1
|
Zheng HT, Lou MWC, Dugué PA, Lynch BM. Circulating inflammatory markers and risk of endometrial cancer: A systematic review and meta-analysis. Cancer Epidemiol 2024; 93:102662. [PMID: 39243578 DOI: 10.1016/j.canep.2024.102662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Evidence suggests that inflammation may be associated with a higher risk of endometrial cancer, but previous reviews have typically examined a limited number of biomarkers. This study aimed to critically appraise the evidence on the effect of 13 circulating inflammatory biomarkers on endometrial cancer risk. MEDLINE and EMBASE databases were searched for prospective cohort, (nested) case-control and case-cohort studies, and Mendelian randomization (MR) studies published up to 31 March 2023. We performed a random-effects meta-analysis to estimate the pooled risk ratio and 95 % confidence interval (CI) for the association between each biomarker and endometrial cancer risk. Heterogeneity between studies was assessed using the I2 statistic. Eight studies were included in the meta-analysis. Comparing groups with the highest versus lowest concentration of biomarker, adiponectin levels were inversely associated with risk of endometrial cancer (risk ratio (RR) =0.75, 95 % CI: 0.57-0.99, I2: 9 %). Higher levels of CRP (RR=1.18, 95 % CI: 1.05-1.33, I2: 2 %) and TNF-α (RR=1.58, 95 % CI: 1.13-2.21, I2: 0 %) were positively associated with risk of endometrial cancer. There was suggestive evidence for a positive association was also found for IL-6 (RR=1.29, 95 % CI: 0.88-1.88, I2: 0 %) and leptin (RR=1.50, 95 % CI: 0.83-2.71, I2: 0 %). Our findings suggest that circulating inflammatory biomarkers are likely involved in the carcinogenesis of endometrial cancer. Future studies should consider prospective or MR design and measure a wider range of inflammatory markers.
Collapse
Affiliation(s)
- Haoxin Tina Zheng
- Cancer Epidemiology Division, Cancer Council Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Makayla W C Lou
- Cancer Epidemiology Division, Cancer Council Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Pierre-Antoine Dugué
- Cancer Epidemiology Division, Cancer Council Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Brigid M Lynch
- Cancer Epidemiology Division, Cancer Council Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
2
|
Luo JH, Wang FX, Zhao JW, Yang CL, Rong SJ, Lu WY, Chen QJ, Zhou Q, Xiao J, Wang YN, Luo X, Li Y, Song DN, Chen C, Zhang CL, Chen SH, Yang P, Xiong F, Yu QL, Zhang S, Liu SW, Sun F, Wang CY. PDIA3 defines a novel subset of adipose macrophages to exacerbate the development of obesity and metabolic disorders. Cell Metab 2024; 36:2262-2280.e5. [PMID: 39293433 DOI: 10.1016/j.cmet.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/04/2024] [Accepted: 08/26/2024] [Indexed: 09/20/2024]
Abstract
Adipose tissue macrophages (ATMs) play important roles in maintaining adipose tissue homeostasis and orchestrating metabolic inflammation. Given the extensive functional heterogeneity and phenotypic plasticity of ATMs, identification of the authentically pathogenic ATM subpopulation under obese setting is thus necessitated. Herein, we performed single-nucleus RNA sequencing (snRNA-seq) and unraveled a unique maladaptive ATM subpopulation defined as ATF4hiPDIA3hiACSL4hiCCL2hi inflammatory and metabolically activated macrophages (iMAMs), in which PDIA3 is required for the maintenance of their migratory and pro-inflammatory properties. Mechanistically, ATF4 serves as a metabolic stress sensor to transcribe PDIA3, which then imposes a redox control on RhoA activity and strengthens the pro-inflammatory and migratory properties of iMAMs through RhoA-YAP signaling. Administration of Pdia3 small interfering RNA (siRNA)-loaded liposomes effectively repressed adipose inflammation and high-fat diet (HFD)-induced obesity. Together, our data support that strategies aimed at targeting iMAMs by suppressing PDIA3 expression or activity could be a viable approach against obesity and metabolic disorders in clinical settings.
Collapse
Affiliation(s)
- Jia-Hui Luo
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fa-Xi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jia-Wei Zhao
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Liang Yang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan-Jie Rong
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan-Ying Lu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi-Jie Chen
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Zhou
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Nan Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xi Luo
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan-Ni Song
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cai Chen
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng-Liang Zhang
- Department of Pharmacy, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su-Hua Chen
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xiong
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi-Lin Yu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Zhang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-Wei Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, The Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan, China
| | - Fei Sun
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Cong-Yi Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, The Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan, China; The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Tongji Hospital Research Building, Wuhan, China.
| |
Collapse
|
3
|
Bobrovskikh AV, Zubairova US, Naumenko LG, Doroshkov AV. Catching the Big Fish in Big Data: A Meta-Analysis of Zebrafish Kidney scRNA-Seq Datasets Highlights Conserved Molecular Profiles of Macrophages and Neutrophils in Vertebrates. BIOLOGY 2024; 13:773. [PMID: 39452082 PMCID: PMC11505477 DOI: 10.3390/biology13100773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
The innate immune system (IIS) is an ancient and essential defense mechanism that protects animals against a wide range of pathogens and diseases. Although extensively studied in mammals, our understanding of the IIS in other taxa remains limited. The zebrafish (Danio rerio) serves as a promising model organism for investigating IIS-related processes, yet the immunogenetics of fish are not fully elucidated. To address this gap, we conducted a meta-analysis of single-cell RNA sequencing (scRNA-seq) datasets from zebrafish kidney marrow, encompassing approximately 250,000 immune cells. Our analysis confirms the presence of key genetic pathways in zebrafish innate immune cells that are similar to those identified in mammals. Zebrafish macrophages specifically express genes encoding cathepsins, major histocompatibility complex class II proteins, integral membrane proteins, and the V-ATPase complex and demonstrate the enrichment of oxidative phosphorylation ferroptosis processes. Neutrophils are characterized by the significant expression of genes encoding actins, cytoskeleton organizing proteins, the Arp2/3 complex, and glycolysis enzymes and have demonstrated their involvement in GnRH and CLR signaling pathways, adherents, and tight junctions. Both macrophages and neutrophils highly express genes of NOD-like receptors, phagosomes, and lysosome pathways and genes involved in apoptosis. Our findings reinforce the idea about the existence of a wide spectrum of immune cell phenotypes in fish since we found only a small number of cells with clear pro- or anti-inflammatory signatures.
Collapse
Affiliation(s)
- Aleksandr V. Bobrovskikh
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia;
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (U.S.Z.); (A.V.D.)
| | - Ulyana S. Zubairova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (U.S.Z.); (A.V.D.)
- Department of Information Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ludmila G. Naumenko
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia;
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (U.S.Z.); (A.V.D.)
| | - Alexey V. Doroshkov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (U.S.Z.); (A.V.D.)
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia
| |
Collapse
|
4
|
Lin S, Wei C, Wei Y, Fan J. Construction and verification of an endoplasmic reticulum stress-related prognostic model for endometrial cancer based on WGCNA and machine learning algorithms. Front Oncol 2024; 14:1362891. [PMID: 38725627 PMCID: PMC11079237 DOI: 10.3389/fonc.2024.1362891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Background Endoplasmic reticulum (ER) stress arises from the accumulation of misfolded or unfolded proteins within the cell and is intricately linked to the initiation and progression of various tumors and their therapeutic strategies. However, the precise role of ER stress in uterine corpus endometrial cancer (UCEC) remains unclear. Methods Data on patients with UCEC and control subjects were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Using differential expression analysis and Weighted Gene Co-expression Network Analysis (WGCNA), we identified pivotal differentially expressed ER stress-related genes (DEERGs). Further validation of the significance of these genes in UCEC was achieved through consensus clustering and bioinformatic analyses. Using Cox regression analysis and several machine learning algorithms (least absolute shrinkage and selection operator [LASSO], eXtreme Gradient Boosting [XGBoost], support vector machine recursive feature elimination [SVM-RFE], and Random Forest), hub DEERGs associated with patient prognosis were effectively identified. Based on the four identified hub genes, a prognostic model and nomogram were constructed. Additionally, a drug sensitivity analysis and in vitro validation experiments were performed. Results A total of 94 DEERGs were identified in patients with UCEC and healthy controls. Consensus clustering analysis revealed significant differences in prognosis, typical immune checkpoints, and tumor microenvironments between the subtypes. Using Cox regression analysis and machine learning, four hub DEERGs, MYBL2, RADX, RUSC2, and CYP46A1, were identified to construct a prognostic model. The reliability of the model was validated using receiver operating characteristic (ROC) curves. Decision curve analysis (DCA) demonstrated the superior predictive ability of the nomogram in terms of 3- and 5-year survival, compared with that of other clinical indicators. Drug sensitivity analysis revealed increased sensitivity to dactinomycin, docetaxel, selumetinib, and trametinib in the low-risk group. The expressions of RADX, RUSC2, and CYP46A1 were downregulated, whereas that of MYBL2 was upregulated in UCEC tissues, as demonstrated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunofluorescence assays. Conclusion This study developed a stable and accurate prognostic model based on multiple bioinformatics analyses, which can be used to assess the prognosis of UCEC. This model may contribute to future research on the risk stratification of patients with UCEC and the formulation of novel treatment strategies.
