1
|
Tasdemiroglu Y, Council-Troche M, Chen M, Ledford B, Norris RA, Poelzing S, Gourdie RG, He JQ. Degradation of the α-Carboxyl Terminus 11 Peptide: In Vivo and Ex Vivo Impacts of Time, Temperature, Inhibitors, and Gender in Rat. ACS Pharmacol Transl Sci 2024; 7:1624-1636. [PMID: 38751644 PMCID: PMC11091968 DOI: 10.1021/acsptsci.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024]
Abstract
In previous research, a synthetic α-carboxyl terminus 1 (αCT1) peptide derived from connexin 43 (Cx43) and its variant (αCT11) showed beneficial effects in an ex vivo ischemia-reperfusion (I/R) heart injury model in mouse. In an in vivo mouse model of cryo-induced ventricular injury, αCT1 released from adhesive cardiac patches reduced Cx43 remodeling and arrhythmias, as well as maintained cardiac conduction. Whether intravenous injection of αCT1 or αCT11 produces similar outcomes has not been investigated. Given the possibility of peptide degradation in plasma, this study utilized in vivo I/R cardiac injury and ex vivo blood plasma models to examine factors that may limit the therapeutic potential of peptide therapeutics in vivo. Following tail vein administration of αCT11 (100 μM) in blood, no effect on I/R infarct size was observed in adult rat hearts on day 1 (D1) and day 28 (D28) after injury (p > 0.05). There was also no difference in the echocardiographic ejection fraction (EF%) between the control and the αCT11 groups (p > 0.05). Surprisingly, αCT11 in blood plasma collected from these rats was undetectable within ∼10 min after tail vein injection. To investigate factors that may modulate αCT11 degradation in blood, αCT11 was directly added to blood plasma isolated from normal rats without I/R and peptide levels were measured under different experimental conditions. Consistent with in vivo observations, significant αCT11 degradation occurred in plasma within 10 min at 22 and 37 °C and was nearly undetectable by 30 min. These responses were reduced by the addition of protease/phosphatase (PTase/PPTase) inhibitors to the isolated plasma. Interestingly, no significant differences in αCT11 degradation in plasma were noted between male and female rats. We conclude that fast degradation of αCT11 is likely the reason that no beneficial effects were observed in the in vivo I/R model and inhibition or shielding from PTase/PPTase activity may be a strategy that will assist with the viability of peptide therapeutics.
Collapse
Affiliation(s)
- Yagmur Tasdemiroglu
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| | - McAlister Council-Troche
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| | - Miao Chen
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| | - Benjamin Ledford
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| | - Russell A. Norris
- Department
of Medicine, Medical University of South
Carolina, Charleston, South Carolina 29425, United States
| | - Steven Poelzing
- Center
for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, 2 Riverside Circle, Roanoke, Virginia 24016, United States
| | - Robert G. Gourdie
- Center
for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, 2 Riverside Circle, Roanoke, Virginia 24016, United States
| | - Jia-Qiang He
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Ledford B, Barron C, Van Dyke M, He JQ. Keratose hydrogel for tissue regeneration and drug delivery. Semin Cell Dev Biol 2021; 128:145-153. [PMID: 34219034 DOI: 10.1016/j.semcdb.2021.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/16/2021] [Accepted: 06/23/2021] [Indexed: 11/28/2022]
Abstract
Keratin (KRT), a natural fibrous structural protein, can be classified into two categories: "soft" cytosolic KRT that is primarily found in the epithelia tissues (e.g., skin, the inner lining of digestive tract) and "hard" KRT that is mainly found in the protective tissues (e.g., hair, horn). The latter is the predominant form of KRT widely used in biomedical research. The oxidized form of extracted KRT is exclusively denoted as keratose (KOS) while the reduced form of KRT is termed as kerateine (KRTN). KOS can be processed into various forms (e.g., hydrogel, films, fibers, and coatings) for different biomedical applications. KRT/KOS offers numerous advantages over other types of biomaterials, such as bioactivity, biocompatibility, degradability, immune/inflammatory privileges, mechanical resilience, chemical manipulability, and easy accessibility. As a result, KRT/KOS has attracted considerable attention and led to a large number of publications associated with this biomaterial over the past few decades; however, most (if not all) of the published review articles focus on KRT regarding its molecular structure, biochemical/biophysical properties, bioactivity, biocompatibility, drug/cell delivery, and in vivo transplantation, as well as its applications in biotechnical products and medical devices. Current progress that is directly associated with KOS applications in tissue regeneration and drug delivery appears an important topic that merits a commentary. To this end, the present review aims to summarize the current progress of KOS-associated biomedical applications, especially focusing on the in vitro and in vivo effects of KOS hydrogel on cultured cells and tissue regeneration following skin injury, skeletal muscle loss, peripheral nerve injury, and cardiac infarction.
