1
|
Manoharan S, Prajapati K, Perumal E. Natural bioactive compounds and FOXO3a in cancer therapeutics: An update. Fitoterapia 2024; 173:105807. [PMID: 38168566 DOI: 10.1016/j.fitote.2023.105807] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Forkhead box protein 3a (FOXO3a) is a transcription factor that regulates various downstream targets upon its activation, leading to the upregulation of tumor suppressor and apoptotic pathways. Hence, targeting FOXO3a is an emerging strategy for cancer prevention and treatment. Recently, Natural Bioactive Compounds (NBCs) have been used in drug discovery for treating various disorders including cancer. Notably, several NBCs have been shown as potent FOXO3a activators. NBCs upregulate FOXO3a expressions through PI3K/Akt, MEK/ERK, AMPK, and IκB signaling pathways. FOXO3a promotes its anticancer effects by upregulating the levels of its downstream targets, including Bim, FasL, and Bax, leading to apoptosis. This review focuses on the dysregulation of FOXO3a in carcinogenesis and explores the potent FOXO3a activating NBCs for cancer prevention and treatment. Additionally, the review evaluates the safety and efficacy of NBCs. Looking ahead, NBCs are anticipated to become a cost-effective, potent, and safer therapeutic option for cancer, making them a focal point of research in the field of cancer prevention and treatment.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Kunjkumar Prajapati
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India.
| |
Collapse
|
2
|
Meng XY, Wang KJ, Ye SZ, Chen JF, Chen ZY, Zhang ZY, Yin WQ, Jia XL, Li Y, Yu R, Ma Q. Sinularin stabilizes FOXO3 protein to trigger prostate cancer cell intrinsic apoptosis. Biochem Pharmacol 2024; 220:116011. [PMID: 38154548 DOI: 10.1016/j.bcp.2023.116011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Sinularin, a natural product that purified from soft coral, exhibits anti-tumor effects against various human cancers. However, the mechanisms are not well understood. In this study, we demonstrated that Sinularin inhibited the viability of human prostate cancer cells in a dose-dependent manner and displayed significant cytotoxicity only at high concentration against normal prostate epithelial cell RWPE-1. Flow cytometry assay demonstrated that Sinularin induced tumor cell apoptosis. Further investigations revealed that Sinularin exerted anti-tumor activity through intrinsic apoptotic pathway along with up-regulation of pro-apoptotic protein Bax and PUMA, inhibition of anti-apoptotic protein Bcl-2, mitochondrial membrane potential collapses, and release of mitochondrial proteins. Furthermore, we illustrated that Sinularin induced cell apoptosis via up-regulating PUMA through inhibition of FOXO3 degradation by the ubiquitin-proteasome pathway. To explore how Sinularin suppress FOXO3 ubiquitin-proteasome degradation, we tested two important protein kinases AKT and ERK that regulate FOXO3 stabilization. The results revealed that Sinularin stabilized and up-regulated FOXO3 via inhibition of AKT- and ERK1/2-mediated FOXO3 phosphorylation and subsequent ubiquitin-proteasome degradation. Our findings illustrated the potential mechanisms by which Sinularin induced cell apoptosis and Sinularin may be applied as a therapeutic agent for human prostate cancer.
Collapse
Affiliation(s)
- Xiang-Yu Meng
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Ke-Jie Wang
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Sha-Zhou Ye
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Jun-Feng Chen
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Zhao-Yu Chen
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Zuo-Yan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Wei-Qi Yin
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Department of Urology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Xiao-Long Jia
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Department of Urology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Yi Li
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou 310009, Zhejiang, China.
| | - Rui Yu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, #818 Fenghua Road, Ningbo 315211, Zhejiang, China.
| | - Qi Ma
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Comprehensive Genitourinary Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Yi-Huan Genitourinary Cancer Group, Ningbo 315010, Zhejiang, China.