Collapse
Affiliation(s)
- Shanshan Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Changqiang Wei
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yiyun Wei
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiangtao Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
5
|
Shao L, Zhu Z, Jia X, Ma Y, Dong C. A bioinformatic analysis found low expression and clinical significance of ATF4 in breast cancer. Heliyon 2024; 10:e24669. [PMID: 38312639 PMCID: PMC10835298 DOI: 10.1016/j.heliyon.2024.e24669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
Background Activating Transcription Factor 4 (ATF4) expression exhibits differential patterns across different types of tumors. Besides, the pathogenesis of breast cancer is complex, and the exact relationship between ATF4 and ATF4 remains uncertain. Methods The analysis of ATF4 expression was conducted by utilizing The Cancer Genome Atlas (TCGA) pan-cancer data, while the gene expression profile of breast cancer was checked by the comprehensive database-Gene Expression Omnibus database. In order to gain a more comprehensive understanding of the specific cell types that exhibit ATF4 expression within the microenvironment of breast cancer, we conducted a single-cell analysis of ATF4 using two distinct datasets of human breast cancer (GSE114717 and GSE11088, respectively). The spatial distribution of ATF4 within a tissue was demonstrated based on datasets obtained from the Human Protein Atlas (HPA) and SpatialDB. The clinical prognostic significance of ATF4 was assessed by analyzing clinical survival data obtained from TCGA, GSE4830, and GSE25055 datasets. We used the R package clusterProfiler to carry out an enrichment analysis of ATF4. We assessed how ATF4 impacts the growth and movement of breast cancer cell lines. We manipulated ATF4 levels using plasmid transfection techniques. Results The expression of ATF4 was found to be suboptimal and demonstrated a significant correlation with enhanced disease-specific survival (p = 0.012) and overall survival (p = 0.032) in breast cancer as well as other malignancies. We conducted an analysis to investigate the interaction between the infiltration level of immune cells and the expression of ATF4, using samples obtained from TCGA with known immune cell infiltration scores. Furthermore, a notable positive correlation exists between the elevated expression of ATF4 and immune-related genomes, specifically those associated with chemokine as well as immunity. Subsequent examination revealed a notable augmentation in the cytodifferentiation of T cells into regulatory T (Treg) cells within tissues exhibiting elevated levels of ATF4 expression. ATF4 exhibits notable upregulation in the MDA-MB-231 cell, thereby exerting a substantial impact on cell proliferation and migration upon its knockdown. Conversely, the overexpression of ATF4 in the MCF7 Luminal A breast cancer cell line can also modulate cellular function. Conclusions Our study suggests that ATF4 helps T cells differentiate into Treg cells in breast cancer. ATF4 can represent a clinically useful biomarker to predict the overall survival rate, especially in patients with different subtypes of breast cancer. Provide certain guidance value for the development of targeted drugs or inhibitors targeting ATF4.
Collapse
Affiliation(s)
- Lujing Shao
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Zhounan Zhu
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Xinyan Jia
- Jinzhou Medical University, Jinzhou, Liaoning, 121000, PR China
| | - Yabin Ma
- Department of Pharmacy, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Chunyan Dong
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
6
|
Wujcicka WI, Zając A, Szyłło K, Romanowicz H, Smolarz B, Stachowiak G. Associations between Single Nucleotide Polymorphisms from the Genes of Chemokines and the CXCR2 Chemokine Receptor and an Increased Risk of Endometrial Cancer. Cancers (Basel) 2023; 15:5416. [PMID: 38001676 PMCID: PMC10670474 DOI: 10.3390/cancers15225416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Significant relationships with endometrial cancer were demonstrated, both for CCL2, CCL5, and CXCL8 chemokines and for the chemokine receptor CXCR2. The reported case-control study of genetic associations was designed to establish the role of selected single nucleotide polymorphisms (SNPs) of the CCL2, CCL5, CXCL8, and CXCR2 genes in the onset and progression of endometrial cancer. This study was conducted on 282 women, including 132 (46.8%) patients with endometrial cancer and 150 (53.2%) non-cancerous controls. The genotypes for CCL2 rs4586, CCL5 rs2107538 and rs2280789, CXCL8 rs2227532 and -738 T>A, and CXCR2 rs1126580 were determined, using PCR-RFLP assays. The AA homozygotes in CCL5 rs2107538 were associated with more than a quadruple risk of endometrial cancer (p ≤ 0.050). The GA heterozygotes in the CXCR2 SNP were associated with approximately threefold higher cancer risk (p ≤ 0.001). That association also remained significant after certain adjustments, carried out for age, diabetes mellitus, arterial hypertension, or endometrial thickness above 5 mm (p ≤ 0.050). The A-A haplotypes for the CCL5 polymorphisms and T-A-A haplotypes for the CCL2 and CCL5 SNPs were associated with about a twofold risk of endometrial cancer (p ≤ 0.050). In conclusion, CCL2 rs4586, CCL5 rs2107538 and rs2280789, and CXCR2 rs1126580 demonstrated significant associations with an increased risk of endometrial cancer.
Collapse
Affiliation(s)
- Wioletta Izabela Wujcicka
- Scientific Laboratory of the Center of Medical Laboratory Diagnostics and Screening, Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland
| | - Agnieszka Zając
- Department of Operative Gynecology and Gynecologic Oncology, Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland; (A.Z.); (K.S.); (G.S.)
| | - Krzysztof Szyłło
- Department of Operative Gynecology and Gynecologic Oncology, Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland; (A.Z.); (K.S.); (G.S.)
- Department of Operative and Endoscopic Gynecology, Medical University of Lodz, 93-338 Lodz, Poland
| | - Hanna Romanowicz
- Department of Clinical Pathomorphology, Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland;
| | - Beata Smolarz
- Laboratory of Cancer Genetics of the Department of Clinical Pathomorphology, Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland;
| | - Grzegorz Stachowiak
- Department of Operative Gynecology and Gynecologic Oncology, Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland; (A.Z.); (K.S.); (G.S.)
| |
Collapse
|
7
|
Zhang C, Sheng Y, Sun X, Wang Y. New insights for gynecological cancer therapies: from molecular mechanisms and clinical evidence to future directions. Cancer Metastasis Rev 2023; 42:891-925. [PMID: 37368179 PMCID: PMC10584725 DOI: 10.1007/s10555-023-10113-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
Advanced and recurrent gynecological cancers lack effective treatment and have poor prognosis. Besides, there is urgent need for conservative treatment for fertility protection of young patients. Therefore, continued efforts are needed to further define underlying therapeutic targets and explore novel targeted strategies. Considerable advancements have been made with new insights into molecular mechanisms on cancer progression and breakthroughs in novel treatment strategies. Herein, we review the research that holds unique novelty and potential translational power to alter the current landscape of gynecological cancers and improve effective treatments. We outline the advent of promising therapies with their targeted biomolecules, including hormone receptor-targeted agents, inhibitors targeting epigenetic regulators, antiangiogenic agents, inhibitors of abnormal signaling pathways, poly (ADP-ribose) polymerase (PARP) inhibitors, agents targeting immune-suppressive regulators, and repurposed existing drugs. We particularly highlight clinical evidence and trace the ongoing clinical trials to investigate the translational value. Taken together, we conduct a thorough review on emerging agents for gynecological cancer treatment and further discuss their potential challenges and future opportunities.
