1
|
Busulfan Suppresses Autophagy in Mouse Spermatogonial Progenitor Cells via mTOR of AKT and p53 Signaling Pathways. Stem Cell Rev Rep 2021; 16:1242-1255. [PMID: 32839922 DOI: 10.1007/s12015-020-10027-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In testis, a rare undifferentiated germ cell population with the capacity to regenerate robustly and support spermatogenesis, is defined as spermatogonial progenitor cells (SPCs) population. As a widely used drug for tumor therapy or bone marrow transplantation, busulfan has a severe side effect on SPCs population and causes a consequent infertility. Recently, accumulating evidence revealed the protective role of autophagy in stem cell maintenance under exogenous stress. To better understand the role of autophagy in SPCs fates, we investigated the potential function of autophagy in SPCs under busulfan stress, and found that treatment of busulfan induced the formation of autophagic vesicles and autophagosomes in mouse SPCs. Subsequently, a connection of autophagy and SPCs maintenance and survival was demonstrated in a dose-dependent manner. Moreover, mTOR was identified as an essential factor for autophagy in SPCs with a complicated mechanism: (1) mTOR is phosphorylated by AKT to activate its target genes, p70s6 kinase, resulting in the inhibition of autophagy during short-term busulfan treatment. (2) mTOR mediates autophagy with p53 together, to regulate the fate of SPCs. Collectively, observations from this study indicate that moderate autophagy effectively protects SPCs from the stress of chemotherapy, which may provide an important hint for fertility protection in clinic.
Collapse
|
2
|
Suppressing BCL-XL increased the high dose androgens therapeutic effect to better induce the Enzalutamide-resistant prostate cancer autophagic cell death. Cell Death Dis 2021; 12:68. [PMID: 33431795 PMCID: PMC7801470 DOI: 10.1038/s41419-020-03321-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022]
Abstract
Most patients with advanced prostate cancer (PCa) initially respond well to androgen deprivation therapy (ADT) with antiandrogens, but most of them eventually become resistant to ADT. Here, we found that the antiandrogen Enzalutamide-resistant (EnzR) PCa cells can be suppressed by hyper-physiological doses of the androgen DHT. Mechanism dissection indicates that while androgens/androgen receptor (AR) can decrease BCL-2 expression to induce cell death, yet they can also simultaneously increase anti-apoptosis BCL-XL protein expression via decreasing its potential E3 ubiquitin ligase, PARK2, through transcriptionally increasing the miR-493-3p expression to target PARK2. Thus, targeting the high dose DHT/AR/miR-493-3p/PARK2/BCL-XL signaling with BCL-XL-shRNA can increase high-dose-DHT effect to better suppress EnzR cell growth via increasing the autophagic cell death. A preclinical study using in vivo mouse model also validated that suppressing BCL-XL led to enhance high dose DHT effect to induce PCa cell death. The success of human clinical trials in the future may help us to develop a novel therapy using high dose androgens to better suppress CRPC progression.
Collapse
|
3
|
Chen L, Song Z, Wu J, Huang Q, Shen Z, Wei X, Lin Z. LncRNA DANCR sponges miR-216a to inhibit odontoblast differentiation through upregulating c-Cbl. Exp Cell Res 2019; 387:111751. [PMID: 31805275 DOI: 10.1016/j.yexcr.2019.111751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/20/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022]
Abstract
Enhanced odontoblast differentiation of human dental pulp cells (hDPCs) is considered a keystone in dentin-pulp complex formation. We have revealed lncRNA DANCR was implicated in this differentiation program, however, its mechanism in odontoblast differentiation of hDPCs remains further explored. In this study, by employing loss-of-function approach, we identified downregulation of DANCR drived odontoblast differentiaion of hDPCs. Bioinformatics analysis was utilized to show that DANCR contained binding site for miR-216a and an inverse correlation between DANCR and miR-216a was obtained. Dual luciferase reporter assay and RNA-binding protein immunoprecipitation (RIP) were applied to further confirm that DANCR conferred its functions by directly binding to miR-216a. Notably, miR-216a was able to bind to the 3'-UTR of c-Cbl and repressed its expression. In addition, the protein level of c-CBL was significantly downregulated during hDPCs differentiation, while c-Cbl overexpression inhibited odontoblast differentiation of hDPCs. Moreover, downregulation of miR-216a efficiently reversed the suppression of c-Cbl level and odontoblast differentiation induced by knockdown of DANCR. Taken together, these analyses indicated that DANCR positively regulated the expression of c-Cbl, through sponging miR-216a, and inhibited odontoblast differentiation of hDPCs. Our results will extend the field of clinical application for cell-based therapy in regenerative medicine.