| |
Collapse
|
3
|
Wang Q, Wang H, Meng W, Liu C, Li R, Zhang M, Liang K, Gao Y, Du T, Zhang J, Han C, Shi L, Meng F. The NONRATT023402.2/rno-miR-3065-5p/NGFR axis affects levodopa-induced dyskinesia in a rat model of Parkinson's disease. Cell Death Discov 2023; 9:342. [PMID: 37714835 PMCID: PMC10504256 DOI: 10.1038/s41420-023-01644-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Levodopa-induced dyskinesia (LID) is a common motor complication in Parkinson's disease. However, few studies have focused on the pathogenesis of LID at the transcriptional level. NONRATT023402.2, a long non-coding RNA (lncRNA) that may be related to LID was discovered in our previous study and characterized in rat models of LID. In the present study, NONRATT023402.2 was overexpressed by injection of adeno-associated virus (AAV) in striatum of LID rats, and 48 potential target genes, including nerve growth factor receptor (NGFR) were screened using next-generation sequencing and target gene predictions. The NONRATT023402.2/rno-miR-3065-5p/NGFR axis was verified using a dual luciferase reporter gene. Overexpression of NONRATT023402.2 significantly increased the abnormal involuntary movements (AIM) score of LID rats, activated the PI3K/Akt signaling pathway, and up-regulated c-Fos in the striatum. NGFR knockdown by injection of ShNGFR-AAV into the striatum of LID rats resulted in a significant decrease in the PI3K/Akt signaling pathway and c-Fos expression. The AIM score of LID rats was positively correlated with the expressions of NONRATT023402.2 and NGFR. A dual luciferase reporter assay showed that c-Fos, as a transcription factor, bound to the NONRATT023402.2 promoter and activated its expression. Together, the results showed that NONRATT023402.2 regulated NGFR expression via a competing endogenous RNA mechanism, which then activated the PI3K/Akt pathway and promoted c-Fos expression. This suggested that c-Fos acted as a transcription factor to activate NONRATT023402.2 expression, and form a positive feedback regulation loop in LID rats, thus, aggravating LID symptoms. NONRATT023402.2 is therefore a possible novel therapeutic target for LID.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Huizhi Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Wenjia Meng
- Clinical School, Tianjin Medical University, Tianjin, China
| | - Chong Liu
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Renpeng Li
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Moxuan Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Kun Liang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Yuan Gao
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Tingting Du
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Jianguo Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunlei Han
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Neurostimulation, Beijing, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Lin Shi
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Neurostimulation, Beijing, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Neurostimulation, Beijing, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
4
|
Lorca M, Cabezas D, Araque I, Terán A, Hernández S, Mellado M, Espinoza L, Mella J. Cancer and brassinosteroids: Mechanisms of action, SAR and future perspectives. Steroids 2023; 190:109153. [PMID: 36481216 DOI: 10.1016/j.steroids.2022.109153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/24/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022]
Abstract
Brassinosteroids are plant hormones whose main function is to stimulate plant growth. However, they have been studied for their biological applications in humans. Brassinosteroid compounds have displayed an important role in the study of cancer pathology and show potential for developing novel anticancer drugs. In this review we describe the relationship of brassinosteroids with cancer with focus on the last decade, the mechanisms of cytotoxic activity described to date, and a structure-activity relationship based on the available information.
Collapse
Affiliation(s)
- Marcos Lorca
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.
| | - David Cabezas
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.
| | - Ileana Araque
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.
| | - Andrés Terán
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.
| | - Santiago Hernández
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.
| | - Marco Mellado
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile.
| | - Luis Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España No. 1680, Valparaíso 2340000, Chile.
| | - Jaime Mella
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile; Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.
| |
Collapse
|
5
|
Obakan Yerlikaya P, Adacan K, Karatug Kacar A, Coker Gurkan A, Arisan ED. Epibrassinolide impaired colon tumor progression and induced autophagy in SCID mouse xenograft model via acting on cell cycle progression without affecting endoplasmic reticulum stress observed in vitro. Int J Biochem Cell Biol 2023; 155:106360. [PMID: 36587800 DOI: 10.1016/j.biocel.2022.106360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Epibrassinolide is a member of brassinosteroids with a polyhydroxysteroid structure similar to steroid hormones of vertebrates. It was shown that EBR decreased cell proliferation and induced apoptosis in different colon cancer cell lines without exerting a cytotoxic effect in epithelial fetal human colon cells. This finding highlighted the potential of epibrassinolide in clinical therapeutic setup. In our previous studies, we showed that epibrassinolide was able to induce apoptosis via endoplasmic reticulum stress. Recently, we also showed that endoplasmic reticulum and apoptotic stresses can be prevented via autophagic induction in non-cancerous epithelial or aggressive forms of cancer cells. Therefore, here in this study, we evaluated the anti-tumoral effect of epibrassinolide as well as the autophagy involvement in the aggressive forms of colon cancer cell lines as well as in vivo SCID mouse xenograft colon cancer model for the first time. For this purpose, SCID mouse model was used for subcutaneous injection of colon cancer cells in matrigel formulation. We found that autophagy is induced in both in vitro and in vivo models. Following tumor formation, SCID mice were treated daily with increasing concentrations of epibrassinolide for two weeks. Our findings showed that EBR inhibited the volume and diameter of the tumor in a dose-dependent manner by causing cell cycle arrest. Therefore our data suggest that epibrassinolide exerts a cytostatic effect on the agrressive form of colon cancer model in vivo, without affecting endoplasmic reticulum stress and the induction of autophagy might have role in this effect of epibrassinolide.
