1
|
Tovar-Cuevas AJ, Rosales Gómez RC, Martín-Márquez BT, Peña Dueñas NA, Sandoval-García F, Guzmán Ornelas MO, Chávez Tostado M, Hernández Corona DM, Corona Meraz FI. Bioinformatic Analysis from a Descriptive Profile of miRNAs in Chronic Migraine. Int J Mol Sci 2024; 25:10491. [PMID: 39408819 PMCID: PMC11477213 DOI: 10.3390/ijms251910491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic migraines have been described chiefly only from a clinical perspective. However, searching for reliable molecular markers has allowed for the discovery of the expression of different genes mainly associated with inflammation, neuro-vascularization, and pain-related pathways. The interest in microRNAs (miRs) that can regulate the expression of these genes has gained significant relevance since multiple miRs could play a key role in regulating these events. In this study, miRs were searched in samples from patients with chronic migraine, and the inclusion criteria were carefully reviewed. Different bioinformatic tools, such as miRbase, targetscan, miRPath, tissue atlas, and miR2Disease, were used to analyze the samples. Our findings revealed that some of the miRs were expressed more (miR-197, miR-101, miR-92a, miR-375, and miR-146b) and less (miR-133a/b, miR-134, miR-195, and miR-340) than others. We concluded that, during chronic migraine, common pathways, such as inflammation, vascularization, neurodevelopment, nociceptive pain, and pharmacological resistance, were associated with this disease.
Collapse
Affiliation(s)
- Alvaro Jovanny Tovar-Cuevas
- Centro de Investigación Multidisciplinario en Salud, Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (A.J.T.-C.); (R.C.R.G.); (N.A.P.D.); (M.O.G.O.); (M.C.T.); (D.M.H.C.)
| | - Roberto Carlos Rosales Gómez
- Centro de Investigación Multidisciplinario en Salud, Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (A.J.T.-C.); (R.C.R.G.); (N.A.P.D.); (M.O.G.O.); (M.C.T.); (D.M.H.C.)
| | - Beatriz Teresita Martín-Márquez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético (IIRSME), Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (B.T.M.-M.); (F.S.-G.)
| | - Nathan Alejandro Peña Dueñas
- Centro de Investigación Multidisciplinario en Salud, Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (A.J.T.-C.); (R.C.R.G.); (N.A.P.D.); (M.O.G.O.); (M.C.T.); (D.M.H.C.)
| | - Flavio Sandoval-García
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético (IIRSME), Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (B.T.M.-M.); (F.S.-G.)
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Guadalajara 44340, Mexico
| | - Milton Omar Guzmán Ornelas
- Centro de Investigación Multidisciplinario en Salud, Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (A.J.T.-C.); (R.C.R.G.); (N.A.P.D.); (M.O.G.O.); (M.C.T.); (D.M.H.C.)
- Cuerpo Académico UDG-CA-1096, “Ciencias de la Nutrición y Procesos Moleculares del Metabolismo”, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45625, Mexico
| | - Mariana Chávez Tostado
- Centro de Investigación Multidisciplinario en Salud, Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (A.J.T.-C.); (R.C.R.G.); (N.A.P.D.); (M.O.G.O.); (M.C.T.); (D.M.H.C.)
- Cuerpo Académico UDG-CA-1096, “Ciencias de la Nutrición y Procesos Moleculares del Metabolismo”, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45625, Mexico
| | - Diana Mercedes Hernández Corona
- Centro de Investigación Multidisciplinario en Salud, Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (A.J.T.-C.); (R.C.R.G.); (N.A.P.D.); (M.O.G.O.); (M.C.T.); (D.M.H.C.)
- Cuerpo Académico UDG-CA-1096, “Ciencias de la Nutrición y Procesos Moleculares del Metabolismo”, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45625, Mexico
| | - Fernanda-Isadora Corona Meraz
- Centro de Investigación Multidisciplinario en Salud, Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (A.J.T.-C.); (R.C.R.G.); (N.A.P.D.); (M.O.G.O.); (M.C.T.); (D.M.H.C.)
