1
|
Kang I, Koo M, Jun JH, Lee J. Effect of nicotinamide mononucleotide on osteogenesis in MC3T3-E1 cells against inflammation-induced by lipopolysaccharide. Clin Exp Reprod Med 2024; 51:236-246. [PMID: 38599888 PMCID: PMC11372314 DOI: 10.5653/cerm.2023.06744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/06/2024] [Indexed: 04/12/2024] Open
Abstract
OBJECTIVE Nicotinamide mononucleotide (NMN) is extensively utilized as an anti-aging agent and possesses anti-inflammatory properties. Lipopolysaccharide (LPS) activates Toll-like receptor 4, a process modulated by intracellular signaling pathways such as the Wnt/β-catenin pathway. This study investigated the impact of NMN on osteogenesis in the presence of LPS. METHODS To elucidate the role of NMN in osteogenesis in the context of Gram-negative bacterial infection after LPS treatment, we cultured a mouse pre-osteoblast cell line (MC3T3-E1) and subsequently incubated it with NMN and/or LPS. We then evaluated osteogenic activity by measuring alkaline phosphatase activity, assessing gene expression and protein levels, and performing Alizarin Red S staining and immunocytochemistry. RESULTS MC3T3-E1 cells underwent successful differentiation into osteoblasts following treatment with osteogenic induction medium. LPS diminished features related to osteogenic differentiation, which were subsequently partially reversed by treatment with NMN. The restorative effects of NMN on LPS-exposed MC3T3-E1 cells were further substantiated by elucidating the role of Wnt/β-catenin signaling, as confirmed through immunocytochemistry. CONCLUSION This study showed that infection with Gram-negative bacteria disrupted the osteogenic differentiation of MC3T3-E1 cells. This adverse effect was partially reversed by administering a high-dose of NMN. Drawing on these results, we propose that NMN could serve as a viable therapeutic strategy to preserve bone homeostasis in elderly and immunocompromised patients.
Collapse
Affiliation(s)
- Inyoung Kang
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
| | - Myoungjoo Koo
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
| | - Jin Hyun Jun
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
| | - Jaewang Lee
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
| |
Collapse
|
2
|
Chen Y, Xiao H, Liu Z, Teng F, Yang A, Geng B, Sheng X, Xia Y. Sirt1: An Increasingly Interesting Molecule with a Potential Role in Bone Metabolism and Osteoporosis. Biomolecules 2024; 14:970. [PMID: 39199358 PMCID: PMC11352324 DOI: 10.3390/biom14080970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Osteoporosis (OP) is a common metabolic bone disease characterized by low bone mass, decreased bone mineral density, and degradation of bone tissue microarchitecture. However, our understanding of the mechanisms of bone remodeling and factors affecting bone mass remains incomplete. Sirtuin1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent deacetylase that regulates a variety of cellular metabolisms, including inflammation, tumorigenesis, and bone metabolism. Recent studies have emphasized the important role of SIRT1 in bone homeostasis. This article reviews the role of SIRT1 in bone metabolism and OP and also discusses therapeutic strategies and future research directions for targeting SIRT1.
Collapse
Affiliation(s)
- Yi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Hefang Xiao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Zirui Liu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Fei Teng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Ao Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Bin Geng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Xiaoyun Sheng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Yayi Xia
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
3
|
Bilski J, Schramm-Luc A, Szczepanik M, Mazur-Biały AI, Bonior J, Luc K, Zawojska K, Szklarczyk J. Adipokines in Rheumatoid Arthritis: Emerging Biomarkers and Therapeutic Targets. Biomedicines 2023; 11:2998. [PMID: 38001998 PMCID: PMC10669400 DOI: 10.3390/biomedicines11112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease manifested by joint involvement, extra-articular manifestations, and general symptoms. Adipose tissue, previously perceived as an inert energy storage organ, has been recognised as a significant contributor to RA pathophysiology. Adipokines modulate immune responses, inflammation, and metabolic pathways in RA. Although most adipokines have a pro-inflammatory and aggravating effect on RA, some could counteract this pathological process. The coexistence of RA and sarcopenic obesity (SO) has gained attention due to its impact on disease severity and outcomes. Sarcopenic obesity further contributes to the inflammatory milieu and metabolic disturbances. Recent research has highlighted the intricate crosstalk between adipose tissue and skeletal muscle, suggesting potential interactions between these tissues in RA. This review summarizes the roles of adipokines in RA, particularly in inflammation, immune modulation, and joint destruction. In addition, it explores the emerging role of adipomyokines, specifically irisin and myostatin, in the pathogenesis of RA and their potential as therapeutic targets. We discuss the therapeutic implications of targeting adipokines and adipomyokines in RA management and highlight the challenges and future directions for research in this field.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Agata Schramm-Luc
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (A.S.-L.); (K.L.)
| | - Marian Szczepanik
- Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-034 Krakow, Poland;
| | - Agnieszka Irena Mazur-Biały
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Joanna Bonior
- Department of Medical Physiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Krakow, Poland; (J.B.); (J.S.)
| | - Kevin Luc
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (A.S.-L.); (K.L.)
| | - Klaudia Zawojska
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Joanna Szklarczyk
- Department of Medical Physiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Krakow, Poland; (J.B.); (J.S.)