Collapse
Affiliation(s)
- Chunxue Zhang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yaru Sheng
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiao Sun
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yudong Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| |
Collapse
|
8
|
Guo H, Zhang S, Zhang B, Shang Y, Liu X, Wang M, Wang H, Fan Y, Tan K. Immunogenic landscape and risk score prediction based on unfolded protein response (UPR)-related molecular subtypes in hepatocellular carcinoma. Front Immunol 2023; 14:1202324. [PMID: 37457742 PMCID: PMC10348016 DOI: 10.3389/fimmu.2023.1202324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common type of cancer and causes a significant number of cancer-related deaths worldwide. The molecular mechanisms underlying the development of HCC are complex, and the heterogeneity of HCC has led to a lack of effective prognostic indicators and drug targets for clinical treatment of HCC. Previous studies have indicated that the unfolded protein response (UPR), a fundamental pathway for maintaining endoplasmic reticulum homeostasis, is involved in the formation of malignant characteristics such as tumor cell invasiveness and treatment resistance. The aims of our study are to identify new prognostic indicators and provide drug treatment targets for HCC in clinical treatment based on UPR-related genes (URGs). Methods Gene expression profiles and clinical information were downloaded from the TCGA, ICGC and GEO databases. Consensus cluster analysis was performed to classify the molecular subtypes of URGs in HCC patients. Univariate Cox regression and machine learning LASSO algorithm were used to establish a risk prognosis model. Kaplan-Meier and ROC analyses were used to evaluate the clinical prognosis of URGs. TIMER and XCell algorithms were applied to analyze the relationships between URGs and immune cell infiltration. Real time-PCR was performed to analyze the effect of sorafenib on the expression levels of four URGs. Results Most URGs were upregulated in HCC samples. According to the expression pattern of URGs, HCC patients were divided into two independent clusters. Cluster 1 had a higher expression level, worse prognosis, and higher expression of immunosuppressive factors than cluster 2. Patients in cluster 1 were more prone to immune escape during immunotherapy, and were more sensitive to chemotherapeutic drugs. Four key UPR genes (ATF4, GOSR2, PDIA6 and SRPRB) were established in the prognostic model and HCC patients with high risk score had a worse clinical prognosis. Additionally, patients with high expression of four URGs are more sensitive to sorafenib. Moreover, ATF4 was upregulated, while GOSR2, PDIA6 and SRPRB were downregulated in sorafenib-treated HCC cells. Conclusion The UPR-related prognostic signature containing four URGs exhibits high potential application value and performs well in the evaluation of effects of chemotherapy/immunotherapy and clinical prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yumei Fan
- *Correspondence: Yumei Fan, ; Ke Tan,
| | - Ke Tan
- *Correspondence: Yumei Fan, ; Ke Tan,
| |
Collapse
|
9
|
Luo S, Zhang C, Gao Z, Jiang L, Li Q, Shi X, Kong Y, Cao J. ER stress-enhanced HMGA2 plays an important role in Cr (VI)-induced glycolysis and inhibited oxidative phosphorylation by targeting the transcription of ATF4. Chem Biol Interact 2023; 369:110293. [PMID: 36473502 DOI: 10.1016/j.cbi.2022.110293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022]
Abstract
Hexavalent chromium [Cr (VI)] is a proven human carcinogen which is widely used in steel manufacturing and painting. Here, the involvement of high mobility group A2 (HMGA2) in Cr (VI)-mediated glycolysis and oxidative phosphorylation (OXPHOS) was investigated. First, Cr (VI) treatment induced aerobic glycolysis by increasing the expression of GLUT1, HK II, PKM2 and LDHA enzymes, and reduced OXPHOS by decreasing mitochondrial mass, the expression of COX IV and ND1, and increasing Ca2+ content in mitochondria in A549 and HELF cells. And overexpression of HMGA2 induced aerobic glycolysis and decreased OXPHOS. Secondly, using endoplasmic reticulum (ER) stress inhibitor, 4-phenylbutyric acid (4-PBA) and knockdown of activating transcription factor 4 (ATF4) gene by siRNA, we demonstrated that ER stress and ATF4 elevation mediated Cr (VI)-induced glycolysis and inhibited OXPHOS. Furthermore, using tunicamycin (Tm), siHMGA2, transfection of HMGA2 and siATF4, we demonstrated that ER stress-enhanced interaction of HMGA2 and ATF4 resulted in Cr (VI)-induced glycolysis and inhibited OXPHOS. Additionally, ChIP assay revealed that HMGA2 protein could directly bind to the promoter sequence of ATF4 gene, which modulated Cr (VI)-induced ATF4 elevation. Finally, in lung tissues of BALB/c mice injected with HMGA2 plasmids, it is verified that HMGA2 involved in regulation of ATF4, glycolysis and OXPHOS in vivo. Combining, our data discovered that ER stress-enhanced the interaction of HMGA2 and ATF4 played an important role in Cr (VI)-mediated glycolysis and OXPHOS. These results imply a root cause for the carcinogenicity of Cr (VI), and could guide development of novel therapeutics for cancers.
Collapse
Affiliation(s)
- Shengxiang Luo
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, 116044, China
| | - Zeyun Gao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Liping Jiang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Qiujuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China.
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
10
|
Zhang JJ, Liu W, Xing GZ, Xiang L, Zheng WM, Ma ZL. Role of CC-chemokine ligand 2 in gynecological cancer. Cancer Cell Int 2022; 22:361. [PMCID: PMC9675065 DOI: 10.1186/s12935-022-02763-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Gynecological cancer is one of the most severe diseases that threaten the lives and health of women worldwide. Its incidence rate increases with each passing year and becomes more prevalent among young people. The prognosis of gynecological cancer remains poor despite significant advances in surgical removal and systemic chemotherapy. Several chemokines play a role in the progression of gynecologic cancers. CCL2 (CC-chemokine ligand 2), also termed MCP-1 (monocyte chemotactic protein 1), plays a significant physiological role in monocyte cell migration and the inflammatory response. Recent studies have demonstrated that CCL2 plays a pro-tumorigenic function in the tumor microenvironment. According to previous studies, CCL2 plays a significant role in the occurrence and development of gynecological cancers. Furthermore, recent studies noted that CCL2 could be a potential diagnostic biomarker and prognostic predictor. The purpose of this paper is to review the role of CCL2 in the occurrence and development of gynecological cancers and to discuss the potential therapeutic strategy of CCL2 for gynecological cancers, with a primary focus on breast cancer, ovarian cancer, cervical cancer, and endometrial cancer.
Collapse
Affiliation(s)
- Jia-Jia Zhang
- grid.108266.b0000 0004 1803 0494College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 China
| | - Wei Liu
- grid.108266.b0000 0004 1803 0494College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 China
| | - Guo-Zhen Xing
- grid.108266.b0000 0004 1803 0494College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 China
| | - Li Xiang
- grid.207374.50000 0001 2189 3846Henan Provincial People’s Hospital/People’s Hospital of Zhengzhou University, 7 Weiwu Road, Jinshui District, Zhengzhou, 450000 China
| | - Wen-Ming Zheng
- grid.108266.b0000 0004 1803 0494College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 China
| | - Zhen-Ling Ma
- grid.108266.b0000 0004 1803 0494College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 China
| |
Collapse
|
11
|
Chen M, Liu Y, Yang Y, Qiu Y, Wang Z, Li X, Zhang W. Emerging roles of activating transcription factor (ATF) family members in tumourigenesis and immunity: Implications in cancer immunotherapy. Genes Dis 2022; 9:981-999. [PMID: 35685455 PMCID: PMC9170601 DOI: 10.1016/j.gendis.2021.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Activating transcription factors, ATFs, are a group of bZIP transcription factors that act as homodimers or heterodimers with a range of other bZIP factors. In general, ATFs respond to extracellular signals, indicating their important roles in maintaining homeostasis. The ATF family includes ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, and ATF7. Consistent with the diversity of cellular processes reported to be regulated by ATFs, the functions of ATFs are also diverse. ATFs play an important role in cell proliferation, apoptosis, differentiation and inflammation-related pathological processes. The expression and phosphorylation status of ATFs are also related to neurodegenerative diseases and polycystic kidney disease. Various miRNAs target ATFs to regulate cancer proliferation, apoptosis, autophagy, sensitivity and resistance to radiotherapy and chemotherapy. Moreover, ATFs are necessary to maintain cell redox homeostasis. Therefore, deepening our understanding of the regulation and function of ATFs will provide insights into the basic regulatory mechanisms that influence how cells integrate extracellular and intracellular signals into genomic responses through transcription factors. Under pathological conditions, especially in cancer biology and response to treatment, the characterization of ATF dysfunction is important for understanding how to therapeutically utilize ATF2 or other pathways controlled by transcription factors. In this review, we will demonstrate how ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, and ATF7 function in promoting or suppressing cancer development and identify their roles in tumour immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenling Zhang
- Corresponding author. Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Tongzipo Road 172, Yuelu District, Changsha, Hunan 410013, PR China.