Collapse
Affiliation(s)
- Pinar Obakan Yerlikaya
- Istanbul Medeniyet University, Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Uskudar, 34700 Istanbul, Türkiye; Istanbul Medeniyet University, Science and Advanced Technology Research Center (BILTAM), Uskudar, 34700 Istanbul, Türkiye.
| | - Kaan Adacan
- İstinye University, Molecular Cancer Research Center (ISUMKAM), Zeytinburnu, 34010 Istanbul, Türkiye
| | - Ayse Karatug Kacar
- Istanbul University, Faculty of Science, Department of Biology, Vezneciler, 34134 Istanbul, Türkiye
| | - Ajda Coker Gurkan
- Marmara University, Faculty of Arts And Sciences, Department Of Biology, Kadikoy, 34722, Istanbul, Türkiye
| | - Elif Damla Arisan
- Gebze Technical University, Institute of Biotechnology, 41400 Gebze, Kocaeli, Türkiye
| |
Collapse
|
6
|
Zhou H, Zhuang W, Huang H, Ma N, Lei J, Jin G, Wu S, Zhou S, Zhao X, Lan L, Xia H, Shangguan F. Effects of natural 24-epibrassinolide on inducing apoptosis and restricting metabolism in hepatocarcinoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154428. [PMID: 36115171 DOI: 10.1016/j.phymed.2022.154428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND 24-epibrassinolide (EBR) is a ubiquitous steroidal phytohormone with anticancer activity. Yet the cytotoxic effects and mechanism of EBR on hepatocarcinoma (HCC) cells remain elusive. METHODS Cell counting kit-8 (CCK-8) assay was performed to evaluate cell viability. Real-time cell analysis (RTCA) technology and colony formation assays were used to evaluate cell proliferation. The apoptosis ratio was measured by flow cytometry. Seahorse XFe96 was applied to detect the effects of EBR on cellular bioenergetics. RNA-seq analysis was performed to investigate differences in gene expression profiles. Western blot and qRT-PCR were used to detect the changes in target molecules. RESULTS EBR induced apoptosis and caused energy restriction in HCC, both of which were related to insulin-like growth factor-binding protein 1 (IGFBP1). EBR rapidly and massively induced IGBFP1, part of which was transcribed by activating transcription factor-4 (ATF4). The accumulation of secreted and cellular IGFBP1 had different important roles, in which secreted IGFBP1 affected cell energy metabolism by inhibiting the phosphorylation of Akt, while intracellular IGFBP1 acted as a pro-survival factor to resist apoptosis. Interestingly, the extracellular signal-regulated kinase (ERK) inhibitor SCH772984 and MAP/ERK kinase (MEK) inhibitor PD98059 not only attenuated the EBR-induced IGFBP1 expression but also the basal expression of IGFBP1. Thus, the treatment of cells with these inhibitors further enhances the cytotoxicity of EBR. CONCLUSION Taken together, these findings suggested that EBR can be considered as a potential therapeutic compound for HCC due to its pro-apoptosis, restriction of energy metabolism, and other anti-cancer properties. Meanwhile, the high expression of IGFBP1 induced by EBR in HCC contributes to our understanding of the role of IGFBP1 in drug resistance.