| |
Collapse
|
4
|
Wei F, Tuong ZK, Omer M, Ngo C, Asiatico J, Kinzel M, Pugazhendhi AS, Khaled AR, Ghosh R, Coathup M. A novel multifunctional radioprotective strategy using P7C3 as a countermeasure against ionizing radiation-induced bone loss. Bone Res 2023; 11:34. [PMID: 37385982 DOI: 10.1038/s41413-023-00273-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 07/01/2023] Open
Abstract
Radiotherapy is a critical component of cancer care but can cause osteoporosis and pathological insufficiency fractures in surrounding and otherwise healthy bone. Presently, no effective countermeasure exists, and ionizing radiation-induced bone damage continues to be a substantial source of pain and morbidity. The purpose of this study was to investigate a small molecule aminopropyl carbazole named P7C3 as a novel radioprotective strategy. Our studies revealed that P7C3 repressed ionizing radiation (IR)-induced osteoclastic activity, inhibited adipogenesis, and promoted osteoblastogenesis and mineral deposition in vitro. We also demonstrated that rodents exposed to clinically equivalent hypofractionated levels of IR in vivo develop weakened, osteoporotic bone. However, the administration of P7C3 significantly inhibited osteoclastic activity, lipid formation and bone marrow adiposity and mitigated tissue loss such that bone maintained its area, architecture, and mechanical strength. Our findings revealed significant enhancement of cellular macromolecule metabolic processes, myeloid cell differentiation, and the proteins LRP-4, TAGLN, ILK, and Tollip, with downregulation of GDF-3, SH2B1, and CD200. These proteins are key in favoring osteoblast over adipogenic progenitor differentiation, cell matrix interactions, and shape and motility, facilitating inflammatory resolution, and suppressing osteoclastogenesis, potentially via Wnt/β-catenin signaling. A concern was whether P7C3 afforded similar protection to cancer cells. Preliminarily, and remarkably, at the same protective P7C3 dose, a significant reduction in triple-negative breast cancer and osteosarcoma cell metabolic activity was found in vitro. Together, these results indicate that P7C3 is a previously undiscovered key regulator of adipo-osteogenic progenitor lineage commitment and may serve as a novel multifunctional therapeutic strategy, leaving IR an effective clinical tool while diminishing the risk of adverse post-IR complications. Our data uncover a new approach for the prevention of radiation-induced bone damage, and further work is needed to investigate its ability to selectively drive cancer cell death.
Collapse
Affiliation(s)
- Fei Wei
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Mahmoud Omer
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Christopher Ngo
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jackson Asiatico
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Michael Kinzel
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Abinaya Sindu Pugazhendhi
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Annette R Khaled
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Ranajay Ghosh
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Melanie Coathup
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
5
|
Xu ZH, Xiong CW, Miao KS, Yu ZT, Zhang JJ, Yu CL, Huang Y, Zhou XD. Adipokines regulate mesenchymal stem cell osteogenic differentiation. World J Stem Cells 2023; 15:502-513. [PMID: 37424950 PMCID: PMC10324509 DOI: 10.4252/wjsc.v15.i6.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/26/2023] [Accepted: 04/24/2023] [Indexed: 06/26/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into various tissue cell types including bone, adipose, cartilage, and muscle. Among those, osteogenic differentiation of MSCs has been widely explored in many bone tissue engineering studies. Moreover, the conditions and methods of inducing osteogenic differentiation of MSCs are continuously advancing. Recently, with the gradual recognition of adipokines, the research on their involvement in different pathophysiological processes of the body is also deepening including lipid metabolism, inflammation, immune regulation, energy disorders, and bone homeostasis. At the same time, the role of adipokines in the osteogenic differentiation of MSCs has been gradually described more completely. Therefore, this paper reviewed the evidence of the role of adipokines in the osteogenic differentiation of MSCs, emphasizing bone formation and bone regeneration.
Collapse
Affiliation(s)
- Zhong-Hua Xu
- Department of Orthopedics, Jintan Hospital Affiliated to Jiangsu University, Changzhou 213200, Jiangsu Province, China
| | - Chen-Wei Xiong
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Kai-Song Miao
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Zhen-Tang Yu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Jun-Jie Zhang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Chang-Lin Yu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Yong Huang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Xin-Die Zhou
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
- Department of Orthopedics, Gonghe County Hospital of Traditional Chinese Medicine, Hainan Tibetan Autonomous Prefecture 811800, Qinghai Province, China
| |
Collapse
|
6
|
Sun Y, Yu X, Gao X, Zhang C, Sun H, Xu K, Wei D, Wang Q, Zhang H, Shi Y, Li L, He X. RNA sequencing profiles reveal dynamic signaling and glucose metabolic features during bone marrow mesenchymal stem cell senescence. Cell Biosci 2022; 12:62. [PMID: 35568915 PMCID: PMC9107734 DOI: 10.1186/s13578-022-00796-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
Background Stem cell senescence is considered as a significant driver of organismal aging. As individuals age, the number of stem cells is declined, and the ability to proliferate and survive is also weakened. It has been reported that metabolism plays an important role in stem cell self-renewal, multilineage differentiation, senescence and fate determination, which has aroused widespread concerns. However, whether metabolism-related genes or signalling pathways are involved in physiological aging remain largely undetermined. Results In the current study, we showed 868 up-regulated and 2006 down-regulated differentially expressed genes (DEGs) in bone marrow mesenchymal stem cells (MSCs) from old rats in comparison with that from young rats by performing RNA sequence. And DEGs functions and pathways were further selected by function enrichment analysis. The results indicated that the high expression of DEGs might participate in cell differentiation, growth factor binding and etc., while the down-regulated DEGs were majorly enriched in metabolism process, such as the cellular metabolic process and mitochondria. Then, we screened and verified DEGs related to glucose metabolism and investigated the glycolysis levels. We identified that glucose uptake, lactate secretion, ATP production and relative extracellular acidification rates (ECAR) were all diminished in MSCs from old rats. More importantly, we conducted microRNA prediction on the key DEGs of glycolysis to elucidate the potential molecular mechanisms of glucose metabolism affecting MSC senescence. Conclusions Our study unravelled the profiles of DEGs in age-associated MSC senescence and their functions and pathways. We also clarified DEGs related to glucose metabolism and down-regulated glycolysis level in age-associated MSC senescence. This study will uncover the metabolic effects on regulating stem cell senescence, and provide novel therapeutic targets for ameliorating age-associated phenotypes. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00796-5.