Collapse
Affiliation(s)
- Lingling Chen
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| | - Zhi Song
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| | - Jinyan Wu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| | - Qiting Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| | - Zongshan Shen
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| | - Xi Wei
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| | - Zhengmei Lin
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| |
Collapse
|
4
|
Autophagy promotes hepatic differentiation of hepatic progenitor cells by regulating the Wnt/β-catenin signaling pathway. J Mol Histol 2019; 50:75-90. [PMID: 30604254 PMCID: PMC6323068 DOI: 10.1007/s10735-018-9808-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022]
Abstract
Hepatic progenitor cells (HPCs) can be activated when the liver suffers persistent and severe damage and can differentiate into hepatocytes to maintain liver regeneration and homeostasis. However, the molecular mechanism underlying the hepatic differentiation of HPCs is unclear. Therefore, in this study, we aimed to investigate the roles of autophagy and the Wnt/β-catenin signaling pathway during hepatic differentiation of HPCs in vivo and in vitro. First, immunohistochemistry, immunofluorescence and electron microscopy showed that Atg5 and β-catenin were highly expressed in human fibrotic liver and mouse liver injury induced by feeding a 50% choline-deficient diet plus 0.15% ethionine solution in drinking water (CDE diet) for 21 days; in addition, these factors were expressed in CK19-positive HPCs. Second, Western blotting and immunofluorescence confirmed that CK19-positive HPCs incubated in differentiation medium for 7 days can differentiate into hepatocytes and that differentiated HPCs were able to take up ICG and secrete albumin and urea. Further investigation via Western blotting, immunofluorescence and electron microscopy revealed autophagy and the Wnt/β-catenin pathway to be activated during hepatic differentiation of HPCs. Next, we found that inhibiting autophagy by downregulating Atg5 gene expression impaired hepatic differentiation of HPCs and inhibited activation of the Wnt/β-catenin pathway, which was rescued by overexpression of the β-catenin gene. Moreover, downregulating β-catenin gene expression without inhibiting autophagy still impeded the differentiation of HPCs. Finally, coimmunoprecipitation demonstrated that P62 forms a complex with phosphorylated glycogen synthase kinase 3 beta (pGSK3β). Third, in mouse CDE-induced liver injury, immunohistochemistry and immunofluorescence confirmed that downregulating Atg5 gene expression inhibited autophagy, thus impeding hepatic differentiation of HPCs and inhibiting activation of the Wnt/β-catenin pathway. As observed in vitro, overexpression of β-catenin rescued this phenomenon caused by autophagy inhibition, though decreasing β-catenin levels without autophagy inhibition still impeded HPC differentiation. We also found that HPCs differentiated into hepatocytes in human fibrotic liver tissue. Collectively, these results demonstrate that autophagy promotes HPC differentiation by regulating Wnt/β-catenin signaling. Our results are the first to identify a role for autophagy in promoting the hepatic differentiation of HPCs.