- Cuerpo Académico UDG-CA-1096, “Ciencias de la Nutrición y Procesos Moleculares del Metabolismo”, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45625, Mexico
| |
Collapse
|
2
|
Deng B, Zhang J, Zhang X, Wang D, Cheng L, Su P, Yu T, Bao G, Li G, Hong L, Miao X, Yang W, Wang R, Xie J. Novel Peptide DR3penA as a Low-Toxicity Antirenal Fibrosis Agent by Suppressing the TGF-β1/miR-212-5p/Low-Density Lipoprotein Receptor Class a Domain Containing 4/Smad Axis. ACS Pharmacol Transl Sci 2024; 7:1126-1141. [PMID: 38633584 PMCID: PMC11020069 DOI: 10.1021/acsptsci.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
Renal fibrosis is a complex pathological process that contributes to the development of chronic kidney disease due to various risk factors. Conservative treatment to curb progression without dialysis or renal transplantation is widely applicable, but its effectiveness is limited. Here, the inhibitory effect of the novel peptide DR3penA (DHα-(4-pentenyl)-AlaNPQIR-NH2), which was developed by our group, on renal fibrosis was assessed in cells and mice with established fibrosis and fibrosis triggered by transforming growth factor-β1 (TGF-β1), unilateral ureteral obstruction, and repeated low-dose cisplatin. DR3penA preserved renal function and ameliorated renal fibrosis at a dose approximately 100 times lower than that of captopril, which is currently used in the clinic. DR3penA also significantly reduced existing fibrosis and showed similar efficacy after subcutaneous or intraperitoneal injection. Mechanistically, DR3penA repressed TGF-β1 signaling via miR-212-5p targeting of low-density lipoprotein receptor class a domain containing 4, which interacts with Smad2/3. In addition to having good pharmacological effects, DR3penA could preferentially target injured kidneys and exhibited low toxicity in acute and chronic toxicity experiments. These results unveil the advantages of DR3penA regarding efficacy and toxicity, making it a potential candidate compound for renal fibrosis therapy.
Collapse
Affiliation(s)
- Bochuan Deng
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences & Research Unit of Peptide Science,
Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Jiao Zhang
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences & Research Unit of Peptide Science,
Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Xiang Zhang
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences & Research Unit of Peptide Science,
Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Dan Wang
- Medical
Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong 637000, China
| | - Lu Cheng
- School
of Biomedical Engineering, Shenzhen University
Health Science Centre, Shenzhen University, Shenzhen 518060, China
| | - Ping Su
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences & Research Unit of Peptide Science,
Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Tingli Yu
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences & Research Unit of Peptide Science,
Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Guangjun Bao
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences & Research Unit of Peptide Science,
Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Guofeng Li
- School
of Pharmaceutical Sciences, Shenzhen University
Health Science Centre, Shenzhen University, Shenzhen 518060, China
| | - Liang Hong
- Guangdong
Provincial Key Laboratory of Chiral Molecular and Drug Discovery,
School of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, China
| | - Xiaokang Miao
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences & Research Unit of Peptide Science,
Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Wenle Yang
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences & Research Unit of Peptide Science,
Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Rui Wang
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences & Research Unit of Peptide Science,
Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
- Institute
of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences & Peking Union
Medical College, Beijing 100050, China
| | - Junqiu Xie
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences & Research Unit of Peptide Science,
Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Pan M, Li B. T cell receptor convergence is an indicator of antigen-specific T cell response in cancer immunotherapies. eLife 2022; 11:e81952. [PMID: 36350695 PMCID: PMC9683788 DOI: 10.7554/elife.81952] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