Collapse
|
7
|
Tariq S, Tariq S, Khaliq S, Abualhamael SA, Baig M. Association of serum levels of Visfatin, Intelectin-1, RARRES2 and their genetic variants with bone mineral density in postmenopausal females. Front Endocrinol (Lausanne) 2022; 13:1024860. [PMID: 36531488 PMCID: PMC9748547 DOI: 10.3389/fendo.2022.1024860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/01/2022] [Indexed: 12/02/2022] Open
Abstract
Background Adipokines are engaged in bone physiology and regulate bone mineral density (BMD) by playing protective or cynical role in bone metabolism. The study is designed to measure and compare BMD, adipokines (retinoic acid receptor responder protein-2 RARRES2, visfatin and Intelectin-1) and their genetic variants in postmenopausal osteoporotic, osteopenic and non-osteoporotic females. Methods This comparative study included postmenopausal non-osteoporotic (n=72), osteopenic (n=72) and osteoporotic (n=100) females with two years of amenorrhea and age between 50 to 70 years. Gold standard DXA was used to measure BMD. Hardy-Weinberg equilibrium was established. Kruskal-Wallis test for comparisons, logistic and multivariate regression analysis were used to rule out the predictors of BMD. Results On comparing the three groups, significant differences were observed in serum RARRES2 (p <0.001) and serum visfatin (p=0.050). The significant positive predictor of BMD at lumbar spine and total hip was serum visfatin. BMD at right and left femoral neck was predicted negatively by serum chemerin while BMD at left femoral neck was also predicted positively by serum calcium levels. There was significant difference in BMD at right femoral neck (p = 0.033) between rs7806429 genotypes. The odds of having low BMD increases with increasing serum levels of chemerin and decreasing serum levels of visfatin and calcium. Conclusion The adipokines RARRES2 and visfatin are associated with BMD. RARRES2 is an independent negative and visfatin is positive predictor of BMD in postmenopausal females. BMD at right femoral neck was significantly low in RARRES2 rs7806429 TC heterozygotes.
Collapse
Affiliation(s)
- Sundus Tariq
- Department of Physiology, University Medical & Dental College, The University of Faisalabad, Faisalabad, Pakistan
| | - Saba Tariq
- Department of Pharmacology and Therapeutics, University Medical & Dental College, The University of Faisalabad, Faisalabad, Pakistan
| | - Saba Khaliq
- Department of Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
| | | | - Mukhtiar Baig
- Department of Clinical Biochemistry, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Wang S, Zhan H, Xu L, Zhao B. Serum nicotinamide phosphoribosyltransferase as a novel biomarker for non-traumatic osteonecrosis of the femoral head. J Orthop Surg Res 2022; 17:514. [PMID: 36443772 PMCID: PMC9703730 DOI: 10.1186/s13018-022-03417-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the potential role of serum nicotinamide phosphoribosyltransferase (NAMPT) in non-traumatic osteonecrosis of femoral head (NONFH). METHODS A total of 113 NONFH patients and 81 healthy individuals were included in this study. The NAMPT levels in serum were measured by a commercial enzyme-linked immunosorbent assay kit. Radiographic progression was determined using Association Research Circulation Osseous (ARCO) classification system. Clinical severity was assessed by Harris hip score (HHS) and visual analogue scale (VAS). Correlations between serum NAMPT and radiographic progression as well as clinical severity were evaluated statistically. Receiver operating characteristic (ROC) curves were performed to evaluate the diagnostic values of NAMPT in NONFH potential and disease severity. RESULTS The serum NAMPT levels in NONFH patients were significantly lower than that in healthy controls. There were no significant differences among alcohol-induced group, steroids-induced group, and idiopathic group. NONFH patients with ARCO stage 4 had significant lower serum NAMPT levels in comparisons with ARCO stage 3 and 2, respectively. Lower serum NAMPT levels were also observed in bilateral NONFH cases compared with cases with unilateral NONFH. In addition, serum NAMPT was negatively correlated with ARCO stages and VAS scores, and positively correlated with HHS. ROC curve analysis indicated that serum NAMPT may serve as a novel biomarker for diagnosing early NONFH and for monitoring disease severity. CONCLUSIONS Our results suggest that serum NAMPT may serve as a novel biomarker for NONFH potential and disease severity.
Collapse
Affiliation(s)
- Shiying Wang
- grid.415946.b0000 0004 7434 8069Department of Orthopedics, Linyi People’s Hospital, Linyi, 276000 Shandong China
| | - Huixian Zhan
- grid.411866.c0000 0000 8848 7685Guangzhou University of Chinese Medicine, Guangzhou, 513000 Guangdong China
| | - Liping Xu
- grid.412521.10000 0004 1769 1119Department of Laboratory Medicine, Qingdao Central Hospital, Second Affiliated Hospital of Qingdao University, Qingdao, 266042 Shandong China
| | - Baoxiang Zhao
- grid.415946.b0000 0004 7434 8069Department of Orthopedics, Linyi People’s Hospital, Linyi, 276000 Shandong China
| |
Collapse
|
9
|
González-Rodríguez M, Ruiz-Fernández C, Cordero-Barreal A, Ait Eldjoudi D, Pino J, Farrag Y, Gualillo O. Adipokines as targets in musculoskeletal immune and inflammatory diseases. Drug Discov Today 2022; 27:103352. [PMID: 36099964 DOI: 10.1016/j.drudis.2022.103352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/28/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022]
Abstract
Adipokines are the principal mediators in adipose signaling. Nevertheless, besides their role in energy storage, these molecules can be produced by other cells, such as immune cells or chondrocytes. Given their pleiotropic effects, research over the past few years has also focused on musculoskeletal diseases, showing that these adipokines might have relevant roles in worsening the disease or improving the treatment response. In this review, we summarize recent advances in our understanding of adipokines and their role in the most prevalent musculoskeletal immune and inflammatory disorders.
Collapse
Affiliation(s)
- María González-Rodríguez
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain; International PhD School of the University of Santiago de Compostela (EDIUS), Doctoral Programme in Drug Research and Development, Santiago de Compostela, Spain
| | - Clara Ruiz-Fernández
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain; International PhD School of the University of Santiago de Compostela (EDIUS), Doctoral Programme in Medicine Clinical Research, Santiago de Compostela, Spain
| | - Alfonso Cordero-Barreal
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain; International PhD School of the University of Santiago de Compostela (EDIUS), Doctoral Programme in Molecular Medicine, Santiago de Compostela, Spain
| | - Djedjiga Ait Eldjoudi
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain; Departamento de Cirurgía y Especialidades Médico-Cirúrgicas Área de Traumatología e Ortopedia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Yousof Farrag
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain.