Collapse
Affiliation(s)
- Hongfei Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China
| | - Weiwei Zhuang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China; Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China
| | - Huimin Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China
| | - Nengfang Ma
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325006, China
| | - Jun Lei
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Guihua Jin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China
| | - Shijia Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China
| | - Shipeng Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China
| | - Xingling Zhao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China.
| | - Hongping Xia
- Department of Pathology in the School of Basic Medical Sciences & The Affiliated Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China.
| | - Fugen Shangguan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China.
| |
Collapse
|
7
|
Ma F, An Z, Yue Q, Zhao C, Zhang S, Sun X, Li K, Zhao L, Su L. Effects of brassinosteroids on cancer cells: A review. J Biochem Mol Toxicol 2022; 36:e23026. [DOI: 10.1002/jbt.23026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 12/26/2022]
Affiliation(s)
- Feifan Ma
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Zaiyong An
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Chen Zhao
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Song Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Xin Sun
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Kunlun Li
- Research and Development Departments Jinan Hangchen Biotechnology Co., Ltd. Jinan China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| |
Collapse
|
8
|
Abstract
Previous studies have found that oxidative stress is the negative reaction of the imbalance between oxidation and antioxidation caused by free radicals, and it is the fuse of aging and many diseases. Scavenging the accumulation of free radicals in the body and inhibiting the production of free radicals are effective ways to reduce the occurrence of oxidative stress. In recent years, studies have found that oxidative stress has other effects on the body, such as anti-tumour. In this paper, the targets related to anti-oxidative stress were introduced, and they were divided into nuclear transcription factors, enzymes, solute carrier family 7, member 11 (SLC7A11) genes and iron death, ion channels, molecular chaperones, small molecules according to their different functions. In addition, we introduce the research status of agonists/inhibitors related to these targets, so as to provide some reference for the follow-up research and clinical application of anti-oxidative stress drugs.
Collapse
Affiliation(s)
- Jian-Hong Qi
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fang-Xu Dong
- College of Foreign Languages, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
9
|
Adacan K, Obakan Yerlİkaya P. Epibrassinolide activates AKT to trigger autophagy with polyamine metabolism in SW480 and DLD-1 colon cancer cell lines. ACTA ACUST UNITED AC 2021; 44:417-426. [PMID: 33402868 PMCID: PMC7759188 DOI: 10.3906/biy-2005-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/18/2020] [Indexed: 11/29/2022]
Abstract
Epibrassinolide (EBR), a plant-derived polyhydroxylated derivative of 5α-cholestane, structurally shows similarities to animal steroid hormones. According to the present study, EBR treatment triggered a significant stress response via activating ER stress, autophagy, and apoptosis in cancer cells. EBR could also increase Akt phosphorylation in vitro. While the activation of Akt resulted in cellular metabolic activation in normal cells to proceed with cell survival, a rapid stress response was induced in cancer cells to reduce survival. Therefore, Akt as a mediator of cellular survival and death decision pathways is a crucial target in cancer cells. In this study, we determined that EBR induces stress responses through activating Akt, which reduced the mTOR complex I (mTORC1) activation in SW480 and DLD-1 colon cancer cells. As a consequence, EBR triggered macroautophagy and led to lipidation of LC3 most efficiently in SW480 cells. The cotreatment of spermidine (Spd) with EBR increased lipidation of LC3 synergistically in both cell lines. We also found that EBR promoted polyamine catabolism in SW480 cells. The retention of polyamine biosynthesis was remarkable following EBR treatment. We suggested that EBR-mediated Akt activation might determine the downstream cellular stress responses to induce autophagy related to polyamines.