Collapse
|
5
|
Yang J, He MT, Huang X, Wang QS, Pi J, Wang HJ, Rahhal AH, Luo SM, Zha ZG. Atomic Force Microscopy-Based Nanoscopy of Chondrogenically Differentiating Human Adipose-Derived Stem Cells: Nanostructure and Integrin β1 Expression. NANOSCALE RESEARCH LETTERS 2018; 13:333. [PMID: 30353236 PMCID: PMC6199198 DOI: 10.1186/s11671-018-2722-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/17/2018] [Indexed: 05/08/2023]
Abstract
Integrin β1 is known to be involved in differentiation, migration, proliferation, wound repair, tissue development, and organogenesis. In order to analyze the binding probability between integrin β1 ligand and cluster of differentiation 29 (CD29) receptors, atomic force microscopy (AFM) was used to detect native integrin β1-coupled receptors on the surface of human adipose-derived stem cells (hADSc). The binding probability of integrin β1 ligand-receptor interaction was probed by integrin β1-functionalized tips on hADSc during early chondrogenic differentiation at the two-dimensional cell culture level. Cell morphology and ultrastructure of hADSc were measured by AFM, which demonstrated that long spindled cells became polygonal cells with decreased length/width ratios and increased roughness during chondrogenic induction. The binding of integrin β1 ligand and CD29 receptors was detected by β1-functionalized tips for living hADSc. A total of 1200 curves were recorded at 0, 6, and 12 days of chondrogenic induction. Average rupture forces were, respectively, 61.8 ± 22.2 pN, 60 ± 20.2 pN, and 67.2 ± 22.0 pN. Rupture events were 19.58 ± 1.74%, 28.03 ± 2.05%, and 33.4 ± 1.89%, respectively, which demonstrated that binding probability was increased between integrin β1 ligand and receptors on the surface of hADSc during chondrogenic induction. Integrin β1 and the β-catenin/SOX signaling pathway were correlated during chondrogenic differentiation. The results of this investigation imply that AFM offers kinetic and visual insight into the changes in integrin β1 ligand-CD29 receptor binding on hADSc during chondrogenesis. Changes in cellular morphology, membrane ultrastructure, and the probability of ligand-transmembrane receptor binding were demonstrated to be useful markers for evaluation of the chondrogenic differentiation process.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, 510630 People’s Republic of China
| | - Ming-Tang He
- Longgang Orthopedics Hospital of Shenzhen, Shenzhen, People’s Republic of China
| | - Xun Huang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, 510630 People’s Republic of China
- Department of Materials Science and Engineering, Jinan University, Guangzhou, People’s Republic of China
| | - Qiu-Shi Wang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, 510630 People’s Republic of China
| | - Jiang Pi
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL USA
| | - Hua-Jun Wang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, 510630 People’s Republic of China
| | - Ali Hasan Rahhal
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, 510630 People’s Republic of China
| | - Si-Min Luo
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, 510630 People’s Republic of China
| | - Zhen-Gang Zha
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, 510630 People’s Republic of China
| |
Collapse
|
6
|
Sun M, Chi G, Xu J, Tan Y, Xu J, Lv S, Xu Z, Xia Y, Li L, Li Y. Extracellular matrix stiffness controls osteogenic differentiation of mesenchymal stem cells mediated by integrin α5. Stem Cell Res Ther 2018; 9:52. [PMID: 29490668 PMCID: PMC5831741 DOI: 10.1186/s13287-018-0798-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/18/2018] [Accepted: 02/05/2018] [Indexed: 01/12/2023] Open
Abstract
Background Human mesenchymal stem cell (hMSC) differentiation into osteoblasts has important clinical significance in treating bone injury, and the stiffness of the extracellular matrix (ECM) has been shown to be an important regulatory factor for hMSC differentiation. The aim of this study was to further delineate how matrix stiffness affects intracellular signaling through integrin α5/β1, FAK, and Wnt signaling, subsequently regulating the osteogenic phenotype of hMSCs. Methods hMSCs were cultured on tunable polyacrylamide hydrogels coated with fibronectin with stiffness corresponding to a Young’s modulus of 13–16 kPa and 62–68 kPa. After hMSCs were cultured on gels for 1 week, gene expression of alpha-1typeIcollagen, BGLAP, and RUNX2 were evaluated by real-time PCR. After hMSCs were cultured on gels for 24 h, signaling molecules relating to integrin α5 (FAK, ERK, p-ERK, Akt, p-Akt, GSK-3β, p-GSK-3β, and β-catenin) were evaluated by western blot analysis. Results Osteogenic differentiation was increased on 62–68 kPa ECM, as evidenced by alpha-1 type I collagen, BGLAP, and RUNX2 gene expression, calcium deposition, and ALP staining. In the process of differentiation, gene and protein expression of integrin α5/β1 increased, together with protein expression of the downstream signaling molecules FAK, p-ERK, p-Akt, GSK-3β, p-GSK-3β, and β-catenin, indicating that these molecules can affect the osteogenic differentiation of hMSCs. An antibody blocking integrin α5 suppressed the stiffness-induced expression of all osteoblast markers examined. In particular, alpha-1 type I collagen, RUNX2, and BGLAP were significantly downregulated, indicating that integrin α5 regulates hMSC osteogenic differentiation. Downstream expression of FAK, ERK, p-ERK, and β-catenin protein was unchanged, whereas Akt, p-Akt, GSK-3β, and p-GSK-3β were upregulated. Moreover, expression of Akt and p-Akt was upregulated with anti-integrin α5 antibody, but no difference was observed for FAK, ERK, and p-ERK between the with or without anti-integrin α5 antibody groups. At the same time, expression of GSK-3β and p-GSK-3β was upregulated and β-catenin levels showed no difference between the groups with or without anti-integrin α5 antibody. Since Akt, p-Akt, GSK-3β, and p-GSK-3β displayed the same changes between the groups with or without anti-integrin α5 antibody, we then detected the links among them. Expression of p-Akt and p-GSK-3β was reduced effectively in the presence of the Akt inhibitor Triciribine. However, Akt, GSK-3β, and β-catenin were unchanged. These results suggested that expression of p-GSK-3β was regulated by p-Akt on 62–68 kPa ECM. Conclusions Taken together, our results provide evidence that matrix stiffness (62–68 kPa) affects the osteogenic outcome of hMSCs through mechanotransduction events that are mediated by integrin α5. Electronic supplementary material The online version of this article (10.1186/s13287-018-0798-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meiyu Sun
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, People's Republic of China
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, People's Republic of China
| | - Juanjuan Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, People's Republic of China
| | - Ye Tan
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, People's Republic of China
| | - Jiayi Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, People's Republic of China
| | - Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, People's Republic of China
| | - Ziran Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, People's Republic of China
| | - Yuhan Xia
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, People's Republic of China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, People's Republic of China.