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain.
| |
Collapse
|
10
|
Neves D, Goodfellow BJ, Vieira SI, Silva RM. The role of NAD metabolism in neuronal differentiation. Neurochem Int 2022; 159:105402. [PMID: 35843422 DOI: 10.1016/j.neuint.2022.105402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/17/2022] [Accepted: 07/09/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Nicotinamide adenine dinucleotide (NAD) metabolism is involved in redox and non-redox reactions that regulate several processes including differentiation of cells of different origins. Here, the role of NAD metabolism in neuronal differentiation, which remains elusive so far, was investigated. MATERIAL AND METHODS A protein-protein interaction network between neurotrophin signaling and NAD metabolic pathways was built. Expression of NAD biosynthetic enzymes in SH-SY5Y cells during retinoic acid (RA)/brain derived neurotrophic factor (BDNF) differentiation, was evaluated. The effects of NAD biosynthetic enzymes QPRT and NAPRT inhibition in neurite outgrowth, cell viability, NAD availability and histone deacetylase (HDAC) activity, were analysed in RA- and BDNF-differentiated cells. RESULTS Bioinformatics analysis revealed the interaction between NAD biosynthetic enzyme NMNAT1 and NTRK2, a receptor activated by RA/BDNF sequential treatment. Differences were found in the expression of NAD biosynthetic enzymes during neuronal differentiation, namely, increased QPRT gene expression along the course of RA/BDNF treatment and NAPRT protein expression after a 5-day treatment with RA. QPRT inhibition in BDNF-differentiated SH-SY5Y cells resulted in less neuritic length per cell, decreased expression of the neuronal marker β-III Tubulin and also decreased NAD+ levels and HDAC activity. NAPRT inhibition had no effect in neuritic length per cell, NAD+ levels and HDAC activity. Of note, NAD supplementation along with RA, but not with BDNF, resulted in considerable cell death. CONCLUSIONS Taken together, our results show the involvement of NAD metabolism in neuronal differentiation, specifically, the importance of QPRT-mediated NAD biosynthesis in BDNF-associated SH-SY5Y differentiation and suggest additional roles for NAPRT beyond NAD production in RA-differentiated cells.
Collapse
Affiliation(s)
- Diogo Neves
- Departamento de Ciências Médicas & Institute of Biomedicine (iBiMED), Universidade de Aveiro, Portugal.
| | | | - Sandra I Vieira
- Departamento de Ciências Médicas & Institute of Biomedicine (iBiMED), Universidade de Aveiro, Portugal
| | - Raquel M Silva
- Departamento de Ciências Médicas & Institute of Biomedicine (iBiMED), Universidade de Aveiro, Portugal; Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Centro de Investigação Interdisciplinar em Saúde, Viseu, Portugal
| |
Collapse
|
11
|
Histone Acetylation in the Epigenetic Regulation of Bone Metabolism and Related Diseases. Stem Cells Int 2021; 2021:8043346. [PMID: 34326880 PMCID: PMC8310436 DOI: 10.1155/2021/8043346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023] Open
Abstract
As the earliest studied epigenetic modification, acetylation has been explored a lot through the years. While bone tissue acts as an indispensable part of body, researches aimed at the relationship between the bone and acetylation became necessary. Some environmental factors like diet may affect the metabolism status that some metabolites especially nicotinamide adenine dinucleotide (NAD) were found able to regulate intracellular histone acetylation in bone metabolism. This review focuses on representing the interaction among acetylation, metabolism, and the bone. The results showed that acetylation connects a lot with bone metabolism, while the explorations about related metabolites like acetyl-CoA or different environmental exposures are still limited. Some acetylation-related therapy methods of bone diseases based on metabolic regulation or epigenetic enzymes were also reviewed.
Collapse
|
12
|
Targeting the NAD Salvage Synthesis Pathway as a Novel Therapeutic Strategy for Osteosarcomas with Low NAPRT Expression. Int J Mol Sci 2021; 22:ijms22126273. [PMID: 34200964 PMCID: PMC8230647 DOI: 10.3390/ijms22126273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022] Open
Abstract
For osteosarcoma (OS), the most common primary malignant bone tumor, overall survival has hardly improved over the last four decades. Especially for metastatic OS, novel therapeutic targets are urgently needed. A hallmark of cancer is aberrant metabolism, which justifies targeting metabolic pathways as a promising therapeutic strategy. One of these metabolic pathways, the NAD+ synthesis pathway, can be considered as a potential target for OS treatment. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the classical salvage pathway for NAD+ synthesis, and NAMPT is overexpressed in OS. In this study, five OS cell lines were treated with the NAMPT inhibitor FK866, which was shown to decrease nuclei count in a 2D in vitro model without inducing caspase-driven apoptosis. The reduction in cell viability by FK866 was confirmed in a 3D model of OS cell lines (n = 3). Interestingly, only OS cells with low nicotinic acid phosphoribosyltransferase domain containing 1 (NAPRT1) RNA expression were sensitive to NAMPT inhibition. Using a publicly available (Therapeutically Applicable Research to Generate Effective Treatments (TARGET)) and a previously published dataset, it was shown that in OS cell lines and primary tumors, low NAPRT1 RNA expression correlated with NAPRT1 methylation around the transcription start site. These results suggest that targeting NAMPT in osteosarcoma could be considered as a novel therapeutic strategy, where low NAPRT expression can serve as a biomarker for the selection of eligible patients.