T cells are potent at eliminating pathogens and playing a crucial role in the adaptive immune response. T cell receptor (TCR) convergence describes T cells that share identical TCRs with the same amino acid sequences but have different DNA sequences due to codon degeneracy. We conducted a systematic investigation of TCR convergence using single-cell immune profiling and bulk TCRβ-sequence (TCR-seq) data obtained from both mouse and human samples and uncovered a strong link between antigen-specificity and convergence. This association was stronger than T cell expansion, a putative indicator of antigen-specific T cells. By using flow-sorted tetramer+ single T cell data, we discovered that convergent T cells were enriched for a neoantigen-specific CD8+ effector phenotype in the tumor microenvironment. Moreover, TCR convergence demonstrated better prediction accuracy for immunotherapy response than the existing TCR repertoire indexes. In conclusion, convergent T cells are likely to be antigen-specific and might be a novel prognostic biomarker for anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Mingyao Pan
- Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Bo Li
- Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
4
|
The Role of NEDD4 E3 Ubiquitin–Protein Ligases in Parkinson’s Disease. Genes (Basel) 2022; 13:genes13030513. [PMID: 35328067 PMCID: PMC8950476 DOI: 10.3390/genes13030513] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 01/25/2023] Open
Abstract
Parkinson’s disease (PD) is a debilitating neurodegenerative disease that causes a great clinical burden. However, its exact molecular pathologies are not fully understood. Whilst there are a number of avenues for research into slowing, halting, or reversing PD, one central idea is to enhance the clearance of the proposed aetiological protein, oligomeric α-synuclein. Oligomeric α-synuclein is the main constituent protein in Lewy bodies and neurites and is considered neurotoxic. Multiple E3 ubiquitin-protein ligases, including the NEDD4 (neural precursor cell expressed developmentally downregulated protein 4) family, parkin, SIAH (mammalian homologues of Drosophila seven in absentia), CHIP (carboxy-terminus of Hsc70 interacting protein), and SCFFXBL5 SCF ubiquitin ligase assembled by the S-phase kinase-associated protein (SKP1), cullin-1 (Cul1), a zinc-binding RING finger protein, and the F-box domain/Leucine-rich repeat protein 5-containing protein FBXL5), have been shown to be able to ubiquitinate α-synuclein, influencing its subsequent degradation via the proteasome or lysosome. Here, we explore the link between NEDD4 ligases and PD, which is not only via α-synuclein but further strengthened by several additional substrates and interaction partners. Some members of the NEDD4 family of ligases are thought to crosstalk even with PD-related genes and proteins found to be mutated in familial forms of PD. Mutations in NEDD4 family genes have not been observed in PD patients, most likely because of their essential survival function during development. Following further in vivo studies, it has been thought that NEDD4 ligases may be viable therapeutic targets in PD. NEDD4 family members could clear toxic proteins, enhancing cell survival and slowing disease progression, or might diminish beneficial proteins, reducing cell survival and accelerating disease progression. Here, we review studies to date on the expression and function of NEDD4 ubiquitin ligases in the brain and their possible impact on PD pathology.
Collapse
|
5
|
PMEPA1/TMEPAI Is a Unique Tumorigenic Activator of AKT Promoting Proteasomal Degradation of PHLPP1 in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13194934. [PMID: 34638419 PMCID: PMC8508116 DOI: 10.3390/cancers13194934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Transmembrane prostate androgen-induced protein (TMEPAI), also known as PMEPA1, is highly expressed in many types of cancer and promotes oncogenic abilities. However, the mechanisms whereby TMEPAI facilitates tumorigenesis are not fully understood. We previously established TMEPAI-knockout (KO) cells from human triple-negative breast cancer (TNBC) cell lines and found that TMEPAI-KO cells showed reduced tumorigenic abilities. Here, we report that TMEPAI-KO cells upregulated the expression of pleckstrin homology (PH) domain and leucine-rich repeat protein phosphatase 1 (PHLPP1) and suppressed AKT Ser473 phosphorylation, which was consistent with TCGA dataset analysis. Additionally, the knockdown (KD) of PHLPP1 in TMEPAI-KO cells partially but significantly rescued AKT Ser473 phosphorylation, as well as in vitro and in vivo tumorigenic activities, thus showing that TMEPAI functions as an oncogenic protein through the regulation of PHLPP1 subsequent to AKT activation. Furthermore, we demonstrated that TMEPAI PPxY (PY) motifs are essential for binding to NEDD4-2, an E3 ubiquitin ligase, and PHLPP1-downregulatory ability. Moreover, TMEPAI enhanced the complex formation of PHLPP1 with NEDD4-2 and PHLPP1 polyubiquitination, which leads to its proteasomal degradation. These findings indicate that the PY motifs of TMEPAI suppress the amount of PHLPP1 and maintain AKT Ser473 phosphorylation at high levels to enhance the tumorigenic potentiality of TNBC.