Collapse
Affiliation(s)
- Kaan Adacan
- Department of Molecular Biology and Genetics, Science and Literature Faculty, İstanbul Kültür University, İstanbul Turkey
| | - Pınar Obakan Yerlİkaya
- Department of Molecular Biology and Genetics, Science and Literature Faculty, İstanbul Kültür University, İstanbul Turkey
| |
Collapse
|
10
|
Adacan K, Obakan-Yerlikaya P, Arisan ED, Coker-Gurkan A, Kaya RI, Palavan-Unsal N. Epibrassinolide-induced autophagy occurs in an Atg5-independent manner due to endoplasmic stress induction in MEF cells. Amino Acids 2020; 52:871-891. [PMID: 32449072 DOI: 10.1007/s00726-020-02857-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/12/2020] [Indexed: 01/10/2023]
Abstract
Epibrassinolide (EBR), a polyhydroxysteroid belongs to plant growth regulator family, brassinosteroids and has been shown to have a similar chemical structure to mammalian steroid hormones. Our findings indicated that EBR could trigger apoptosis in cancer cells via induction of endoplasmic reticulum (ER) stress, caused by protein folding disturbance in the ER. Normal cells exhibited a remarkable resistance to EBR treatment and avoid from apoptotic cell death. The unfolded protein response clears un/misfolded proteins and restore ER functions. When stress is chronic, cells tend to die due to improper cellular functions. To understand the effect of EBR in non-malign cells, mouse embryonic fibroblast (MEF) cells were investigated in detail for ER stress biomarkers, autophagy, and polyamine metabolism in this study. Evolutionary conserved autophagy mechanism is a crucial cellular process to clean damaged organelles and protein aggregates through lysosome under the control of autophagy-related genes (ATGs). Cells tend to activate autophagy to promote cell survival under stress conditions. Polyamines are polycationic molecules playing a role in the homeostasis of important cellular events such as cell survival, growth, and, proliferation. The administration of PAs has been markedly extended the lifespan of various organisms via inducing autophagy and inhibiting oxidative stress. Our data indicated that ER stress is induced following EBR treatment in MEF cells as well as MEF Atg5-/- cells. In addition, autophagy is activated following EBR treatment by targeting PI3K/Akt/mTOR in wildtype (wt) cells. However, EBR-induced autophagy targets ULK1 in MEF cells lacking Atg5 expression. Besides, EBR treatment depleted the PA pool in MEF cells through the alterations of metabolic enzymes. The administration of Spd with EBR further increased autophagic vacuole formation. In conclusion, EBR is an anticancer drug candidate with selective cytotoxicity for cancer cells, in addition the induction of autophagy and PA metabolism are critical for responses of normal cells against EBR.
Collapse
Affiliation(s)
- Kaan Adacan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Bakirkoy, 34156, Istanbul, Turkey
| | - Pınar Obakan-Yerlikaya
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Bakirkoy, 34156, Istanbul, Turkey.
| | - Elif Damla Arisan
- Institute of Biotechnology, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Ajda Coker-Gurkan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Bakirkoy, 34156, Istanbul, Turkey
| | - Resul Ismail Kaya
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Bakirkoy, 34156, Istanbul, Turkey
| | - Narçın Palavan-Unsal
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Bakirkoy, 34156, Istanbul, Turkey
| |
Collapse
|
11
|
Kaur Kohli S, Bhardwaj A, Bhardwaj V, Sharma A, Kalia N, Landi M, Bhardwaj R. Therapeutic Potential of Brassinosteroids in Biomedical and Clinical Research. Biomolecules 2020; 10:E572. [PMID: 32283642 PMCID: PMC7226375 DOI: 10.3390/biom10040572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/28/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
Steroids are a pivotal class of hormones with a key role in growth modulation and signal transduction in multicellular organisms. Synthetic steroids are widely used to cure large array of viral, fungal, bacterial, and cancerous infections. Brassinosteroids (BRs) are a natural collection of phytosterols, which have structural similarity with animal steroids. BRs are dispersed universally throughout the plant kingdom. These plant steroids are well known to modulate a plethora of physiological responses in plants leading to improvement in quality as well as yield of food crops. Moreover, they have been found to play imperative role in stress-fortification against various stresses in plants. Over a decade, BRs have conquered worldwide interest due to their diverse biological activities in animal systems. Recent studies have indicated anticancerous, antiangiogenic, antiviral, antigenotoxic, antifungal, and antibacterial bioactivities of BRs in the animal test systems. BRs inhibit replication of viruses and induce cytotoxic effects on cancerous cell lines. Keeping in view the biological activities of BRs, this review is an attempt to update the information about prospects of BRs in biomedical and clinical application.
Collapse
Affiliation(s)
- Sukhmeen Kaur Kohli
- Plant Stress Physiology Lab, Department of Botanical and Environment Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.K.K.); (A.S.)
| | - Abhay Bhardwaj
- Department of Bio-organic and Biological Chemistry, Kharkiv National Medical University, Kharkiv 61000, Ukraine; (A.B.); (V.B.)
| | - Vinay Bhardwaj
- Department of Bio-organic and Biological Chemistry, Kharkiv National Medical University, Kharkiv 61000, Ukraine; (A.B.); (V.B.)
| | - Anket Sharma
- Plant Stress Physiology Lab, Department of Botanical and Environment Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.K.K.); (A.S.)