Collapse
|
13
|
He S, Zhang H, Lu Y, Zhang Z, Zhang X, Zhou N, Hu Z. Nampt promotes osteogenic differentiation and lipopolysaccharide-induced interleukin-6 secretion in osteoblastic MC3T3-E1 cells. Aging (Albany NY) 2021; 13:5150-5163. [PMID: 33535169 PMCID: PMC7950263 DOI: 10.18632/aging.202434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022]
Abstract
The Nicotinamide phosphoribosyltransferase (Nampt)-NAD-Sirt1 pathway modulates processes involved in the pathogenesis of multiple diseases by influencing inflammation. This study aimed to explore the effect of Nampt in osteogenic differentiation and inflammatory response of osteoblastic MC3T3-E1 cells. We developed an in vitro model of lipopolysaccharide (LPS)-induced inflammation and showed that Nampt and Sirt1 were significantly upregulated in LPS-treated MC3T3-E1 cells. LPS induced secretion of the proinflammatory cytokine interleukin-6 (IL-6) and attenuated osteogenic differentiation. Then we transfected cells with adenoviruses to knock down or over express Nampt. Nampt promoted the expression of IL-6, TAK1 and phospho-NF-κB p65 after LPS treatment. Overexpression of Nampt overrode the effect of LPS and rescued LPS-induced inhibition on osteogenic differentiation. FK866, a Nampt inhibitor, had the same inhibitory effect as Nampt knockdown. In addition, Sirt1 suppression by EX527 decreased IL-6 secretion and NF-κB activation without changing the level of Nampt. EX527 also decreased osteogenic differentiation. Incubation with NMN or SRT 1720 also counteract the inhibitory effect of LPS and rescued osteoblast differentiation. Therefore, we demonstrated that Nampt acted both in promoting osteoblast differentiation and in enhancing inflammatory response, mediated by Sirt1 in MC3T3-E1 cells.
Collapse
Affiliation(s)
- Shan He
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,School of Nursing, Chongqing Medical University, Chongqing 400016, China
| | - Hanxiang Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yang Lu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhaosi Zhang
- Department of Cerebrovascular Diseases, the First Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xiang Zhang
- Department of Orthopaedics, Hunan Province People's Hospital, Changsha 410005, China
| | - Nian Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhenming Hu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
14
|
Chen Y, Zhou F, Liu H, Li J, Che H, Shen J, Luo E. SIRT1, a promising regulator of bone homeostasis. Life Sci 2021; 269:119041. [PMID: 33453243 DOI: 10.1016/j.lfs.2021.119041] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022]
Abstract
Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide-dependent deacetylase, epigenetically regulates various cell metabolisms, including inflammation, tumorigenesis, and bone metabolism. Many clinical studies have found the potential of SIRT1 in predicting and treating bone-related disorders, such as osteoporosis and osteonecrosis, suggesting that SIRT1 might be a regulator of bone homeostasis. In order to identify the mechanisms that underlie the pivotal role of SIRT1 in bone homeostasis, many studies revealed that SIRT1 could maintain the balance between bone formation and absorption via regulating the ratio of osteoblasts to osteoclasts. SIRT1 controls the differentiation of mesenchymal stem cells (MSCs) and bone marrow-derived macrophages, increasing osteogenesis and reducing osteoclastogenesis. Besides, SIRT1 can enhance bone-forming cells' viability, including MSCs and osteoblasts under adverse conditions by resisting senescence, suppressing apoptosis, and promoting autophagy in favor of osteogenesis. Furthermore, the effect on bone vasculature homeostasis enables SIRT1 to become a valuable strategy for ischemic osteonecrosis and senile osteoporosis. The review systemically discusses SIRT1 pathways and the critical role in bone homeostasis and assesses whether SIRT1 is a potential target for manipulation and therapy, to lay a solid foundation for further researches in the future.
Collapse
Affiliation(s)
- Ye Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA
| | - Jiaxuan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Huiling Che
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiaqi Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - En Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Ma C, Sun Y, Pi C, Wang H, Sun H, Yu X, Shi Y, He X. Sirt3 Attenuates Oxidative Stress Damage and Rescues Cellular Senescence in Rat Bone Marrow Mesenchymal Stem Cells by Targeting Superoxide Dismutase 2. Front Cell Dev Biol 2020; 8:599376. [PMID: 33330487 PMCID: PMC7718008 DOI: 10.3389/fcell.2020.599376] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is one of the main causes of aging. The process of physiological aging is always accompanied by increased levels of endogenous oxidative stress. Exogenous oxidants have contributed to premature cellular senescence. As a deacetylase located in mitochondrial matrix, Sirt3 plays critical roles in mitochondrial energy metabolism, oxidative stress regulation, and cellular senescence. However, it remains unknown whether Sirt3 exerts the analogous role in cellular senescence caused by two different oxidation pathways. In this study, the function of Sirt3 was investigated in age-related natural senescence and H2O2-induced premature senescence of rat bone marrow mesenchymal stem cells (MSCs). Our results showed that Sirt3 expression was significantly decreased in both senescent MSCs, which was concerned with reduced cellular reactive oxygen species (ROS) and aggravated DNA injury. Sirt3 repletion could partly reverse the senescence-associated phenotypic features in natural and premature senescent MSCs. Moreover, Sirt3 replenishment led to the reduction in the levels of cellular ROS by enhancing the expression and activity of superoxide dismutase 2 (SOD2), thus maintaining the balance of intracellular oxidation and antioxidation and ameliorating oxidative stress damage. Altogether, Sirt3 inhibits MSC natural senescence and H2O2-induced premature senescence through alleviating ROS-induced injury and upregulating SOD2 expression and activity. Our research indicates that Sirt3 might contribute to uncovering the novel mechanisms underlying MSC senescence and provide new insights to aging and oxidative stress-related diseases.