| |
Collapse
|
12
|
Dobroch J, Bojczuk K, Kołakowski A, Baczewska M, Knapp P. The Exploration of Chemokines Importance in the Pathogenesis and Development of Endometrial Cancer. Molecules 2022; 27:2041. [PMID: 35408440 PMCID: PMC9000631 DOI: 10.3390/molecules27072041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 01/10/2023] Open
Abstract
Endometrial cancer (EC) is one of the most frequent female malignancies. Because of a characteristic symptom, vaginal bleeding, EC is often diagnosed in an early stage. Despite that, some EC cases present an atypical course with rapid progression and poor prognosis. There have been multiple studies conducted on molecular profiling of EC in order to improve diagnostics and introduce personalized treatment. Chemokines-a protein family that contributes to inflammatory processes that may promote carcinogenesis-constitute an area of interest. Some chemokines and their receptors present alterations in expression in tumor microenvironment. CXCL12, which binds the receptors CXCR4 and CXCR7, is known for its impact on neoplastic cell proliferation, neovascularization and promotion of epidermal-mesenchymal transition. The CCL2-CCR2 axis additionally plays a pivotal role in EC with mutations in the LKB1 gene and activates tumor-associated macrophages. CCL20 and CCR6 are influenced by the RANK/RANKL pathway and alter the function of lymphocytes and dendritic cells. Another axis, CXCL10-CXCR3, affects the function of NK-cells and, interestingly, presents different roles in various types of tumors. This review article consists of analysis of studies that included the roles of the aforementioned chemokines in EC pathogenesis. Alterations in chemokine expression are described, and possible applications of drugs targeting chemokines are reviewed.
Collapse
Affiliation(s)
- Jakub Dobroch
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
- University Oncology Center, University Clinical Hospital in Bialystok, 15-276 Bialystok, Poland
| | - Klaudia Bojczuk
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
| | - Adrian Kołakowski
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
| | - Marta Baczewska
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
- University Oncology Center, University Clinical Hospital in Bialystok, 15-276 Bialystok, Poland
| | - Paweł Knapp
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (M.B.); (P.K.)
- University Oncology Center, University Clinical Hospital in Bialystok, 15-276 Bialystok, Poland
| |
Collapse
|
13
|
Zhu Y, Lin X, Zang Y, Yang Q. Identification of ZEB2 as an Immune-Associated Gene in Endometrial Carcinoma and Associated with Macrophage Infiltration by Bioinformatic Analysis. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:4372373. [PMID: 34970423 PMCID: PMC8714326 DOI: 10.1155/2021/4372373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022]
Abstract
Endometrial cancer (EC) is the most common gynecological tumor arising from the endometrium. In this study, we use a published single-cell transcriptome profile of endometrial carcinoma (EC) to reveal the composition of immune cells and found an immunosuppressive environment since the presence of macrophage subtype M2 and exhausted CD8+ T cell markers. We focused on ZEB2 (Zinc finger E-box binding homeobox 2), a well-known player in epithelial to mesenchymal transition process, and we showed that ZEB2 is exclusively expressed in immune cells in single-cell transcriptome and, at the same time, downregulated in TCGA-UCEC (The Cancer Genome Atlas-Uterine Corpus Endometrial Carcinoma) bulk RNA-seq data and negatively associated with tumor purity. Loss of ZEB2 protein in EC in normal endometrium and EC samples was validated in samples using immunohistochemistry (IHC) from HPA (Human Protein Atlas) database. Furthermore, we found ZEB2 was associated with immune infiltrations especially for macrophage using TIMER 2.0. Interestingly, ZEB2 prognostic significance differed under various macrophage and Th2 helper cell content using Kaplan-Meier Plotter analysis. More importantly, we showed that over 11% EC patients have somatic mutations of ZEB2 in EC samples collected from cBioportal and they have a lower body weight, earlier diagnosis age, and better overall survival and disease-free survival status compared with the unaltered group. Analysis in TIMER2.0 suggested that ZEB2 mutation would possibly change the composition of tumor-infiltrating lymphocytes. Taken together, by combining the results from single-cell data, bulk TCGA RNA-seq, and other online bioinformatic tools, we provided evidence that ZEB2 might have a unique role in the immune environment of EC. These results would provide a better insight into the pathogenetic process and ZEB2 might further be used an immunotherapeutic target of EC.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- The First School of Clinical Medicine (Dongzhimen Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Xinchao Lin
- Department of International, The First School of Clinical Medicine (Dongzhimen Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Yuanlong Zang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaohui Yang
- Department of Gynecology, The First School of Clinical Medicine (Dongzhimen Hospital), Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Ratna A, Lim A, Li Z, Argemi J, Bataller R, Chiosis G, Mandrekar P. Myeloid Endoplasmic Reticulum Resident Chaperone GP96 Facilitates Inflammation and Steatosis in Alcohol-Associated Liver Disease. Hepatol Commun 2021; 5:1165-1182. [PMID: 34278167 PMCID: PMC8279472 DOI: 10.1002/hep4.1713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/31/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
Cellular stress-mediated chaperones are linked to liver macrophage activation and inflammation in alcohol-associated liver disease (ALD). In this study, we investigate the role of endoplasmic reticulum (ER) resident stress chaperone GP96/HSP90B1/GRP94, paralog of the HSP90 family, in ALD pathogenesis. We hypothesize that ER resident chaperone, heat shock protein GP96, plays a crucial role in alcohol-associated liver inflammation and contributes to liver injury. We show high expression of GP96/HSP90B1 and GRP78/HSPA5 in human alcohol-associated hepatitis livers as well as in mouse ALD livers with induction of GP96 prominent in alcohol-exposed macrophages. Myeloid-specific GP96 deficient (M-GP96KO) mice failed to induce alcohol-associated liver injury. Alcohol-fed M-GP96KO mice exhibit significant reduction in steatosis, serum endotoxin, and pro-inflammatory cytokines compared with wild-type mice. Anti-inflammatory cytokines interleukin-10 and transforming growth factor β, as well as activating transcription factor 3 and triggering receptor expressed on myeloid cells 2, markers of restorative macrophages, were higher in alcohol-fed M-GP96KO livers. M-GP96KO mice exhibit protection in a model of endotoxin-mediated liver injury in vivo, which is in agreement with reduced inflammatory responses during ex vivo lipopolysaccharide/endotoxin- stimulated bone marrow-derived macrophages from M-GP96KO mice. Furthermore, we show that liver macrophages from alcohol-fed M-GP96KO mice show compensatory induction of GRP78 messenger RNA, likely due to increased splicing of X-box binding protein-1. Finally, we show that inhibition of GP96 using a specific pharmacological agent, PU-WS13 or small interfering RNA, alleviates inflammatory responses in primary macrophages. Conclusion: Myeloid ER resident GP96 promotes alcohol-induced liver damage through activation of liver macrophage inflammatory responses, alteration in lipid homeostasis, and ER stress. These findings highlight a critical role for liver macrophage ER resident chaperone GP96/HSP90B1 in ALD, and its targeted inhibition represents a promising therapeutic approach in ALD.