Collapse
Affiliation(s)
- Benjamin Ledford
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Catherine Barron
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mark Van Dyke
- Department of Biomedical Engineering, College of Engineering, University of Arizona, 1209 E. 2nd Street, Tucson, AZ 85721, USA
| | - Jia-Qiang He
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
3
|
Xu XH, Yang X, Zheng CG, Cui Y. Recent advances in the design of cardiovascular materials for biomedical applications. Regen Med 2020; 15:1637-1645. [PMID: 32552423 DOI: 10.2217/rme-2019-0135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Biomaterials dominate the field of cardiovascular therapeutics, a multitude of which have been used to repair and replace injured heart tissue. This field has evolved beyond the simple selection of compatible materials and now focuses on the rational design of controlled structures that integrate with the cardiovascular system. However, the compatibility of these materials with the blood presents a major limitation to their clinical application. In this context, surface modification strategies can enhance blood compatibility and several recent advances in this area have emerged. This review summarizes the recent applications of biomaterials in cardiovascular therapies, the improvements in their biocompatibility and the surface modification technologies that have the potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Xun-Hong Xu
- Emergency Department, Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou 311700, Zhejiang Province, China
| | - Xue Yang
- Key Laboratory of Tumor Molecular Diagnosis & Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Cheng-Gen Zheng
- Department of Cardiology, Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou 311700, Zhejiang Province, China
| | - Yong Cui
- Department of Cardiothoracic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
4
|
Affiliation(s)
- Guohua Cao
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA 24061, USA
| |
Collapse
|
5
|
Nagarajan S, Pochat-Bohatier C, Balme S, Miele P, Kalkura SN, Bechelany M. Electrospun fibers in regenerative tissue engineering and drug delivery. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractElectrospinning is a versatile technique to produce micron or nano sized fibers using synthetic or bio polymers. The unique structural characteristic of the electrospun mats (ESM) which mimics extracellular matrix (ECM) found influential in regenerative tissue engineering application. ESM with different morphologies or ESM functionalizing with specific growth factors creates a favorable microenvironment for the stem cell attachment, proliferation and differentiation. Fiber size, alignment and mechanical properties affect also the cell adhesion and gene expression. Hence, the effect of ESM physical properties on stem cell differentiation for neural, bone, cartilage, ocular and heart tissue regeneration will be reviewed and summarized. Electrospun fibers having high surface area to volume ratio present several advantages for drug/biomolecule delivery. Indeed, controlling the release of drugs/biomolecules is essential for sustained delivery application. Various possibilities to control the release of hydrophilic or hydrophobic drug from the ESM and different electrospinning methods such as emulsion electrospinning and coaxial electrospinning for drug/biomolecule loading are summarized in this review.