Collapse
Affiliation(s)
- Cao Ma
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China.,Department of Pathology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yanan Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chenchen Pi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China.,The First Hospital, Institute of Immunology, Jilin University, Changchun, China
| | - Huan Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Hui Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiao Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
16
|
Pi C, Yang Y, Sun Y, Wang H, Sun H, Ma M, Lin L, Shi Y, Li Y, Li Y, He X. Nicotinamide phosphoribosyltransferase postpones rat bone marrow mesenchymal stem cell senescence by mediating NAD +-Sirt1 signaling. Aging (Albany NY) 2020; 11:3505-3522. [PMID: 31175267 PMCID: PMC6594813 DOI: 10.18632/aging.101993] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 05/22/2019] [Indexed: 12/25/2022]
Abstract
In vitro replicative senescence affects MSC characteristics and functionality, thus severely restricting their application in regenerative medicine and MSC-based therapies. Previously, we found that MSC natural senescence is accompanied by altered intracellular nicotinamide adenine dinucleotide (NAD+) metabolism, in which Nampt plays a key role. However, whether Nampt influences MSC replicative senescence is still unclear. Our study showed that Nampt expression is down-regulated during MSC replicative senescence. Nampt depletion via a specific Nampt inhibitor FK866 or Nampt knockdown in early passage MSCs led to enhanced senescence as indicated by senescence-like morphology, reduced proliferation, and adipogenic and osteogenic differentiation, and increased senescence-associated-β-galactosidase activity and the expression of the senescence-associated factor p16INK4a. Conversely, Nampt overexpression ameliorated senescence-associated phenotypic features in late passage MSCs. Further, Nampt inhibition resulted in reduced intracellular NAD+ content, NAD+/NADH ratio, and Sirt1 activity, whereas overexpression had the opposite effects. Exogenous intermediates involved in NAD+ biosynthesis not only rescued replicative senescent MSCs but also alleviated FK866-induced MSC senescence. Thus, Nampt suppresses MSC senescence via mediating NAD+-Sirt1 signaling. This study provides novel mechanistic insights into MSC replicative senescence and a promising strategy for the severe shortage of cells for MSC-based therapies.
Collapse
Affiliation(s)
- Chenchen Pi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.,The First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Yue Yang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.,Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Yanan Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Huan Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Hui Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Mao Ma
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.,Department of Pathology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lin Lin
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yan Li
- Division of Orthopedics and Biotechnology, Department for Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
17
|
Jiang T, Xia C, Chen X, Hu Y, Wang Y, Wu J, Chen S, Gao Y. Melatonin promotes the BMP9-induced osteogenic differentiation of mesenchymal stem cells by activating the AMPK/β-catenin signalling pathway. Stem Cell Res Ther 2019; 10:408. [PMID: 31864412 PMCID: PMC6925474 DOI: 10.1186/s13287-019-1511-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 11/17/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) play a crucial role in maintaining the dynamic balance of bone metabolism. Melatonin may have a regulatory effect on bone metabolism by regulating the lineage commitment and differentiation signalling pathways of MSCs. Among the BMP families, the osteogenesis of BMP9 is considered to be one of the strongest in MSCs. Here, we explored whether melatonin and BMP9 act synergistically on MSC osteogenic differentiation. Methods The C3H10T1/2 osteogenic differentiation function induced by melatonin synergizes with BMP9, as detected by the expression of osteogenic markers at different periods. The result was further confirmed by foetal limb explant culture and in vivo stem cell implantation experiments. The effects of the AMPK/β-catenin pathway on the osteogenic differentiation of C3H10T1/2 cells were evaluated by Western blotting. Results Melatonin combined with BMP9 significantly enhanced the expression of osteogenic markers at different periods in C3H10T1/2 cells, effectively enhancing BMP9-induced bone formation in cultured foetal explants and ectopic bone formation in vivo in stem cell transplantation experiments. Melatonin increases the expression of BMP9 in C3H10T1/2 cells and induces Smad1/5/8 translocation from the cytoplasm to the nucleus. In addition, melatonin and BMP9 synergistically promote AMPK and β-catenin phosphorylation, which can be largely eliminated by AMPK siRNA pretreatment. Conclusions Melatonin and BMP9 in C3H10T1/2 cells synergistically promote osteogenic differentiation at least in part by activating the AMPK/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Tianyuan Jiang
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Chao Xia
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Xiaoting Chen
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Yan Hu
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Yan Wang
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Jin Wu
- Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Shuyan Chen
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| | - Yanhong Gao
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
18
|
Franco-Trepat E, Guillán-Fresco M, Alonso-Pérez A, Jorge-Mora A, Francisco V, Gualillo O, Gómez R. Visfatin Connection: Present and Future in Osteoarthritis and Osteoporosis. J Clin Med 2019; 8:jcm8081178. [PMID: 31394795 PMCID: PMC6723538 DOI: 10.3390/jcm8081178] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 07/29/2019] [Accepted: 08/04/2019] [Indexed: 12/15/2022] Open
Abstract
Musculoskeletal pathologies (MSPs) such as osteoarthritis (OA) and osteoporosis (OP), are a set of disorders that cause severe pain, motion difficulties, and even permanent disability. In developed countries, the current incidence of MSPs reaches about one in four adults and keeps escalating as a consequence of aging and sedentarism. Interestingly, OA and OP have been closely related to similar risk factors, including aging, metabolic alterations, and inflammation. Visfatin, an adipokine with an inflammatory and catabolic profile, has been associated with several OA and OP metabolic risk factors, such as obesity, insulin resistance, and type II diabetes. Furthermore, visfatin has been associated with the innate immune receptor toll-like receptor 4 (TLR4), which plays a key role in cartilage and bone inflammatory and catabolic responses. Moreover, visfatin has been related to several OA and OP pathologic features. The aim of this work is to bring together basic and clinical data regarding the common role of visfatin in these pathologies and their major shared risk factors. Finally, we discuss the pitfalls of visfatin as a potential biomarker and therapeutic target in both pathologies.