Collapse
Affiliation(s)
- Anuradha Ratna
- Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Arlene Lim
- Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Zihai Li
- Division of Medical OncologyDepartment of MedicinePelotonia Institute for Immuno‐OncologyThe Ohio State University Comprehensive Cancer CenterColumbusOHUSA
| | - Josepmaria Argemi
- Division of Gastroenterology, Hepatology and NutritionPittsburgh Liver Research CenterUniversity of Pittsburgh Medical CenterPittsburghPAUSA
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and NutritionPittsburgh Liver Research CenterUniversity of Pittsburgh Medical CenterPittsburghPAUSA
| | - Gabriela Chiosis
- Chemical Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Pranoti Mandrekar
- Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| |
Collapse
|
15
|
Wang J, Li D, Pan Y, Li J, Jiang Q, Liu D, Hou Y. Interleukin-34 accelerates intrauterine adhesions progress related to CX3CR1 + monocytes/macrophages. Eur J Immunol 2021; 51:2501-2512. [PMID: 34138470 DOI: 10.1002/eji.202149174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/04/2021] [Indexed: 01/14/2023]
Abstract
Intrauterine adhesions (IUA) are characterized by endometrial fibrosis and impose a great challenge for female reproduction. IL-34 is profoundly involved in various fibrotic diseases through regulating the survival, proliferation, and differentiation of monocytes/macrophages. However, it remains unclear how IL-34 regulates monocytes/macrophages in context of IUA. Here, we showed that the expression level of IL-34 and the amount of CX3CR1+ monocytes/macrophages were significantly increased in endometrial tissues of IUA patients. IL-34 promoted the differentiation of monocytes/macrophages, which express CX3CR1 via CSF-1R/P13K/Akt pathway in vitro. Moreover, IL-34-induced CX3CR1+ monocytes/macrophages promoted the differentiation of endometrial stromal cells into myofibroblasts. Of note, IL-34 caused endometrial fibrosis and increased the amount of CX3CR1+ monocytes/macrophages in endometrial tissues in vivo. IL-34 modulated endometrial fibrosis by regulating monocytes/macrophages since the elimination of endometrial monocytes/macrophages significantly suppressed the profibrotic function of IL-34. Finally, blocking of IL-34 in the LPS-IUA model resulted in the improvement of endometrial fibrosis and decreased number of CX3CR1+ monocytes/macrophages. Our studies uncover the novel mechanism of interaction between IL-34-induced CX3CR1+ monocytes/macrophages and endometrial stromal cells in endometrial fibrosis pathogenesis, and highlight IL-34 as a critical target for treating IUA.
Collapse
Affiliation(s)
- Jiali Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Dan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Jingman Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Qi Jiang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Dan Liu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Xia Y, Li Y, Wu X, Zhang Q, Chen S, Ma X, Yu M. Ironing Out the Details: How Iron Orchestrates Macrophage Polarization. Front Immunol 2021; 12:669566. [PMID: 34054839 PMCID: PMC8149954 DOI: 10.3389/fimmu.2021.669566] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Iron fine-tunes innate immune responses, including macrophage inflammation. In this review, we summarize the current understanding about the iron in dictating macrophage polarization. Mechanistically, iron orchestrates macrophage polarization through several aspects, including cellular signaling, cellular metabolism, and epigenetic regulation. Therefore, iron modulates the development and progression of multiple macrophage-associated diseases, such as cancer, atherosclerosis, and liver diseases. Collectively, this review highlights the crucial role of iron for macrophage polarization, and indicates the potential application of iron supplementation as an adjuvant therapy in different inflammatory disorders relative to the balance of macrophage polarization.
Collapse
Affiliation(s)
- Yaoyao Xia
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yikun Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoyan Wu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingzhuo Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siyuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xianyong Ma
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Miao Yu
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
17
|
Ozga AJ, Chow MT, Luster AD. Chemokines and the immune response to cancer. Immunity 2021; 54:859-874. [PMID: 33838745 PMCID: PMC8434759 DOI: 10.1016/j.immuni.2021.01.012] [Citation(s) in RCA: 359] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 01/14/2023]
Abstract
Chemokines are chemotactic cytokines that regulate the migration of immune cells. Chemokines function as cues for the coordinated recruitment of immune cells into and out of tissue and also guide the spatial organization and cellular interactions of immune cells within tissues. Chemokines are critical in directing immune cell migration necessary to mount and then deliver an effective anti-tumor immune response; however, chemokines also participate in the generation and recruitment of immune cells that contribute to a pro-tumorigenic microenvironment. Here, we review the role of the chemokine system in anti-tumor and pro-tumor immune responses and discuss how malignant cells and the tumor microenvironment regulate the overall chemokine landscape to shape the type and outcome of immune responses to cancer and cancer treatment.
Collapse
Affiliation(s)
- Aleksandra J Ozga
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Melvyn T. Chow
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew D. Luster
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA,Correspondence:
| |
Collapse
|
18
|
Du J, Liu H, Mao X, Qin Y, Fan C. ATF4 promotes lung cancer cell proliferation and invasion partially through regulating Wnt/β-catenin signaling. Int J Med Sci 2021; 18:1442-1448. [PMID: 33628101 PMCID: PMC7893563 DOI: 10.7150/ijms.43167] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Activating transcription factor 4 (ATF4) is a member of the cAMP response element binding (CREB) protein family and has been reported to participate in cancer progression; however, its molecular mechanism is not fully understood. In this study, we investigated the function of ATF4 in non-small cell lung cancer and its molecular regulation. We detected cytoplasmic and nuclear ATF4 expression in lung cancer A549, H1299, and LK2 cells, and the total expression of ATF4 was higher than that in HBE cells (p < 0.05). Higher nuclear ATF4 expression was detected in all these cells compared to cytoplasmic ATF4 expression (p < 0.05). Overexpression of ATF4 in A549 cells significantly promoted cancer cell growth and invasion (p < 0.05). Expression of Wnt signaling molecules, including β-catenin, MMP7, and cyclin D1, and the activity of canonical Wnt signaling were also significantly promoted by ATF4 (p < 0.05). ICG001, a canonical Wnt signaling inhibitor that selectively inhibits β-catenin/ cyclic adenosine monophosphate response element binding protein (CBP) interaction, significantly inhibited cancer cell invasion and Wnt signaling. The function of ATF4 was also significantly inhibited by ICG001 (p < 0.05). However, compared to treatment with ICG001, the invasion ability of cancer cells treated with both ICG001 and ATF4 cDNA significantly increased (p < 0.05), which indicates that the function of ATF4 was not dependent only on Wnt/β-catenin signaling. The function of ATF4 in the regulation of β-catenin expression was not significantly affected by ICG001 (p > 0.05). The function of ATF4 to promote the activity of Wnt/β-catenin signaling in cancer cells was abolished by treatment with ICG001 (p > 0.05). These results indicate that ATF4 may contribute to lung cancer progression at least partly by regulating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Jiang Du
- Department of Pathology, First affiliated hospital and College of Basic Medical Sciences of China Medical University, 110001, Shenyang, China
| | - Haifeng Liu
- Department of Pathology, First affiliated hospital and College of Basic Medical Sciences of China Medical University, 110001, Shenyang, China
| | - Xiaoyun Mao
- Department of Breast Surgery, Department of Surgical Oncology, Research Unit of General Surgery, the First Affiliated Hospital of China Medical University, 110001, Shenyang, China
| | - Yanan Qin
- Department of Pathology, First affiliated hospital and College of Basic Medical Sciences of China Medical University, 110001, Shenyang, China
| | - Chuifeng Fan
- Department of Pathology, First affiliated hospital and College of Basic Medical Sciences of China Medical University, 110001, Shenyang, China
| |
Collapse
|
19
|
Abstract
The tumor microenvironment contains many cellular components influencing tumor behaviors, such as metastasis, angiogenesis and chemo-resistance. Tumor-associated macrophages (TAMs) are one of such components that can also manipulate the overall prognosis and patient survival. Analysis of tumor-macrophage crosstalk is crucial as tumor cells can polarize circulatory monocytes into TAMs. Such trans-polarization of macrophages support tumor mediated evasion and suppression of immune response. Additionally, such TAMs significantly influence tumor growth and proliferation, making them a potential candidate for precision therapeutics. However, the failure of macrophage-dependent therapies at clinical trials emphasizes the fault in current perception and research modality. This review discussed this field's progress regarding emerging model systems with a focused view on the in vitro platforms. The inadequacy of currently available models and their implications on existing studies also analyzed. The need for a conceptual and experimental leap toward a human-relevant in vitro custom-built platform for studying tumor-macrophage crosstalk is acknowledged.