Collapse
|
6
|
Omega-3 Fatty Acids DHA and EPA Reduce Bortezomib Resistance in Multiple Myeloma Cells by Promoting Glutathione Degradation. Cells 2021; 10:cells10092287. [PMID: 34571936 PMCID: PMC8465636 DOI: 10.3390/cells10092287] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy that exhibits aberrantly high levels of proteasome activity. While treatment with the proteasome inhibitor bortezomib substantially increases overall survival of MM patients, acquired drug resistance remains the main challenge for MM treatment. Using a combination treatment of docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) and bortezomib, it was demonstrated previously that pretreatment with DHA/EPA significantly increased bortezomib chemosensitivity in MM cells. In the current study, both transcriptome and metabolome analysis were performed to comprehensively evaluate the underlying mechanism. It was demonstrated that pretreating MM cells with DHA/EPA before bortezomib potently decreased the cellular glutathione (GSH) level and altered the expression of the related metabolites and key enzymes in GSH metabolism, whereas simultaneous treatment only showed minor effects on these factors, thereby suggesting the critical role of GSH degradation in overcoming bortezomib resistance in MM cells. Moreover, RNA-seq results revealed that the nuclear factor erythroid 2-related factor 2 (NRF2)-activating transcription factor 3/4 (ATF3/4)-ChaC glutathione specific gamma-glutamylcyclotransferase 1 (CHAC1) signaling pathway may be implicated as the central player in the GSH degradation. Pathways of necroptosis, ferroptosis, p53, NRF2, ATF4, WNT, MAPK, NF-κB, EGFR, and ERK may be connected to the tumor suppressive effect caused by pretreatment of DHA/EPA prior to bortezomib. Collectively, this work implicates GSH degradation as a potential therapeutic target in MM and provides novel mechanistic insights into its significant role in combating bortezomib resistance.
Collapse
|
7
|
Song M, Zhou B, Li B, Tian L. PMEPA1 Stimulates the Proliferation, Colony Formation of Pancreatic Cancer Cells via the MAPK Signaling Pathway. Am J Med Sci 2021; 362:291-296. [PMID: 33857498 DOI: 10.1016/j.amjms.2021.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/30/2020] [Accepted: 04/07/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Prostate transmembrane protein androgen-induced 1 (PMEPA1) is reportedly highly expressed in pancreatic cancer (PC). However, its biological role and associated mechanisms have not been addressed in PC progression. METHODS PMEPA1 mRNA expression and survival outcome of PC patients were evaluated via the GEPIA website. Lentiviral-mediated shRNA knockdown and ectopic expression of PMEPA1 were implemented in the pancreatic cancer cell line PANC1 cells. CCK-8 and colony formation assays were carried out to assess the biological function of PMEPA1 in PANC1 proliferation and viability. Dual-luciferase reporter assays and RT-qPCR were used to assess the interactive relationship between PMEPA1 and the MAPK signaling pathway. RESULTS By analyzing the data from GEPIA, we found that PMEPA1 mRNA expression is overexpressed in PC tissues compared with matched nontumor tissues. PMEPA1-high PC patients are predicted to have a worse prognosis than PMEPA1-low PC patients. We found that PMEPA1 shRNA suppressed PANC1 proliferation and colony formation capacity, while enforced expression of PMEPA1 yielded the opposite results. Mechanical investigations showed that PMEPA1 exerts its tumor-promoting function in pancreatic cancer via activation of the MAPK signaling pathway. CONCLUSION PMEPA1 promotes the progression of PC at least partially by activating the MAPK signaling pathway; thus, the PMEPA1/MAPK axis may be a potential therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Mengqi Song
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266003, China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266003, China; Department of Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266003, China
| | - Bilu Li
- Department of Uroogic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266003, China
| | - Lantian Tian
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266003, China.