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Namarta Kalia
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Marco Landi
- Department of Agriculture, Food & Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Renu Bhardwaj
- Plant Stress Physiology Lab, Department of Botanical and Environment Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.K.K.); (A.S.)
| |
Collapse
|
12
|
Kvasnica M, Buchtova K, Budesinsky M, Beres T, Rarova L, Strnad M. Synthesis, characterization and antiproliferative activity of seco analogues of brassinosteroids. Steroids 2019; 146:1-13. [PMID: 30885649 DOI: 10.1016/j.steroids.2019.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/21/2019] [Accepted: 03/09/2019] [Indexed: 12/18/2022]
Abstract
Synthesis and structure-activity relationship analysis of a two groups of 2,3-seco analogues of brassinosteroids (BRs) were performed to examine their antiproliferative activities. Two steroid skeletons were chosen for the preparation of seco analogues - cholestane and stigmastane. The synthetic strategy consists of multistep reactions and detailed analysis of compounds prepared. We have discovered unpublished behaviour of 2,3-seco-2,3-dihydroxy-6-ketones leading to formation of intramolecular ketal with two new steroidal rings. Their reaction intermediates were also characterized in some cases. All compounds prepared were fully characterized with NMR and MS techniques. Most of compounds were tested for in vitro cytotoxicity on three cancer cell lines (CEM, MCF7, and HeLa) and normal human fibroblasts (BJ). It was discovered that some seco analogues caused apoptosis in cancer cells. The most promising seco derivative 28 proved to have high therapeutic index.
Collapse
Affiliation(s)
- Miroslav Kvasnica
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic.
| | - Katerina Buchtova
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Milos Budesinsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo n. 2, 16610 Prague 6, Czech Republic
| | - Tibor Beres
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; Central Laboratories and Research Support, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Lucie Rarova
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| |
Collapse
|
13
|
Han L, Yang X, Sun W, Li Z, Ren H, Li B, Zhang R, Zhang D, Shi Z, Liu J, Cao J, Zhang J, Xiong Y. The study of GPX3 methylation in patients with Kashin-Beck Disease and its mechanism in chondrocyte apoptosis. Bone 2018; 117:15-22. [PMID: 30153510 DOI: 10.1016/j.bone.2018.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/06/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Selenium deficiency is a risk factor for Kashin-Beck Disease (KBD), an endemic osteoarthropathy. Although promoter hypermethylation of glutathione peroxidase 3 (GPX3) (a selenoprotein) has been identified in several cancers, little is known about promoter methylation and expression of GPX3 and their relation to selenium in KBD. The present study was thus conducted to investigate this research question. METHODS Methylation and expressions of GPX3 in whole blood drawn from 288 KBD patients and 362 healthy controls and in chondrocyte cell line were evaluated using methylation-specific PCR and qRT-PCR, respectively. The protein levels of PI3K/Akt/c-fos signaling in the whole blood and chondrocyte cell line were determined with Western blotting. Chondrocytes apoptosis were detected by Hoechst 33342 and Annexin V-FITC/PI staining. RESULTS GPX3 methylation was increased, GPX3 mRNA was decreased, and protein levels in the PI3K/Akt/c-fos signaling pathway were up-regulated in the whole blood collected from KBD patients as compared with healthy controls. Similar results were obtained for chondrocytes injured by oxidative stress. There was a significant, decreasing trend in GPX3 expression across groups of unmethylation, partial methylation, and complete methylation for GPX3, in sequence. Compared with unmethylation group, protein levels in PI3K/Akt/c-fos pathway were enhanced in partial and complete methylation groups. Treatment of chondrocytes with sodium selenite resulted in reduced methylation and increased expression of GPX3 as well as down-regulated level of PI3K/Akt/c-fos proteins. CONCLUSIONS The methylation and expression of GPX3 and expression of PI3K/Akt/c-fos pathway are altered in KBD and these changes are reversible by selenium supplementation.