Collapse
Affiliation(s)
- Tuli Dey
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
20
|
Mukherjee D, Bercz LS, Torok MA, Mace TA. Regulation of cellular immunity by activating transcription factor 4. Immunol Lett 2020; 228:24-34. [PMID: 33002512 DOI: 10.1016/j.imlet.2020.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Activating transcription factor 4 (ATF4) is a DNA binding transcription factor belonging to the family of basic Leucine zipper proteins. ATF4 can be activated in response to multiple cellular stress signals including endoplasmic reticulum stress in the event of improper protein folding or oxidative stress because of mitochondrial dysfunction as well as hypoxia. There are multiple downstream targets of ATF4 that can coordinate the regulation between survival and apoptosis of a cell based on time and exposure to stress. ATF4, therefore, has a broad range of control that results in the modulation of immune cells of the innate and adaptive responses leading to regulation of the cellular immunity. Studies provide evidence that ATF4 can regulate immune cells such as macrophages, T cells, B cells, NK cells and dendritic cells contributing to progression of disease. Immune cells can be exposed to stressed environment in the event of a pathogen attack, infection, inflammation, or in the tumor microenvironment leading to increased ATF4 activity to regulate these responses. ATF4 can further control differentiation and maturation of different immune cell types becoming a determinant of effective immune regulation. Additionally, ATF4 has been heavily implicated in rendering effector immune cells dysfunctional that are used to target tumorigenesis. Therefore, there is a need to evaluate where the literature stands in understanding the overall role of ATF4 in regulating cellular immunity to identify therapeutic targets and generalized mechanisms for different disease progressions.
Collapse
Affiliation(s)
- Debasmita Mukherjee
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Lena S Bercz
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Molly A Torok
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Thomas A Mace
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States; Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
21
|
Gou Y, Li X, Li P, Zhang H, Xu T, Wang H, Wang B, Ma X, Jiang X, Zhang Z. Estrogen receptor β upregulates CCL2 via NF-κB signaling in endometriotic stromal cells and recruits macrophages to promote the pathogenesis of endometriosis. Hum Reprod 2020; 34:646-658. [PMID: 30838396 DOI: 10.1093/humrep/dez019] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/24/2019] [Accepted: 02/08/2019] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION How is the activation of estrogen receptor β (ERβ) in endometriotic stromal cells (ESCs) involved in macrophage recruitment to promote the pathogenesis of endometriosis? SUMMARY ANSWER ERβ modulates the production of C-C motif chemokine ligand 2 (CCL2) via nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling in ESCs and thus recruits macrophages to ectopic lesions to promote pathogenesis. WHAT IS KNOWN ALREADY Macrophages are mainly recruited to the peritoneal cavity to promote the pathogenesis of endometriosis. Recent studies have demonstrated that ERβ plays an important role in the progression of endometriosis through modulating apoptosis and inflammation. STUDY DESIGN, SIZE, DURATION An observational study consisting of 22 cases (women with endometriosis, diagnosed by laparoscopy and histological analysis) and 14 controls (without endometriosis) was carried out. PARTICIPANTS/MATERIALS, SETTING, METHODS Tissues and stromal cells that were isolated from 22 patients with ovarian endometrioma and deeply infiltrating endometriosis were compared with tissues and stromal cells from 14 patients with normal cycling endometrium using immunohistochemistry, quantitative PCR, Western blot, cell migration assay and cloning formation assay. P values < 0.05 were considered significant, and experiments were repeated in at least three different cell preparations. MAIN RESULTS AND THE ROLE OF CHANCE We observed that accumulated macrophages were recruited to the ectopic milieu and mainly adopted an alternatively activated macrophage (M2) phenotype. To reveal the underlying mechanism for this, we conducted a series of experiments and found that high expression of ERβ led to the production of CCL2 via NF-κB signaling and macrophages were recruited to the ectopic milieu. An in vitro co-culture assay also suggested that the recruited macrophages in turn could promote the proliferation and clonogenic ability of ESCs. Overall, the activation of ERβ in ESCs is involved in macrophage recruitment via NF-κB/CCL2 signaling and subsequently appears to promote the pathogenesis of endometriosis. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Due to the limitations of obtaining surgical specimens, endometrioma tissues were collected mainly from women diagnosed with middle to late stage endometriosis. We identified the predominant presence of M2 macrophages in the samples used in our study, but the underlying mechanism of how recruited macrophages acquire the M2 phenotype is undefined. WIDER IMPLICATIONS OF THE FINDINGS This work provides novel insight into the mechanism by which ERβ may modulate macrophage infiltration and promote pathogenesis, which may provide a new therapeutic target for endometriosis. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Natural Science Foundation of China (81671430). The authors have no conflicts of interest.
Collapse
Affiliation(s)
- Yanling Gou
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Li
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peiling Li
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyan Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tenghan Xu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Beidi Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuesong Ma
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Jiang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zongfeng Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Chen Z, Yin S, Zheng L, Tang W, Kang M, Wei W, Sui K. Relationship between the Monocyte Chemo-attractant Protein-1 gene rs1024611 A>G Polymorphism and Cancer Susceptibility: A Meta-analysis Involving 14,617 Subjects. Immunol Invest 2020; 50:461-477. [PMID: 32552226 DOI: 10.1080/08820139.2020.1776726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inflammatory and inducible chemokines are the hallmarks of malignancy. Monocyte chemo-attractant protein-1 (MCP-1) is a crucial chemokine implicated in infection and inflammation. Methods: We performed an updated meta-analysis of thirty independent case-control studies with 6,777 cancer cases and 7,840 controls to determine if the MCP-1 gene rs1024611 A > G variant is associated with the risk of cancer. Results: The G allele carriers of rs1024611 in the MCP-1 gene might have a null association with cancer risk in overall comparison. In a subgroup analysis by ethnicity, we identified a marked association between the MCP-1 G allele rs1024611 polymorphism and cancer risk in the Caucasian populations (GG vs. AA: OR = 1.72, 95% CI, 1.12-2.64, P = .013, and GG vs. AG/AA: OR = 1.82, 95% CI, 1.19-2.78, P = .006). The potential bias in literature selection was witnessed in this meta-analysis (G vs. A: P Begg's = 0.187, PEgger's = 0.049; and GG/GA vs. AA: P Begg's = 0.069, PEgger's = 0.024). The adjusted ORs and CIs of the nonparametric "trim-and-fill" method demonstrated the reliability of these findings. The outcome of heterogeneity analysis indicated that heterogeneity might be due to small sample sizes (<1000 subjects), cancer types (bladder cancer, other cancers), ethnicity (Asians), and population-based studies. However, the sensitivity analysis validated the reliability of the findings. Conclusion: In conclusion, this updated meta-analysis showed that the G carrier of the MCP-1 gene rs1024611 is associated with susceptibility to cancer in Caucasian.
Collapse
Affiliation(s)
- Zhan Chen
- Department of Cardiothoracic Surgery, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Shiping Yin
- Physical Examination Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Liang Zheng
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Weifeng Tang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian Province, China.,Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Wei Wei
- Department of Cardiothoracic Surgery, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Kang Sui
- Department of Cardiothoracic Surgery, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| |
Collapse
|
23
|
Nakawaki M, Uchida K, Miyagi M, Inoue G, Kawakubo A, Kuroda A, Satoh M, Takaso M. Sequential CCL2 Expression Profile After Disc Injury in Mice. J Orthop Res 2020; 38:895-901. [PMID: 31721276 DOI: 10.1002/jor.24522] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/10/2019] [Indexed: 02/04/2023]
Abstract
Macrophages produce proinflammatory cytokines in injured intervertebral discs (IVDs). We recently showed that macrophage-derived inflammatory cytokines contribute to the production of pain-related factors. However, the mechanism by which macrophages are recruited to injured IVDs has not been fully clarified. Here, we examined the expression dynamics of the chemokine CCL2 in a mouse IVD injury model and the mechanisms of its regulation. The percentage of macrophages increased from day 1 after injury and persisted up until day 28. At 1 and 3 days after injury, the expression of both Ccl2 messenger RNA (mRNA) and CCL2 protein was elevated in the IVD injury group, after which expression decreased to basal levels. Consistent with the increase in CCL2 expression, Ccr2 and Tnfa expression and various types of macrophages were also immediately elevated following disc injury. Further, tumor necrosis factor-α (TNF-α) stimulated Ccl2 mRNA and CCL2 protein expression in IVD cells in vitro. The expressions of M1 (Cd86 and Nos2) and M2a (Ym1) macrophage markers were all significantly elevated from day 1 following injury in injured compared with control mice. Meanwhile, the expression of Cd206 (M2a and M2c marker) was significantly elevated on days 3, 7, 14, and 28 following injury. These results suggest that in IVD injury, TNF-α stimulates CCL2, which, in turn, mediates the recruitment of macrophages with the recruited macrophages subsequently differentiating into M1 and M2 subtypes. CCL2 signaling may, therefore, play an important role in IVD pathology via macrophage recruitment. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:895-901, 2020.