| |
Collapse
|
8
|
Identification of molecular signatures associated with early relapse after complete resection of lung adenocarcinomas. Sci Rep 2021; 11:9532. [PMID: 33953302 PMCID: PMC8099905 DOI: 10.1038/s41598-021-89030-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/31/2021] [Indexed: 11/25/2022] Open
Abstract
The only potentially curative treatment for lung adenocarcinoma patients remains complete resection of early-stage tumors. However, many patients develop recurrence and die of their disease despite curative surgery. Underlying mechanisms leading to establishment of systemic disease after complete resection are mostly unknown. We therefore aimed at identifying molecular signatures of resected lung adenocarcinomas associated with the risk of an early relapse. The study comprised 89 patients with totally resected stage IA–IIIA lung adenocarcinomas. Patients suffering from an early relapse within two years after surgery were compared to patients without a relapse in two years. Patients were clinically and molecular pathologically characterized. Tumor tissues were immunohistochemically analyzed for the expression of Ki67, CD45, CD4, CD8, PD1, PD-L1, PD-L2 and CD34, by Nanostring nCounter PanCancer Immune Profiling Panel as well as a comprehensive methylome profiling using the Infinium MethylationEPIC BeadChip. We detected differential DNA methylation patterns as well as significantly differentially expressed genes associated with an early relapse after complete resection. Especially, CD1A was identified as a potential biomarker, whose reduced expression is associated with an early relapse. These findings might help to develop biomarkers improving risk assessment and patient selection for adjuvant therapy as well as establish novel targeted therapeutic strategies.
Collapse
|
9
|
Identification of low-density lipoprotein receptor class A domain containing 4 (LDLRAD4) as a prognostic indicator in primary gastrointestinal stromal tumors. Curr Probl Cancer 2020; 44:100593. [PMID: 32507364 DOI: 10.1016/j.currproblcancer.2020.100593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 02/11/2020] [Accepted: 04/23/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND There is an urgent clinical need to select the patients with resectable gastrointestinal stromal tumors (GISTs) who can benefit from adjuvant treatment after complete resection based on disease recurrence risk stratification. We hypothesized that integrating biomarkers into available risk assessment tools may improve the precision of GIST prognostic predictions. METHODS Candidate genes that may cause GIST progression were identified using the Gene Expression Omnibus dataset GSE20708. Quantitative Real-time was used to confirm the prognostic value of the candidate genes for recurrence-free survival (RFS) in a cohort of 94 patients. RESULTS Thirty-seven differentially expressed genes between localized tumors and metastatic primary tumors were found; 14 (37.8%) were upregulated and 23 (62.2%) were downregulated in the latter tumors. Low-density lipoprotein receptor class A domain containing 4 (LDLRAD4) was selected for further prognostic analysis. Although LDLRAD4 mRNA expression was not associated with recurrence risk grades as determined by the revised NIH consensus criteria, multivariate Cox regression analysis showed that LDLRAD4 expression (hazard ratio [HR] = 4.403, 95% confidence interval [CI]: 1.822-10.641, P = 0.001), tumor size (HR = 1.174, 95% CI: 1.027-1.342, P = 0.019) and tumor location (HR = 6.291, 95% CI: 1.128-35.080, P = 0.036) were independent prognostic factors for RFS in patients with resectable GISTs. Moreover, the RFS model constructed by these three factors may effectively predict GIST prognosis within the first 2 postsurgical years. CONCLUSION Our study identifies LDLRAD4 as a suitable prognostic marker for GISTs. The integration of biomarkers into risk assessment tools may improve the precision of GIST prognostic predictions.