Collapse
Affiliation(s)
- Eloi Franco-Trepat
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain
| | - María Guillán-Fresco
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain
| | - Alberto Jorge-Mora
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain
| | - Vera Francisco
- Research laboratory 9, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain
| | - Oreste Gualillo
- Research laboratory 9, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, SERGAS, 15706 Santiago de Compostela, Spain.
| |
Collapse
|
19
|
Hsu YC, Wu YT, Tsai CL, Wei YH. Current understanding and future perspectives of the roles of sirtuins in the reprogramming and differentiation of pluripotent stem cells. Exp Biol Med (Maywood) 2019; 243:563-575. [PMID: 29557214 DOI: 10.1177/1535370218759636] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In mammalian cells, there are seven members of the sirtuin protein family (SIRT1-7). SIRT1, SIRT6, and SIRT7 catalyze posttranslational modification of proteins in the nucleus, SIRT3, SIRT4, and SIRT5 are in the mitochondria and SIRT2 is in the cytosol. SIRT1 can deacetylate the transcription factor SOX2 and regulate induced pluripotent stem cells (iPSCs) reprogramming through the miR-34a-SIRT1-p53 axis. SIRT2 can regulate the function of pluripotent stem cells through GSK3β. SIRT3 can positively regulate PPAR gamma coactivator 1-alpha (PGC-1α) expression during the differentiation of stem cells. SIRT4 has no direct role in regulating reprogramming but may have the potential to prevent senescence of somatic cells and to facilitate the reprogramming of iPSCs. SIRT5 can deacetylate STAT3, which is an important transcription factor in regulating pluripotency and differentiation of stem cells. SIRT6 can enhance the reprogramming efficiency of iPSCs from aged skin fibroblasts through miR-766 and increase the expression levels of the reprogramming genes including Sox2, Oct4, and Nanog through acetylation of histone H3 lysine 56. SIRT7 plays a regulatory role in the process of mesenchymal-to-epithelial transition (MET), which has been suggested to be a crucial process in the generation of iPSCs from fibroblasts. In this review, we summarize recent findings of the roles of sirtuins in the metabolic reprogramming and differentiation of stem cells and discuss the bidirectional changes in the gene expression and activities of sirtuins in the commitment of differentiation of mesenchymal stem cells (MSCs) and reprogramming of somatic cells to iPSCs, respectively. Thus, understanding the molecular basis of the interplay between different sirtuins and mitochondrial function will provide new insights into the regulation of differentiation of stem cells and iPSCs formation, respectively, and may help design effective stem cell therapies for regenerative medicine. Impact statement This is an extensive review of the recent advances in our understanding of the roles of some members of the sirtuins family, such as SIRT1, SIRT2, SIRT3, and SIRT6, in the regulation of intermediary metabolism during stem cell differentiation and in the reprogramming of somatic cells to form induced pluripotent stem cells (iPSCs). This article provides an updated integrated view on the mechanisms by which sirtuins-mediated posttranslational protein modifications regulate mitochondrial biogenesis, bioenergetics, and antioxidant defense in the maintenance and differentiation of stem cells and in iPSCs formation, respectively.
Collapse
Affiliation(s)
- Yi-Chao Hsu
- 1 Institute of Biomedical Sciences, 145474 Mackay Medical College , New Taipei City 252, Taiwan.,*These two authors made equal contributions
| | - Yu-Ting Wu
- 2 Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan.,*These two authors made equal contributions
| | - Chia-Ling Tsai
- 1 Institute of Biomedical Sciences, 145474 Mackay Medical College , New Taipei City 252, Taiwan
| | - Yau-Huei Wei
- 1 Institute of Biomedical Sciences, 145474 Mackay Medical College , New Taipei City 252, Taiwan.,2 Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| |
Collapse
|
20
|
Nicotinamide mononucleotide alleviates Aluminum induced bone loss by inhibiting the TXNIP-NLRP3 inflammasome. Toxicol Appl Pharmacol 2019; 362:20-27. [DOI: 10.1016/j.taap.2018.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/15/2018] [Accepted: 10/03/2018] [Indexed: 12/23/2022]
|
21
|
Travelli C, Colombo G, Mola S, Genazzani AA, Porta C. NAMPT: A pleiotropic modulator of monocytes and macrophages. Pharmacol Res 2018; 135:25-36. [PMID: 30031171 DOI: 10.1016/j.phrs.2018.06.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 12/11/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the bottleneck enzyme of the NAD salvage pathway and thereby is a controller of intracellular NAD concentrations. It has been long known that the same enzyme can be secreted by a number of cell types and acts as a cytokine, although its receptor is at present unknown. Investigational compounds have been developed that target the enzymatic activity as well as the extracellular action (i.e. neutralizing antibodies). The present contribution reviews the evidence that links intracellular and extracellular NAMPT to myeloid biology, for example governing monocyte/macrophage differentiation, polarization and migration. Furthermore, it reviews the evidence that links this protein to some disorders in which myeloid cells have a prominent role (acute infarct, inflammatory bowel disease, acute lung injury and rheumatoid arthritis) and the data showing that inhibition of the enzymatic activity or the neutralization of the cytokine is beneficial in preclinical animal models.
Collapse
Affiliation(s)
- Cristina Travelli
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Giorgia Colombo
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Silvia Mola
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Chiara Porta
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
22
|
Mashhad Taraqi AS, Tehranian N, Roudbaneh SP, Esmaeilzadeh MS, Kazemnejad A, Aghoozi MF, Yousefi S. Visfatin as a predictor for growth of fetus and infant. Turk J Obstet Gynecol 2018; 15:80-86. [PMID: 29971183 PMCID: PMC6022422 DOI: 10.4274/tjod.48091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/02/2018] [Indexed: 12/21/2022] Open
Abstract
Objective: Visfatin is an adipocytokine that functions as an enzyme and a growth factor to investigate the relationship between serum visfatin and the fetus’s anthropometric markers up to a year after birth. Materials and Methods: Forty-one eligible pregnant women in their first trimester were divided and matched in terms of body mass index (BMI) before pregnancy into normal and higher than normal BMI groups, A and B. Serum visfatin levels were measured during 6-12 and 15-20 weeks of gestation using ELISA. Results: The infants were followed up for a mean duration of 10.19±2.83 months. In group A, there was a strong positive relationship between birth head circumference and the first (p1=0.054, r1=0.580) and second trimester visfatin levels (p2=0.051, r2=0.530). In group B, second trimester visfatin levels correlated negatively with birth length (p=0.015, r=-0.523) and infant’s head circumference (p2=0.050, r2=-0.392). In a separate study on group B, visfatin levels in the first and second trimesters showed a significant negative correlation with infant’s weight. A significant correlation was observed between the first and second trimesters visfatin level with infant’s height in both groups, such that this relationship was positive in group A and negative in group B. Linear regression analysis revealed that first and second trimester visfatin levels were significant independent predictors of infant’s weight in group B and infant’s height in both groups. Second trimester visfatin level was a significant predictor of birth height in group B. Conclusion: Maternal serum visfatin level shows a relationship with fetal and infant anthropometric indicators, with different effects in the two groups, suggesting visfatin dysfunction in the overweight group before pregnancy.