Collapse
Affiliation(s)
- Mitsufumi Nakawaki
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Ayumu Kawakubo
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Akiyoshi Kuroda
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Masashi Satoh
- Department of Immunology, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| |
Collapse
|
24
|
Bojcsuk D, Nagy G, Bálint BL. Alternatively Constructed Estrogen Receptor Alpha-Driven Super-Enhancers Result in Similar Gene Expression in Breast and Endometrial Cell Lines. Int J Mol Sci 2020; 21:E1630. [PMID: 32120995 PMCID: PMC7084573 DOI: 10.3390/ijms21051630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 01/07/2023] Open
Abstract
Super-enhancers (SEs) are clusters of highly active enhancers, regulating cell type-specific and disease-related genes, including oncogenes. The individual regulatory regions within SEs might be simultaneously bound by different transcription factors (TFs) and co-regulators, which together establish a chromatin environment conducting to effective transcription. While cells with distinct TF profiles can have different functions, how different cells control overlapping genetic programs remains a question. In this paper, we show that the construction of estrogen receptor alpha-driven SEs is tissue-specific, both collaborating TFs and the active SE components greatly differ between human breast cancer-derived MCF-7 and endometrial cancer-derived Ishikawa cells; nonetheless, SEs common to both cell lines have similar transcriptional outputs. These results delineate that despite the existence of a combinatorial code allowing alternative SE construction, a single master regulator might be able to determine the overall activity of SEs.
Collapse
Affiliation(s)
- Dóra Bojcsuk
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Bálint László Bálint
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
25
|
Liu D, Wang J, Zhao G, Jiang P, Song M, Ding H, Wang Z, Lv H, Hu Y. CSF1-associated decrease in endometrial macrophages may contribute to Asherman's syndrome. Am J Reprod Immunol 2019; 83:e13191. [PMID: 31536655 DOI: 10.1111/aji.13191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/17/2019] [Accepted: 09/06/2019] [Indexed: 12/29/2022] Open
Abstract
PROBLEM Asherman's syndrome (AS) is characterized by endometrial fibrosis leading to intrauterine adhesions and symptoms like hypomenorrhea, infertility, and recurrent pregnancy loss. Macrophages are key regulators of inflammation, tissue repair, regeneration, and fibrosis. However, the role of macrophages in AS remains unclear. METHOD OF STUDY Endometrial biopsies of AS patients and controls were collected during the late proliferating phase of menstrual cycle. Fibrosis and proliferation markers were detected by Masson's trichrome staining and immunohistochemistry. Macrophages were examined by immunostaining and flow cytometry. The expression levels of CCL2, CSF1, CSF1R, and GM-CSF were detected by quantitative real-time polymerase chain reaction (q-PCR) and immunohistochemistry. A well-differentiated endometrial cell line Ishikawa (IK) was used for in vitro studies. Macrophages differentiating from THP-1 monocytic cells were polarized by IL-4/IL-13. Their culture supernatants (M(IL-4/13)-S) were applied to H2 O2 or bleomycin-damaged IK cells. RESULTS In AS patients, endometrial stroma was replaced by fibrous tissue and cell proliferation was reduced. Macrophages in endometrial tissue were mainly alternative activated macrophages and their number was significantly decreased in AS patients. The CSF1 expression level was reduced in AS patients. M(IL-4/13)-S promoted the growth and migration of IK cells and inhibited H2 O2 -induced apoptosis. M(IL-4/13)-S protected IK cells from bleomycin-induced fibrosis. CONCLUSION Macrophages are critical cells involved in the process of endometrial repair and fibrosis. The decreased amount of endometrial macrophages may be attributed to the reduced expression level of CSF1. Manipulation of macrophage activation/function may provide a novel therapeutic target for AS.
Collapse
Affiliation(s)
- Dan Liu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiali Wang
- Division of Immunology, The State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Peipei Jiang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Minmin Song
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hailin Ding
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhiyin Wang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Haining Lv
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
26
|
Dual role of Endoplasmic Reticulum Stress-Mediated Unfolded Protein Response Signaling Pathway in Carcinogenesis. Int J Mol Sci 2019; 20:ijms20184354. [PMID: 31491919 PMCID: PMC6770252 DOI: 10.3390/ijms20184354] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer constitutes a grave problem nowadays in view of the fact that it has become one of the main causes of death worldwide. Poor clinical prognosis is presumably due to cancer cells metabolism as tumor microenvironment is affected by oxidative stress. This event triggers adequate cellular response and thereby creates appropriate conditions for further cancer progression. Endoplasmic reticulum (ER) stress occurs when the balance between an ability of the ER to fold and transfer proteins and the degradation of the misfolded ones become distorted. Since ER is an organelle relatively sensitive to oxidative damage, aforementioned conditions swiftly cause the activation of the unfolded protein response (UPR) signaling pathway. The output of the UPR, depending on numerous factors, may vary and switch between the pro-survival and the pro-apoptotic branch, and hence it displays opposing effects in deciding the fate of the cancer cell. The role of UPR-related proteins in tumorigenesis, such as binding the immunoglobulin protein (BiP) and inositol-requiring enzyme-1α (IRE1α), activating transcription factor 6 (ATF6) or the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), has already been specifically described so far. Nevertheless, due to the paradoxical outcomes of the UPR activation as well as gaps in current knowledge, it still needs to be further investigated. Herein we would like to elicit the actual link between neoplastic diseases and the UPR signaling pathway, considering its major branches and discussing its potential use in the development of a novel, anti-cancer, targeted therapy.
Collapse
|
27
|
Böhme I, Bosserhoff A. Extracellular acidosis triggers a senescence-like phenotype in human melanoma cells. Pigment Cell Melanoma Res 2019; 33:41-51. [PMID: 31310445 DOI: 10.1111/pcmr.12811] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/07/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022]
Abstract
Acidosis of the tumor microenvironment is a characteristic of solid tumors such as malignant melanoma. Main causes of the extracellular acidification are metabolic alterations in cancer cells. While numerous studies showed that acidosis promotes tumor invasiveness, metastasis, and neoangiogenesis resulting in malignant progression, contrary data reported that acidosis induces cell apoptosis, inhibits cell proliferation, and mediates cell autophagy. Here, we show that low pH (pH 6.7) induces senescent/quiescent phenotype in melanoma cells after long-time treatment defined by induction of SA-ß-galactosidase, upregulation of p21, G1 /G0 cell cycle arrest, and reduction of proliferation. Moreover, we revealed that extracellular acidosis triggers the inhibition of eIF2α and subsequently the activation of ATF4 expression, a key component of the integrated stress response (ISR), indicating an acid-mediated translation reprogramming. Interestingly, we also demonstrated that acidosis represses microphthalmia-associated transcription factor (MITF) and activates the expression of the receptor tyrosine kinase AXL. This MITFlow /AXLhigh phenotype is correlated with drug resistance and therapeutic outcome in melanoma. Our results suggest that acidosis is an important microenvironmental factor triggering phenotypic plasticity and promoting tumor progression.
Collapse
Affiliation(s)
- Ines Böhme
- Institute of Biochemistry, Department of Biochemistry and Molecular Medicine, Emil Fischer Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Bosserhoff
- Institute of Biochemistry, Department of Biochemistry and Molecular Medicine, Emil Fischer Center, University of Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
28
|
Abstract
Proteotoxic stress, that is, stress caused by protein misfolding and aggregation, triggers the rapid and global reprogramming of transcription at genes and enhancers. Genome-wide assays that track transcriptionally engaged RNA polymerase II (Pol II) at nucleotide resolution have provided key insights into the underlying molecular mechanisms that regulate transcriptional responses to stress. In addition, recent kinetic analyses of transcriptional control under heat stress have shown how cells 'prewire' and rapidly execute genome-wide changes in transcription while concurrently becoming poised for recovery. The regulation of Pol II at genes and enhancers in response to heat stress is coupled to chromatin modification and compartmentalization, as well as to co-transcriptional RNA processing. These mechanistic features seem to apply broadly to other coordinated genome-regulatory responses.
