliation(s)
- Yuelin Deng
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yao Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Huajie Wu
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhaoling Shi
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
21
|
Wu Y, He MY, Ye JK, Ma SY, Huang W, Wei YY, Kong H, Wang H, Zeng XN, Xie WP. Activation of ATP-sensitive potassium channels facilitates the function of human endothelial colony-forming cells via Ca 2+ /Akt/eNOS pathway. J Cell Mol Med 2016; 21:609-620. [PMID: 27709781 PMCID: PMC5323860 DOI: 10.1111/jcmm.13006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/05/2016] [Indexed: 12/17/2022] Open
Abstract
Accumulating data, including those from our laboratory, have shown that the opening of ATP‐sensitive potassium channels (KATP) plays a protective role in pulmonary vascular diseases (PVD). As maintainers of the endothelial framework, endothelial colony‐forming cells (ECFCs) are considered excellent candidates for vascular regeneration in cases of PVD. Although KATP openers (KCOs) have been demonstrated to have beneficial effects on endothelial cells, the impact of KATP on ECFC function remains unclear. Herein, this study investigated whether there is a distribution of KATP in ECFCs and what role KATP play in ECFC modulation. By human ECFCs isolated from adult peripheral blood, KATP were confirmed for the first time to express in ECFCs, comprised subunits of Kir (Kir6.1, Kir6.2) and SUR2b. KCOs such as the classical agent nicorandil (Nico) and the novel agent iptakalim (Ipt) notably improved the function of ECFCs, promoting cell proliferation, migration and angiogenesis, which were abolished by a non‐selective KATP blocker glibenclamide (Gli). To determine the underlying mechanisms, we investigated the impacts of KCOs on CaMKII, Akt and endothelial nitric oxide synthase pathways. Enhanced levels were detected by western blotting, which were abrogated by Gli. This suggested an involvement of Ca2+ signalling in the regulation of ECFCs by KATP. Our findings demonstrated for the first time that there is a distribution of KATP in ECFCs and KATP play a vital role in ECFC function. The present work highlighted a novel profile of KATP as a potential target for ECFC modulation, which may hold the key to the treatment of PVD.
Collapse
Affiliation(s)
- Yan Wu
- Department of Respiratory Medicine, WuXi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Meng-Yu He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian-Kui Ye
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shu-Ying Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong-Yue Wei
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-Ning Zeng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei-Ping Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
22
|
Paudel KR, Karki R, Kim DW. Cepharanthine inhibits in vitro VSMC proliferation and migration and vascular inflammatory responses mediated by RAW264.7. Toxicol In Vitro 2016; 34:16-25. [DOI: 10.1016/j.tiv.2016.03.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/17/2016] [Accepted: 03/20/2016] [Indexed: 12/12/2022]
|
23
|
Qiao Y, Tang C, Wang Q, Wang D, Yan G, Zhu B. Kir2.1 regulates rat smooth muscle cell proliferation, migration, and post-injury carotid neointimal formation. Biochem Biophys Res Commun 2016; 477:774-780. [PMID: 27387235 DOI: 10.1016/j.bbrc.2016.06.134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 06/26/2016] [Indexed: 12/15/2022]
Abstract
Phenotype switching of vascular smooth muscle cells (VSMC) from the contractile type to the synthetic type is a hallmark of vascular disorders such as atherosclerosis and restenosis after angioplasty. Inward rectifier K(+) channel 2.1 (Kir2.1) has been identified in VSMC. However, whether it plays a functional role in regulating cellular transformation remains obscure. In this study, we evaluated the role of Kir2.1 on VSMC proliferation, migration, phenotype switching, and post-injury carotid neointimal formation. Kir2.1 knockdown significantly suppressed platelet-derived growth factor BB-stimulated rat vascular smooth muscle cells (rat-VSMC) proliferation and migration. Deficiency in Kir2.1 contributed to the restoration of smooth muscle α-actin, smooth muscle 22α, and calponin and to a reduction in osteopontin expression in rat-VSMC. Moreover, the in vivo study showed that rat-VSMC switched to proliferative phenotypes and that knockdown of Kir2.1 significantly inhibited neointimal formation after rat carotid injury. Kir2.1 may be a potential therapeutic target in the treatment of cardiovascular diseases, such as atherosclerosis and restenosis following percutaneous coronary intervention.
Collapse
Affiliation(s)
- Yong Qiao
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu, China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu, China.
| | - Qingjie Wang
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu, China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu, China
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu, China
| | - Boqian Zhu
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
24
|
Xu YD, Wei Y, Wang Y, Yin LM, Park GH, Liu YY, Yang YQ. Exogenous S100A8 protein inhibits PDGF-induced migration of airway smooth muscle cells in a RAGE-dependent manner. Biochem Biophys Res Commun 2016; 472:243-9. [PMID: 26920052 DOI: 10.1016/j.bbrc.2016.02.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 02/22/2016] [Indexed: 11/16/2022]
Abstract
S100A8 is an important member of the S100 protein family, which is involved in intracellular and extracellular regulatory activities. We previously reported that the S100A8 protein was differentially expressed in the asthmatic respiratory tracts. To understand the potential role of S100A8 in asthma, we investigated the effect of recombinant S100A8 protein on the platelet-derived growth factor (PDGF)-induced migration of airway smooth muscle cells (ASMCs) and the underlying molecular mechanism by using multiple methods, such as impedance-based xCELLigence migration assay, transwell migration assays and wound-healing assays. We found that exogenous S100A8 protein significantly inhibited PDGF-induced ASMC migration. Furthermore, the migration inhibition effect of S100A8 was blocked by neutralizing antibody against the receptor for advanced glycation end-products (RAGE), a potential receptor for the S100A8 protein. These findings provide direct evidence that exogenous S100A8 protein inhibits the PDGF-induced migration of ASMCs through the membrane receptor RAGE. Our study highlights a novel role of S100A8 as a potential means of counteracting airway remodeling in chronic airway diseases.
Collapse
Affiliation(s)
- Yu-Dong Xu
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Wei
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Wang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei-Miao Yin
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gyoung-Hee Park
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Yan Liu
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Qing Yang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|