Collapse
|
10
|
Ito Y, Nakajima K, Masubuchi Y, Kikuchi S, Saito F, Akahori Y, Jin M, Yoshida T, Shibutani M. Expression Characteristics of Genes Hypermethylated and Downregulated in Rat Liver Specific to Nongenotoxic Hepatocarcinogens. Toxicol Sci 2020; 169:122-136. [PMID: 30690589 PMCID: PMC6484883 DOI: 10.1093/toxsci/kfz027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study examined hypermethylated and downregulated genes specific to carbon tetrachloride (CCl4) by Methyl-Seq analysis combined with expression microarray analysis in the liver of rats treated with CCl4 or N-nitrosodiethylamine (DEN) for 28 days, by excluding those with DEN. Among 52 genes, Ldlrad4, Proc, Cdh17, and Nfia were confirmed to show promoter-region hypermethylation by methylation-specific quantitative PCR analysis on day 28. The transcript levels of these 4 genes decreased by real-time reverse transcription-PCR analysis in the livers of rats treated with nongenotoxic hepatocarcinogens for up to 90 days compared with untreated controls and genotoxic hepatocarcinogens. Immunohistochemically, LDLRAD4 and PROC showed decreased immunoreactivity, forming negative foci, in glutathione S-transferase placental form (GST-P)+ foci, and incidences of LDLRAD4− and PROC− foci in GST-P+ foci induced by treatment with nongenotoxic hepatocarcinogens for 84 or 90 days were increased compared with those with genotoxic hepatocarcinogens. In contrast, CDH17 and NFIA responded to hepatocarcinogens without any relation to the genotoxic potential of carcinogens. All 4 genes did not respond to renal carcinogens after treatment for 28 days. Considering that Ldlrad4 is a negative regulator of transforming growth factor-β signaling, Proc participating in p21WAF1/CIP1 upregulation by activation, Cdh17 inducing cell cycle arrest by gene knockdown, and Nfia playing a role in a tumor-suppressor, all these genes may be potential in vivo epigenetic markers of nongenotoxic hepatocarcinogens from the early stages of treatment in terms of gene expression changes. LDLRAD4 and PROC may have a role in the development of preneoplastic lesions produced by nongenotoxic hepatocarcinogens.
Collapse
Affiliation(s)
- Yuko Ito
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Kota Nakajima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Yasunori Masubuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Satomi Kikuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Fumiyo Saito
- Chemicals Evaluation and Research Institute, Bunkyo-ku, Tokyo, Japan
| | - Yumi Akahori
- Chemicals Evaluation and Research Institute, Bunkyo-ku, Tokyo, Japan
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Animal Science and Technology Veterinary Medicine, Southwest University, Chongqing, P.R. China
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| |
Collapse
|
11
|
Bialkowski K, Kasprzak KS. A profile of 8-oxo-dGTPase activities in the NCI-60 human cancer panel: Meta-analytic insight into the regulation and role of MTH1 (NUDT1) gene expression in carcinogenesis. Free Radic Biol Med 2020; 148:1-21. [PMID: 31883466 DOI: 10.1016/j.freeradbiomed.2019.12.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 01/15/2023]
Abstract
We measured the specific 8-oxo-dGTPase activity profile of the NCI-60 panel of malignant cell lines, and MTH1 protein levels in a subset of 16 lines. Their 8-oxo-dGTPase activity was compared to twelve publicly accessible MTH1 mRNA expression data bases and their cross-consistency was analyzed. 8-oxo-dGTPase and MTH1 protein levels in these cell lines are generally, but not always, mainly determined by MTH1 mRNA expression levels. The aneuploidy number of MTH1 gene copies only slightly affects its mRNA expression levels. By using the data mining platforms Compare and CellMiner, our 8-oxo-dGTPase profile was compared to five global gene expression datasets to identify genes whose expression levels are directly or inversely associated with 8-oxo-dGTPase. We analyzed effects of SNP within MTH1 on MTH1 mRNA level and enzyme activity. Similar association analysis was performed for five microRNA expression datasets. We identified several proteins and microRNA which might be involved in the regulation of MTH1 expression and we discuss potential mechanisms. Comparison of chemical and natural products sensitivities of the NCI-60 panel suggests seven compounds which are directly or inversely associated with 8-oxo-dGTPase. We provide an integrated picture of MTH1 expression combined from eleven consistent MTH1 mRNA and our 8-oxo-dGTPase activity NCI-60 profiles.