Collapse
Affiliation(s)
- Ashraf Saber Mashhad Taraqi
- North Khorasan University of Medical Sciences Bojnurd Faculty of Nursing and Midwifery, Department of Midwifery, Bojnurd, Iran
| | - Najmeh Tehranian
- Tarbiat Modares University Faculty of Medical Sciences, Department of Midwifery and Reproductive Health, Tehran, Iran
| | - Shiva Pourali Roudbaneh
- Tarbiat Modares University Faculty of Medical Sciences, Department of Biostatistics, Tehran, Iran
| | - Matin Sadat Esmaeilzadeh
- Guilan University of Medical Sciences Faculty of Nursing Midwifery and Paramedicine, Department of Midwifery, Rasht, Iran
| | - Anoshirvan Kazemnejad
- Birjand University of Medical Sciences Faculty of Nursing and Midwifery, Department of Midwifery, Birjand, Iran
| | - Marzieh Faghani Aghoozi
- Shahroud University of Medical Sciences Faculty of Nursing and Midwifery, Department of Midwifery, Shahroud, Iran
| | - Somayeh Yousefi
- Shahroud University of Medical Sciences Faculty of Nursing and Midwifery, Department of Midwifery, Shahroud, Iran
| |
Collapse
|
23
|
Overexpression of miR-182 inhibits ossification of ligamentum flavum cells by targeting NAMPT. Exp Cell Res 2018; 367:119-131. [DOI: 10.1016/j.yexcr.2018.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 12/31/2022]
|
24
|
Hassan B, Baroukh B, Llorens A, Lesieur J, Ribbes S, Chaussain C, Saffar J, Gosset M. NAMPT expression in osteoblasts controls osteoclast recruitment in alveolar bone remodeling. J Cell Physiol 2018; 233:7402-7414. [DOI: 10.1002/jcp.26584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 03/08/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Bassam Hassan
- EA2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School FacultyUniversity Paris Descartes PRES Sorbonne Paris CitéMontrougeFrance
| | - Brigitte Baroukh
- EA2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School FacultyUniversity Paris Descartes PRES Sorbonne Paris CitéMontrougeFrance
| | - Annie Llorens
- EA2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School FacultyUniversity Paris Descartes PRES Sorbonne Paris CitéMontrougeFrance
| | - Julie Lesieur
- EA2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School FacultyUniversity Paris Descartes PRES Sorbonne Paris CitéMontrougeFrance
| | - Sandy Ribbes
- EA2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School FacultyUniversity Paris Descartes PRES Sorbonne Paris CitéMontrougeFrance
| | - Catherine Chaussain
- EA2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School FacultyUniversity Paris Descartes PRES Sorbonne Paris CitéMontrougeFrance
- AP‐HP, Odontology DepartmentHospital BretonneauHôpitaux Universitaires Paris Nord Val de Seine (Bretonneau)MontrougeFrance
| | - Jean‐Louis Saffar
- EA2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School FacultyUniversity Paris Descartes PRES Sorbonne Paris CitéMontrougeFrance
| | - Marjolaine Gosset
- EA2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School FacultyUniversity Paris Descartes PRES Sorbonne Paris CitéMontrougeFrance
- AP‐HP, Odontology DepartmentHospital Charles FoixHôpitaux Universitaires La Pitié Salpétrière − Charles FoixMontrougeFrance
| |
Collapse
|
25
|
Belair DG, Wolf CJ, Wood C, Ren H, Grindstaff R, Padgett W, Swank A, MacMillan D, Fisher A, Winnik W, Abbott BD. Engineering human cell spheroids to model embryonic tissue fusion in vitro. PLoS One 2017; 12:e0184155. [PMID: 28898253 PMCID: PMC5595299 DOI: 10.1371/journal.pone.0184155] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/19/2017] [Indexed: 01/06/2023] Open
Abstract
Epithelial-mesenchymal interactions drive embryonic fusion events during development, and perturbations of these interactions can result in birth defects. Cleft palate and neural tube defects can result from genetic defects or environmental exposures during development, yet very little is known about the effect of chemical exposures on fusion events during human development because of a lack of relevant and robust human in vitro assays of developmental fusion behavior. Given the etiology and prevalence of cleft palate and the relatively simple architecture and composition of the embryonic palate, we sought to develop a three-dimensional culture system that mimics the embryonic palate and could be used to study fusion behavior in vitro using human cells. We engineered size-controlled human Wharton’s Jelly stromal cell (HWJSC) spheroids and established that 7 days of culture in osteogenesis differentiation medium was sufficient to promote an osteogenic phenotype consistent with embryonic palatal mesenchyme. HWJSC spheroids supported the attachment of human epidermal keratinocyte progenitor cells (HPEKp) on the outer spheroid surface likely through deposition of collagens I and IV, fibronectin, and laminin by mesenchymal spheroids. HWJSC spheroids coated in HPEKp cells exhibited fusion behavior in culture, as indicated by the removal of epithelial cells from the seams between spheroids, that was dependent on epidermal growth factor signaling and fibroblast growth factor signaling in agreement with palate fusion literature. The method described here may broadly apply to the generation of three-dimensional epithelial-mesenchymal co-cultures to study developmental fusion events in a format that is amenable to predictive toxicology applications.
Collapse
Affiliation(s)
- David G. Belair
- Toxicity Assessment Division, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Cynthia J. Wolf
- Toxicity Assessment Division, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Carmen Wood
- Toxicity Assessment Division, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Hongzu Ren
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Rachel Grindstaff
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - William Padgett
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Adam Swank
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Denise MacMillan
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Anna Fisher
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Witold Winnik
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Barbara D. Abbott
- Toxicity Assessment Division, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|