Collapse
|
29
|
Stressed: The Unfolded Protein Response in T Cell Development, Activation, and Function. Int J Mol Sci 2019; 20:ijms20071792. [PMID: 30978945 PMCID: PMC6479341 DOI: 10.3390/ijms20071792] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/27/2022] Open
Abstract
The unfolded protein response (UPR) is a highly conserved pathway that allows cells to respond to stress in the endoplasmic reticulum caused by an accumulation of misfolded and unfolded protein. This is of great importance to secretory cells because, in order for proteins to traffic from the endoplasmic reticulum (ER), they need to be folded appropriately. While a wealth of literature has implicated UPR in immune responses, less attention has been given to the role of UPR in T cell development and function. This review discusses the importance of UPR in T cell development, homeostasis, activation, and effector functions. We also speculate about how UPR may be manipulated in T cells to ameliorate pathologies.
Collapse
|
30
|
Rossa C, D'Silva NJ. Immune-relevant aspects of murine models of head and neck cancer. Oncogene 2019; 38:3973-3988. [PMID: 30696955 PMCID: PMC6533118 DOI: 10.1038/s41388-019-0686-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/26/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022]
Abstract
Head and neck cancers (HNCs) cause significant mortality and morbidity. There have been few advances in therapeutic management of HNC in the past 4 to 5 decades, which support the need for studies focusing on HNC biology. In recent years, increased recognition of the relevance of the host response in cancer progression has led to novel therapeutic strategies and putative biomarkers of tumor aggressiveness. However, tumor-immune interactions are highly complex and vary with cancer type. Pre-clinical, in vivo models represent an important and necessary step in understanding biological processes involved in development, progression and treatment of HNC. Rodents (mice, rats, hamsters) are the most frequently used animal models in HNC research. The relevance and utility of information generated by studies in murine models is unquestionable, but it is also limited in application to tumor-immune interactions. In this review, we present information regarding the immune-specific characteristics of the murine models most commonly used in HNC research, including immunocompromised and immunocompetent animals. The particular characteristics of xenograft, chemically induced, syngeneic, transgenic, and humanized models are discussed in order to provide context and insight for researchers interested in the in vivo study of tumor-immune interactions in HNC.
Collapse
Affiliation(s)
- Carlos Rossa
- Department of Diagnosis and Surgery, UNESP-State University of Sao Paulo, School of Dentistry at Araraquara, Araraquara - SP, Brazil. .,Department of Periodontics and Oral Medicine, School of Dentistry, Ann Arbor, MI, 48109, USA.
| | - Nisha J D'Silva
- Department of Periodontics and Oral Medicine, School of Dentistry, Ann Arbor, MI, 48109, USA. .,Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
31
|
Argyle D, Kitamura T. Targeting Macrophage-Recruiting Chemokines as a Novel Therapeutic Strategy to Prevent the Progression of Solid Tumors. Front Immunol 2018; 9:2629. [PMID: 30483271 PMCID: PMC6243037 DOI: 10.3389/fimmu.2018.02629] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/25/2018] [Indexed: 12/28/2022] Open
Abstract
Solid tumors are initiated by genetic mutations in non-hematopoietic cells and progress into invasive malignant tumors. This tumor progression often culminates in metastatic disease that is largely refractory to current therapeutic modalities and thus dramatically reduces survival of tumor patients. As solid tumors account for more than 80% of cancer-related deaths, it is necessary to develop novel therapeutic strategies to treat the diseases. An attractive strategy is to target macrophages in both primary tumors [known as tumor-associated macrophages (TAMs)] and metastatic tumors [called metastasis-associated macrophages (MAMs)]. TAMs and MAMs are abundant in most solid tumors and can promote tumor metastasis. Several studies in various models of solid tumors suggest that the accumulation of TAMs, MAMs, and their progenitor cells is regulated by chemokine ligands released by tumor and stromal cells. Consequently, these macrophage-recruiting chemokines could be potential therapeutic targets to prevent malignant tumor development through disruption of the accumulation of pro-metastatic macrophages. This review will discuss the role of chemokine ligands and their receptors in TAM and MAM accumulation in primary and secondary tumor sites, and finally discuss the therapeutic potential of inhibitors against these macrophage-recruiting chemokines.
Collapse
Affiliation(s)
- David Argyle
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Takanori Kitamura
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
32
|
Garcia-Carbonero N, Li W, Cabeza-Morales M, Martinez-Useros J, Garcia-Foncillas J. New Hope for Pancreatic Ductal Adenocarcinoma Treatment Targeting Endoplasmic Reticulum Stress Response: A Systematic Review. Int J Mol Sci 2018; 19:E2468. [PMID: 30134550 PMCID: PMC6165247 DOI: 10.3390/ijms19092468] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/10/2018] [Accepted: 08/18/2018] [Indexed: 12/28/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of tumours, and its incidence is rising worldwide. Although survival can be improved by surgical resection when these tumours are detected at an early stage, this cancer is usually asymptomatic, and disease only becomes apparent after metastasis. Several risk factors are associated with this disease, the most relevant being chronic pancreatitis, diabetes, tobacco and alcohol intake, cadmium, arsenic and lead exposure, certain infectious diseases, and the mutational status of some genes associated to a familial component. PDAC incidence has increased in recent decades, and there are few alternatives for chemotherapeutic treatment. Endoplasmic reticulum (ER) stress factors such as GRP78/BiP (78 kDa glucose-regulated protein), ATF6α (activating transcription factor 6 isoform α), IRE1α (inositol-requiring enzyme 1 isoform α), and PERK (protein kinase RNA-like endoplasmic reticulum kinase) activate the transcription of several genes involved in both survival and apoptosis. Some of these factors aid in inducing a non-proliferative state in cancer called dormancy. Modulation of endoplasmic reticulum stress could induce dormancy of tumour cells, thus prolonging patient survival. In this systematic review, we have compiled relevant results concerning those endoplasmic reticulum stress factors involved in PDAC, and we have analysed the mechanism of dormancy associated to endoplasmic reticulum stress and its potential use as a chemotherapeutic target against PDAC.
Collapse
MESH Headings
- Activating Transcription Factor 6/genetics
- Activating Transcription Factor 6/metabolism
- Animals
- Antibodies/pharmacology
- Carcinoma, Pancreatic Ductal/etiology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/therapy
- Communicable Diseases/complications
- Communicable Diseases/genetics
- Communicable Diseases/metabolism
- Communicable Diseases/pathology
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Diabetes Complications/genetics
- Diabetes Complications/metabolism
- Diabetes Complications/pathology
- Disease Models, Animal
- Endoplasmic Reticulum Chaperone BiP
- Endoplasmic Reticulum Stress/drug effects
- Endoplasmic Reticulum Stress/genetics
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Gene Expression Regulation
- Heat-Shock Proteins/antagonists & inhibitors
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/metabolism
- Humans
- Pancreatic Neoplasms/etiology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/therapy
- Pancreatitis, Chronic/complications
- Pancreatitis, Chronic/genetics
- Pancreatitis, Chronic/metabolism
- Pancreatitis, Chronic/pathology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Risk Factors
- Sulfones/pharmacology
- eIF-2 Kinase/genetics
- eIF-2 Kinase/metabolism
- Gemcitabine
Collapse
Affiliation(s)
- Nuria Garcia-Carbonero
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-University Hospital Fundación Jiménez Díaz-UAM, Avda Reyes Catolicos 2, 28040 Madrid, Spain.
| | - Weiyao Li
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-University Hospital Fundación Jiménez Díaz-UAM, Avda Reyes Catolicos 2, 28040 Madrid, Spain.
| | - Marticela Cabeza-Morales
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-University Hospital Fundación Jiménez Díaz-UAM, Avda Reyes Catolicos 2, 28040 Madrid, Spain.
| | - Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-University Hospital Fundación Jiménez Díaz-UAM, Avda Reyes Catolicos 2, 28040 Madrid, Spain.
| | - Jesus Garcia-Foncillas
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-University Hospital Fundación Jiménez Díaz-UAM, Avda Reyes Catolicos 2, 28040 Madrid, Spain.
| |
Collapse
|