Collapse
Affiliation(s)
- Karol Bialkowski
- Department of Clinical Biochemistry, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, 85-092, Poland.
| | - Kazimierz S Kasprzak
- Scientist Emeritus, Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| |
Collapse
|
12
|
Bageritz J, Willnow P, Valentini E, Leible S, Boutros M, Teleman AA. Gene expression atlas of a developing tissue by single cell expression correlation analysis. Nat Methods 2019; 16:750-756. [PMID: 31363221 PMCID: PMC6675608 DOI: 10.1038/s41592-019-0492-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 06/13/2019] [Indexed: 01/27/2023]
Abstract
The Drosophila wing disc has been a fundamental model system for the discovery of key signaling pathways and for our understanding of developmental processes. However, a complete map of gene expression in this tissue is lacking. To obtain a complete gene expression atlas in the wing disc, we employed single-cell sequencing (scRNA-seq) and developed a new method for analyzing scRNA-seq data based on gene expression correlations rather than cell mapping. This enables us to compute expression maps for all detected genes in the wing disc and to discover 824 genes with spatially restricted expression patterns. This approach identifies both known and new clusters of genes with similar expression patterns and functional relevance. As proof of concept, we characterize the previously unstudied gene CG5151 and show that it regulates Wnt signaling. This novel method will enable the leveraging of scRNA-seq data for generating expression atlases of undifferentiated tissues during development.
Collapse
Affiliation(s)
- Josephine Bageritz
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Philipp Willnow
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany.,CellNetworks-Cluster of Excellence, Heidelberg University, Heidelberg, Germany
| | - Erica Valentini
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Svenja Leible
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Heidelberg University, Heidelberg, Germany.
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
13
|
Guo ML, Sun MX, Lan JZ, Yan LS, Zhang JJ, Hu XX, Xu S, Mao DH, Yang HS, Liu YW, Chen TX. Proteomic analysis of the effects of cell culture density on the metastasis of breast cancer cells. Cell Biochem Funct 2019; 37:72-83. [PMID: 30773657 DOI: 10.1002/cbf.3377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/14/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
Cancer cell progression and proliferation increase cell density, resulting in changes to the tumour site, including the microenvironment. What is not known is if increased cell density influences the aggressiveness of cancer cells, especially their proliferation, migration, and invasion capabilities. In this study, we found that dense cell culture enhances the aggressiveness of the metastatic cancer cell lines, 4T1 and ZR-75-30, by increasing their proliferation, migration, and invasion capabilities. However, a less metastatic cell line, MCF-7, did not show an increase in aggressiveness, following dense cell culture conditions. We conducted a differential proteomic analysis on 4T1 cells cultured under dense or sparse conditions and identified an increase in expression for proteins involved in migration, including focal adhesion, cytoskeletal reorganization, and transendothelial migration. In contrast, 4T1 cells grown under sparse conditions had higher expression levels for proteins involved in metabolism, including lipid and phospholipid binding, lipid and cholesterol transporter activity, and protein binding. These results suggest that the high-density tumour microenvironment can cause a change in cellular behaviour, leading towards more aggressive cancers. SIGNIFICANCE OF THE STUDY: Metastasis of cancer cells is an obstacle to the clinical treatment of cancer. We found that dense cultures made metastatic cancer cells more potent in terms of proliferation, migration, and invasion. The proteomic and bioinformatic analyses provided some valuable clues for further intensive studies about the effects of cell density on cancer cell aggressiveness, which were associated with events such as pre-mRNA splicing and RNA transport, focal adhesion and cytoskeleton reorganization, ribosome biogenesis, and transendothelial migration, or associated with proteins, such as JAM-1 and S100A11. This investigation gives us new perspectives to investigate the metastasis mechanisms related to the microenvironment of tumour sites.