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
7
|
Ozeki N, Hase N, Hiyama T, Yamaguchi H, Kawai-Asano R, Nakata K, Mogi M. RETRACTED: MicroRNA-211 and autophagy-related gene 14 signaling regulate osteoblast-like cell differentiation of human induced pluripotent stem cells. Exp Cell Res 2017; 352:63-74. [DOI: 10.1016/j.yexcr.2017.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 01/25/2017] [Accepted: 01/29/2017] [Indexed: 12/14/2022]
|
8
|
Ozeki N, Hase N, Higuchi N, Hiyama T, Yamaguchi H, Kawai R, Matsumoto T, Nakata K, Mogi M. RETRACTED: Gelatin scaffold combined with bone morphogenetic protein-4 induces odontoblast-like cell differentiation involving integrin profile changes, autophagy-related gene 10, and Wnt5 sequentially in human induced pluripotent stem cells. Differentiation 2017; 93:1-14. [DOI: 10.1016/j.diff.2016.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/22/2016] [Accepted: 09/08/2016] [Indexed: 12/19/2022]
|
9
|
Ozeki N, Hase N, Mogi M, Nakata K. RETRACTED: New findings for dentin sialophosphoprotein studies: Applications of purified odontoblast-like cells derived from stem cells. J Oral Biosci 2016; 58:128-133. [PMID: 32512681 DOI: 10.1016/j.job.2016.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/15/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Authors. After the retraction of the article [Hiyama T, Ozeki N, Mogi M, Yamaguchi H, Kawai R, Nakata K, Kondo A, Nakamura H. 2013. Matrix Metalloproteinase-3 in Odontoblastic Cells Derived from Ips Cells: Unique Proliferation Response as Odontoblastic Cells Derived from ES Cells. PLoS ONE 8(12): e83563. doi:10.1371/journal.pone.0083563] which contained fabricated/falsified data, the authors attempted to confirm original data for the results presented in their related publications. As a result, they reached a conclusion that there were no original data for the results presented in several their publications. This article was written on the basis of the seven publications retracted or to be retracted and it is no longer reliable. Reference 24: N. Ozeki, M. Mogi, R. Kawai, H. Yamaguchi, T. Hiyama, K. Nakata, H. Nakamura Mouse-induced pluripotent stem cells differentiate into odontoblast-like cells with induction of altered adhesive and migratory phenotype of integrin PLoS One, 8 (2013), p. e80026 Reference 25:R. Kawai, N. Ozeki, H. Yamaguchi, T. Tanaka, K. Nakata, M. Mogi, H. Nakamura Mouse ES cells have a potential to differentiate into odontoblast-like cells using hanging drop method Oral Dis, 20 (2014), pp. 395-403 Reference 26:N. Ozeki, M. Mogi, H. Yamaguchi, T. Hiyama, R. Kawai, N. Hase, K. Nakata, H. Nakamura, R.H. Kramer Differentiation of human skeletal muscle stem cells into odontoblasts is dependent on induction of alpha1 integrin expression J Biol Chem, 289 (2014), pp. 14380-14391 Reference 42:N. Ozeki, N. Hase, R. Kawai, H. Yamaguchi, T. Hiyama, A. Kondo, K. Nakata, M. Mogi Unique proliferation response in odontoblastic cells derived from human skeletal muscle stem cells by cytokine-induced matrix metalloproteinase-3 Exp Cell Res, 331 (2015), pp. 105-114 Reference 43: N. Ozeki, N. Hase, H. Yamaguchi, T. Hiyama, R. Kawai, A. Kondo, K. Nakata, M. Mogi Polyphosphate induces matrix metalloproteinase-3-mediated proliferation of odontoblast-like cells derived from induced pluripotent stem cells Exp Cell Res, 333 (2015), pp. 303-315 Reference 44: N. Ozeki, R. Kawai, N. Hase, T. Hiyama, H. Yamaguchi, A. Kondo, K. Nakata, M. Mogi Alpha2 integrin, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-3 act sequentially to induce differentiation of