Collapse
Affiliation(s)
- Sakthivel Nagarajan
- Institut Européen des Membranes, UMR 5635, Université Montpellier, CNRS, ENSCM, Place Eugene Bataillon, F-34095 Montpellier Cedex 5, France
- Crystal Growth Centre, Anna University, 600025 Chennai, India
| | - Céline Pochat-Bohatier
- Institut Européen des Membranes, UMR 5635, Université Montpellier, CNRS, ENSCM, Place Eugene Bataillon, F-34095 Montpellier Cedex 5, France
| | - Sébastien Balme
- Institut Européen des Membranes, UMR 5635, Université Montpellier, CNRS, ENSCM, Place Eugene Bataillon, F-34095 Montpellier Cedex 5, France
| | - Philippe Miele
- Institut Européen des Membranes, UMR 5635, Université Montpellier, CNRS, ENSCM, Place Eugene Bataillon, F-34095 Montpellier Cedex 5, France
| | | | - Mikhael Bechelany
- Institut Européen des Membranes, UMR 5635, Université Montpellier, CNRS, ENSCM, Place Eugene Bataillon, F-34095 Montpellier Cedex 5, France, Phone: +33467149167, Fax: +33467149119
| |
Collapse
|
6
|
Bhutani S, Nachlas ALY, Brown ME, Pete T, Johnson CT, García AJ, Davis ME. Evaluation of Hydrogels Presenting Extracellular Matrix-Derived Adhesion Peptides and Encapsulating Cardiac Progenitor Cells for Cardiac Repair. ACS Biomater Sci Eng 2017; 4:200-210. [PMID: 29457128 DOI: 10.1021/acsbiomaterials.7b00502] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell therapy is an emerging paradigm for the treatment of heart disease. In spite of the exciting and promising preclinical results, the benefits of cell therapy for cardiac repair in patients have been modest at best. Biomaterials-based approaches may overcome the barriers of poor differentiation and retention of transplanted cells. In this study, we prepared and tested hydrogels presenting extracellular matrix (ECM)-derived adhesion peptides as delivery vehicles for c-kit+ cardiac progenitor cells (CPCs). We assessed their effects on cell behavior in vitro as well as cardiac repair in rats undergoing ischemia reperfusion. Hydrogels presenting the collagen-derived GFOGER peptide induced cardiomyocyte differentiation of CPCs as demonstrated by increased expression of cardiomyocyte structural proteins. However, conditioned media obtained from GFOGER hydrogels showed lower levels of secreted reparative factors. Interestingly, following injection in rats undergoing ischemia-reperfusion, treatment with CPCs encapsulated in nonadhesive RDG-presenting hydrogels resulted in the preservation of cardiac contractility and attenuation of postinfarct remodeling whereas the adhesion peptide-presenting hydrogels did not induce any functional improvement. Retention of cells was significantly higher when delivered with nonadhesive hydrogels compared to ECM-derived peptide gels. These data suggest that factors including cell differentiation state, paracrine factors and interaction with biomaterials influence the effectiveness of biomaterials-based cell therapy. A holistic consideration of these multiple variables should be included in cell-biomaterial combination therapy designs.
Collapse
Affiliation(s)
- Srishti Bhutani
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, 1760 Haygood Drive, W200, Atlanta, Georgia 30322, United States
| | - Aline L Y Nachlas
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, 1760 Haygood Drive, W200, Atlanta, Georgia 30322, United States
| | - Milton E Brown
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, 1760 Haygood Drive, W200, Atlanta, Georgia 30322, United States
| | - Tionne Pete
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, 1760 Haygood Drive, W200, Atlanta, Georgia 30322, United States
| | - Christopher T Johnson
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, 1760 Haygood Drive, W200, Atlanta, Georgia 30322, United States.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30313, United States
| | - Andres J García
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30313, United States.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, 1760 Haygood Drive, W200, Atlanta, Georgia 30322, United States.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30313, United States.,Division of Cardiology, Emory University School of Medicine, 101 Woodruff Circle, Room 319, Atlanta, Georgia 30322, United States.,Children's Heart Research and Outcomes Center, Children's Healthcare of Atlanta, 1760 Haygood Drive, W400, Atlanta, Georgia 30322, United States
| |
Collapse
|
7
|
Ledford BT, Simmons J, Chen M, Fan H, Barron C, Liu Z, Van Dyke M, He JQ. Keratose Hydrogels Promote Vascular Smooth Muscle Differentiation from C-kit-Positive Human Cardiac Stem Cells. Stem Cells Dev 2017; 26:888-900. [DOI: 10.1089/scd.2016.0351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Benjamin T. Ledford
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
| | - Jamelle Simmons
- Department of Biomedical Engineering and Mechanics, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia
| | - Miao Chen
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
| | - Huimin Fan
- Research Institute of Heart Failure, Shanghai East Hospital of Tongji University, Shanghai, People's Republic of China
| | - Catherine Barron
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
| | - Zhongmin Liu
- Research Institute of Heart Failure, Shanghai East Hospital of Tongji University, Shanghai, People's Republic of China
| | - Mark Van Dyke
- Department of Biomedical Engineering and Mechanics, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia
| | - Jia-Qiang He
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|