Collapse
Affiliation(s)
- LiXin Han
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - XiaoLi Yang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - WenYan Sun
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - ZhaoFang Li
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - Hao Ren
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - BaoRong Li
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - RongQiang Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - DanDan Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - ZiYun Shi
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - JiFeng Liu
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - JunLing Cao
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - JianJun Zhang
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, 1050 Wishard Boulevard, IN 46202, USA
| | - YongMin Xiong
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China.
| |
Collapse
|
14
|
Coker-Gurkan A, Celik M, Ugur M, Arisan ED, Obakan-Yerlikaya P, Durdu ZB, Palavan-Unsal N. Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cells. Amino Acids 2018; 50:1045-1069. [PMID: 29770869 DOI: 10.1007/s00726-018-2581-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/27/2018] [Indexed: 02/05/2023]
Abstract
Curcumin is assumed to be a plant-derived therapeutic drug that triggers apoptotic cell death in vitro and in vivo by affecting different molecular targets such as NF-κB. Phase I/II trial of curcumin alone or with chemotherapeutic drugs has been accomplished in pancreatic, colon, prostate and breast cancer cases. Recently, autocrine growth hormone (GH) signaling-induced cell growth, metastasis and drug resistance have been demonstrated in breast cancer. In this study, our aim was to investigate the potential therapeutic effect of curcumin by evaluating the molecular machinery of curcumin-triggered apoptotic cell death via focusing on NF-κB signaling and polyamine (PA) metabolism in autocrine GH-expressing MCF-7, MDA-MB-453 and MDA-MB-231 breast cancer cells. For this purpose, a pcDNA3.1 (+) vector with a GH gene insert was transfected by a liposomal agent in all breast cancer cells and then selection was conducted in neomycin (G418) included media. Autocrine GH-induced curcumin resistance was overcome in a dose-dependent manner and curcumin inhibited cell proliferation, invasion-metastasis and phosphorylation of p65 (Ser536), and thereby partly prevented its DNA binding activity in breast cancer cells. Moreover, curcumin induced caspase-mediated apoptotic cell death by activating the PA catabolic enzyme expressions, which led to generation of toxic by-products such as H2O2 in MCF-7, MDA-MB-453 and MDA-MB-231 GH+ breast cancer cells. In addition, transient silencing of SSAT prevented curcumin-induced cell viability loss and apoptotic cell death in each breast cancer cells. In conclusion, curcumin could overcome the GH-mediated resistant phenotype via modulating cell survival, death-related signaling routes and activating PA catabolic pathway.
Collapse
Affiliation(s)
- Ajda Coker-Gurkan
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey.
| | - Merve Celik
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Merve Ugur
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Elif-Damla Arisan
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Pinar Obakan-Yerlikaya
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Zeynep Begum Durdu
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Narcin Palavan-Unsal
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| |
Collapse
|
15
|
Huang C, Li R, Zhang Y, Gong J. Amarogentin Induces Apoptosis of Liver Cancer Cells via Upregulation of p53 and Downregulation of Human Telomerase Reverse Transcriptase in Mice. Technol Cancer Res Treat 2017; 16:546-558. [PMID: 27402632 PMCID: PMC5665146 DOI: 10.1177/1533034616657976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/27/2016] [Accepted: 06/06/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Amarogentin has been reported to have a preventive effect on liver cancer via inducing cancer cell apoptosis. We attempted to elucidate the roles of p53-associated apoptosis pathways in the chemopreventive mechanism of amarogentin. The findings of this study will facilitate the development of a novel supplementary strategy for the treatment of liver cancer. MATERIALS AND METHODS The purity of amarogentin was assessed by high-performance liquid chromatography. The inhibitory ratios of the liver cell lines were determined using a Cell Counting Kit-8 following treatment with a gradient concentration of amarogentin. Cell apoptosis was detected by flow cytometry using annexin V-fluorescein isothiocyanate/propidium iodide kits. The gene and protein expression of p53-associated molecules, such as Akt, human telomerase reverse transcriptase, RelA, and p38, was detected by real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemical staining in liver cancer cells and mouse tumor tissues after treatment with amarogentin. RESULTS The inhibitory effect of amarogentin on cell proliferation was more obvious in liver cancer cells, and amarogentin was more likely to induce the apoptosis of liver cancer cells than that of normal liver cells. The gene and protein expression levels of Akt, RelA, and human telomerase reverse transcriptase were markedly higher in the control group than in the preventive group and treatment groups. Only the expression of human telomerase reverse transcriptase was downregulated, accompanied by the upregulation of p53. CONCLUSION The results of our study suggest that amarogentin promotes apoptosis of liver cancer cells by the upregulation of p53 and downregulation of human telomerase reverse transcriptase and prevents the malignant transformation of these cells.