mouse embryonic stem cells into odontoblast-like Exp Cell Res, 331 (2015), pp. 21-37 Reference 45: N. Ozeki, M. Mogi, N. Hase, T. Hiyama, H. Yamaguchi, R. Kawai, A. Kondo, T. Matsumoto, K. Nakata Autophagy-related gene 5 and Wnt5 signaling pathway requires differentiation of embryonic stem cells into odontoblast-like cells Exp Cell Res, 341 (2016), pp. 92-104 All of the authors except Nobuaki Ozeki have agreed to retract the article. Nobuaki Ozeki, the corresponding author and the first author of the article, left Aichi Gakuin University in March 2018, and does not respond to co-authors inquiries. The authors deeply regret this error and any inconvenience it may have caused.
Collapse
Affiliation(s)
- Nobuaki Ozeki
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651, Japan.
| | - Naoko Hase
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651, Japan
| | - Makio Mogi
- Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Kazuhiko Nakata
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651, Japan
| |
Collapse
|
10
|
Ozeki N, Mogi M, Hase N, Hiyama T, Yamaguchi H, Kawai R, Matsumoto T, Nakata K. Bone morphogenetic protein-induced cell differentiation involves Atg7 and Wnt16 sequentially in human stem cell-derived osteoblastic cells. Exp Cell Res 2016; 347:24-41. [PMID: 27397580 DOI: 10.1016/j.yexcr.2016.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 02/06/2023]
Abstract
We established a differentiation method for homogeneous α7 integrin-positive human skeletal muscle stem cell (α7(+)hSMSC)-derived osteoblast-like cells with bone morphogenetic protein (BMP)-2. To explore the early signaling cascade for osteoblastic differentiation, we examined the upregulation of autophagy-related gene (Atg) and wingless/int1 (Wnt) signaling during BMP-2-mediated human osteoblastic differentiation. In a screening experiment, BMP-2 increased the mRNA and protein levels of Atg7, Wnt16, and Lrp5/Fzd2 (a Wnt receptor), but not microtubule-associated protein 1 light chain (LC3; a mammalian homolog of yeast Atg8), TFE3, Beclin1, Atg5, Atg12, Wnt3a, or Wnt5, together with the amounts of autophagosomes and autophagy fluxes. Treatment with siRNAs against Atg7 and Wnt16 individually suppressed the BMP-2-induced increase in osteoblastic differentiation. The osteoblastic phenotype, involving osteocalcin (BGLAP), osteopontin (SPP1), and osterix (SP7) expression, decreased when autophagy was inhibited by chloroquine (an autophagy inhibitor), but increased after treatment with rapamycin (an autophagy enhancer). Taken together with our previous findings, we have revealed a unique sequential cascade of BMP-2→Atg7→Wnt16→Lrp5/Fzd2→matrix metalloproteinase-13→osteoblastic differentiation. This cascade results in a potent increase in osteoblastic cell differentiation, indicating the unique involvement of Atg7, autophagy, and Wnt16 signaling in BMP-2-induced differentiation of α7(+)hSMSCs into osteoblast-like cells at a relatively early stage.
Collapse
Affiliation(s)
- Nobuaki Ozeki
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan.
| | - Makio Mogi
- Department of Integrative Education of Pharmacy, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Naoko Hase
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Taiki Hiyama
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Hideyuki Yamaguchi
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Rie Kawai
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Toru Matsumoto
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Kazuhiko Nakata
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| |
Collapse
|