Collapse
Affiliation(s)
- Man-Lan Guo
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China.,The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mi-Xin Sun
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Jin-Zhi Lan
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Li-Sha Yan
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Jing-Juan Zhang
- Human Functional Laboratory, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiao-Xia Hu
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Shu Xu
- Department of Pathology, School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Da-Hua Mao
- Department of Breast Surgery, Wudang Affiliated Hospital, School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Hai-Song Yang
- Department of Breast Surgery, Wudang Affiliated Hospital, School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Ya-Wei Liu
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Teng-Xiang Chen
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
14
|
Itoh S, Itoh F. TMEPAI family: involvement in regulation of multiple signalling pathways. J Biochem 2018; 164:195-204. [DOI: 10.1093/jb/mvy059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/25/2018] [Indexed: 01/10/2023] Open
Affiliation(s)
- Susumu Itoh
- Laboratory of Biochemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, Japan
| | - Fumiko Itoh
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| |
Collapse
|
15
|
Zheng H, Ke X, Li D, Wang Q, Wang J, Liu X, Deng M, Deng X, Xue Y, Zhu Y, Wang Q. NEDD4 promotes cell growth and motility in hepatocellular carcinoma. Cell Cycle 2018; 17:728-738. [PMID: 29480061 DOI: 10.1080/15384101.2018.1440879] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. In China, the situation is even worse as cancer incidence and mortality continue to increase rapidly. Although tremendous progress has been made toward HCC treatments, the benefits for liver cancer patients are still limited. Therefore, it is necessary to identify and develop novel therapeutic methods. Neuronally expressed developmentally downregulated 4 (NEDD4), an E3 ubiquitin ligase, plays a critical role in the development and progression of various types of human cancers. In our study, NEDD4 acts as an oncoprotein in both QGY7703 and SMMC7721 liver cancer cell lines. We found that depletion of NEDD4 by siRNA transfection led to inhibition of cell growth, invasion and migration, and promotion of apoptosis. In contrast, overexpression of NEDD4 via plasmid transfection resulted in facilitated cell proliferation, invasion and migration, and decreased apoptosis. Importantly, we observed that tumor suppressor LATS1, also a core component of Hippo pathway, was negatively regulated by NEDD4 in liver cancer cells. Our findings suggested that NEDD4 may be involved in the HCC progression via regulating LATS1 associated signaling pathway. Therefore, targeting NEDD4-LATS1 signaling could be a potential therapeutic option for HCC treatment.
Collapse
Affiliation(s)
- Hailun Zheng
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Xiquan Ke
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Dapeng Li
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Qiangwu Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Jianchao Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Xiaoyang Liu
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Min Deng
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Xiaojing Deng
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Yongju Xue
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Yu Zhu
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Qizhi Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| |
Collapse
|
16
|
Zheng H, Ke X, Li D, Wang Q, Wang J, Liu X, Deng M, Deng X, Xue Y, Zhu Y, Wang Q. NEDD4 promotes cell growth and motility in hepatocellular carcinoma. CELL CYCLE (GEORGETOWN, TEX.) 2018. [PMID: 29480061 DOI: 10.1080/15384101.2018.1440879.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. In China, the situation is even worse as cancer incidence and mortality continue to increase rapidly. Although tremendous progress has been made toward HCC treatments, the benefits for liver cancer patients are still limited. Therefore, it is necessary to identify and develop novel therapeutic methods. Neuronally expressed developmentally downregulated 4 (NEDD4), an E3 ubiquitin ligase, plays a critical role in the development and progression of various types of human cancers. In our study, NEDD4 acts as an oncoprotein in both QGY7703 and SMMC7721 liver cancer cell lines. We found that depletion of NEDD4 by siRNA transfection led to inhibition of cell growth, invasion and migration, and promotion of apoptosis. In contrast, overexpression of NEDD4 via plasmid transfection resulted in facilitated cell proliferation, invasion and migration, and decreased apoptosis. Importantly, we observed that tumor suppressor LATS1, also a core component of Hippo pathway, was negatively regulated by NEDD4 in liver cancer cells. Our findings suggested that NEDD4 may be involved in the HCC progression via regulating LATS1 associated signaling pathway. Therefore, targeting NEDD4-LATS1 signaling could be a potential therapeutic option for HCC treatment.
Collapse
Affiliation(s)
- Hailun Zheng
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Xiquan Ke
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Dapeng Li
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Qiangwu Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Jianchao Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Xiaoyang Liu
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Min Deng
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Xiaojing Deng
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Yongju Xue
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Yu Zhu
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Qizhi Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| |
Collapse
|