Collapse
Affiliation(s)
- Chun Huang
- Chongqing Key Laboratory of Hepatobiliary Surgery, Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Division of Basic Medical Science, Chongqing Three Gorges Medical College, Chongqing, Wanzhou, People’s Republic of China
| | - Runqin Li
- Division of Basic Medical Science, Chongqing Three Gorges Medical College, Chongqing, Wanzhou, People’s Republic of China
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yinglin Zhang
- Department of Hepatobiliary Surgery, The Third Hospital of Mianyang, Mianyang, Sichuan, People’s Republic of China
| | - Jianping Gong
- Chongqing Key Laboratory of Hepatobiliary Surgery, Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
16
|
Jung SK, Jeong CH. Dehydroglyasperin D Inhibits the Proliferation of HT-29 Human Colorectal Cancer Cells Through Direct Interaction With Phosphatidylinositol 3-kinase. J Cancer Prev 2016; 21:26-31. [PMID: 27051646 PMCID: PMC4819663 DOI: 10.15430/jcp.2016.21.1.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 11/10/2022] Open
Abstract
Background: Despite recent advances in therapy, colorectal cancer still has a grim prognosis. Although licorice has been used in East Asian traditional medicine, the molecular properties of its constituents including dehydroglyasperin D (DHGA-D) remain unknown. We sought to evaluate the inhibitory effect of DHGA-D on colorectal cancer cell proliferation and identify the primary signaling molecule targeted by DHGA-D. Methods: We evaluated anchorage-dependent and -independent cell growth in HT-29 human colorectal adenocarcinoma cells. The target protein of DHGA-D was identified by Western blot analysis with a specific antibody, and direct interaction between DHGA-D and the target protein was confirmed by kinase and pull-down assays. Cell cycle analysis by flow cytometry and further Western blot analysis was performed to identify the signaling pathway involved. Results: DHGA-D significantly suppressed anchorage-dependent and -independent HT-29 colorectal cancer cell proliferation. DHGA-D directly suppressed phosphatidylinositol 3-kinase (PI3K) activity and subsequent Akt phosphorylation and bound to the p110 subunit of PI3K. DHGA-D also significantly induced G1 cell cycle arrest, together with the suppression of glycogen synthase kinase 3β and retinoblastoma phosphorylation and cyclin D1 expression. Conclusions: DHGA-D has potent anticancer activity and targets PI3K in human colorectal adenocarcinoma HT-29 cells. To our knowledge, this is the first report to detail the molecular basis of DHGA-D in suppressing colorectal cancer cell growth.
Collapse
Affiliation(s)
- Sung Keun Jung
- Research Group of Nutraceuticals for Metabolic Syndrome, Korea Food Research Institute, Seongnam, Keimyung University, Daegu, Korea; Food Biotechnology Program, Korea University of Science and Technology, Daejeon, Keimyung University, Daegu, Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu, Korea
| |
Collapse
|
17
|
Peng H, Du B, Jiang H, Gao J. Over-expression of CHAF1A promotes cell proliferation and apoptosis resistance in glioblastoma cells via AKT/FOXO3a/Bim pathway. Biochem Biophys Res Commun 2015; 469:1111-6. [PMID: 26740175 DOI: 10.1016/j.bbrc.2015.12.111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 12/24/2015] [Indexed: 11/16/2022]
Abstract
Chromatinassembly factor 1 subunit A (CHAF1A) has been reported to be involved in several human diseases including cancer. However, the biological and clinical significance of CHAF1A in glioblastoma progression remains largely unknown. In this study, we found that up-regulation of CHAF1A happens frequently in glioblastoma tissues and is associated with glioblastoma prognosis. Knockout of CHAF1A by CRISPR/CAS9 technology induce G1 phase arrest and apoptosis in glioblastoma cell U251 and U87. In addition, inhibition of CHAF1A influenced the signal transduction of the AKT/FOXO3a/Bim axis, which is required for glioblastoma cell proliferation. Taken together, these results show that CHAF1A contributes to the proliferation of glioblastoma cells and may be developed as a de novo drug target and prognosis biomarker of glioblastoma.
Collapse
Affiliation(s)
- Honghai Peng
- Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, China
| | - Bin Du
- Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, China
| | - Huili Jiang
- Friendship Nephrology and Blood Purification Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, China
| | - Jun Gao
- Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, China.
| |
Collapse
|