1
|
Chen J, Chen XY, Cong XX, Wang S, Xu SB, Sun YT, Zhou YT, Zheng LL, Huang M. CELLULAR SENESCENCE IMPLICATED IN SEPSIS-INDUCED MUSCLE WEAKNESS AND AMELIORATED WITH METFORMIN. Shock 2023; 59:646-656. [PMID: 36719431 DOI: 10.1097/shk.0000000000002086] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
ABSTRACT Background: Sepsis is a life-threatening medical emergency, frequently complicated with intensive care unit-acquired weakness syndrome (ICU-AW). ICU-AW patients display flaccid weakness of the limbs, especially in the proximal limb muscles. However, little is known regarding its pathogenesis. Here, we aimed to identify the potential signaling pathway involved in ICU-AW regulation and identify a potential therapeutic drug for intervention. Methods: Both in vivo and in vitro septic mice were used. For the in vivo septic mice, either cecum ligation and puncture or intraperitoneal injection of LPS was conducted in mice. The body weight and muscle mass were then measured and recorded. Muscle strength was evaluated by limb grip strength test. The expression of proteins extracted from cells and muscles was checked through Western blot analysis. Quantitative reverse transcription-polymerase chain reaction was carried out to test the transcriptional level of genes. Senescence-associated β-galactosidase (SA-β-gal) staining and Sirius red for collagen staining were conducted. Metformin, as an antiaging agent, was then tested for any attenuation of sepsis-related symptoms. For in vitro sepsis modeling, myoblasts were treated with LPS, analyzed for senescence-related protein expression, and subsequently retested upon metformin treatment. Results: We found that both the weight and strength of muscle were dramatically reduced in cecum ligation and puncture- or LPS-induced septic mice. RNA-seq analysis revealed that various cellular senescent genes were involved in sepsis. In line with this, expression of senescence-related genes, p53 and p21 were both upregulated. Both SA-β-gal and Sirius red for collagen staining were enhanced in tibialis anterior muscles. Notably, inhibition of p53 expression by siRNA prominently reduced the number of SA-β-gal-positive myoblasts upon LPS treatment. This indicated sepsis-induced cellular senescence to be dependent on p53. Consistent with the function of metformin in antiaging, metformin attenuated cellular senescence in both murine myoblasts and skeletal muscles during sepsis. Muscle strength of septic mice was improved upon metformin treatment. Metformin intervention is therefore proposed as a potential therapeutic strategy for ICU-AW. Conclusion: Taken together, we revealed a previously unappreciated linkage between cellular senescence and sepsis-induced muscle weakness and propose metformin as a potential therapeutic drug for the treatment of ICU-AW.
Collapse
Affiliation(s)
- Juan Chen
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Yi Chen
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Shen Wang
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shui Bo Xu
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Ting Sun
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | - Man Huang
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Yang J, Hall JE, Jose PA, Chen K, Zeng C. Comprehensive insights in GRK4 and hypertension: From mechanisms to potential therapeutics. Pharmacol Ther 2022; 239:108194. [PMID: 35487286 PMCID: PMC9728143 DOI: 10.1016/j.pharmthera.2022.108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 11/24/2022]
Abstract
G protein-coupled receptors (GPCRs) mediate cellular responses to diverse extracellular stimuli that play vital roles in the regulation of biology, including behavior. Abnormal G protein-coupled receptor kinase (GRK)-mediated regulation of GPCR function is involved in the pathogenesis of hypertension. Among the seven GRK subtypes, GRK4 has attracted attention because of its constitutive activity and tissue-specific expression. Increasing number of studies show that GRK4 affects blood pressure by GPCR-mediated regulation of renal and arterial function. The target receptor of GRK4 is confined not only to GPCRs, but also to other blood pressure-regulating receptors, such as the adiponectin receptor. Genetic studies in humans show that in several ethnic groups, GRK4 gene variants (R65L, A142V, and A486V) are associated with salt-sensitive or salt-resistant essential hypertension and blood pressure responses to antihypertensive medicines. In this article, we present a comprehensive overview of GRK-mediated regulation of blood pressure, focusing on the latest research progress on GRK4 and hypertension and highlighting potential and novel strategies for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China; Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - John E Hall
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Ken Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, PR China.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, PR China; Department of Cardiology, Chongqing General Hospital, Chongqing, PR China; Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, PR China.
| |
Collapse
|
3
|
Hermawan A, Putri H. Computational analysis of G-protein-coupled receptor kinase family members as potential targets for colorectal cancer therapy. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
G-protein-coupled receptor (GPCR) kinases (GRKs) interact with ligand-activated GPCR, causing intracellular phosphorylation and interfering with the intracellular signal transduction associated with the development of cancer. Colorectal cancer (CRC) is a fast-growing disease, and its molecular mechanism involves various regulatory proteins, including kinases. However, the GRK mechanism in CRC has not been explored.
Methods
We used an integrated computational approach to investigate the potential of GRK family members as targeted proteins in CRC. The GRK expression levels in tumor and normal tissues, colon adenocarcinoma samples, and metastatic colon adenocarcinoma were analyzed using ONCOMINE, GEPIA, and UALCAN, as well as TNM plots. Genetic changes in the GRK family genes were investigated using cBioportal. The prognostic value related to the gene expression of the GRK family was examined using GEPIA and UALCAN. Co-expression analysis of the GRK family was conducted using COXPRESdb. Association analysis of the Gene Ontology, KEGG pathway enrichment, and drug-gene analyses were performed using the over-representation analysis (ORA) in WebGestalt.
Results
GRK2, GRK3, and GRK5 mRNA levels increased significantly in patients with CRC and metastatic CRC. Genetic changes were detected in patients with CRC, including GRK7 (1.1%), GRK2 (1.7%), GRK4 (2.3%), GRK5 (2.5%), GRK6 (2.5%), GRK3 (2.9%), and GRK1 (4%). CRC patients with low mRNA of GRK7 levels had better disease-free and overall survival than those with high GRK7 levels. Hierarchical clustering analysis revealed significant positive correlations between GRK5 and GRK2 and between GRK2 and GRK6. KEGG pathway enrichment analysis showed that the gene network (GN) regulated several cellular pathways, such as the morphine addiction signaling and chemokine signaling pathways in cancer. The drug-gene association analysis indicated that the GN was associated with several drugs, including reboxetine, pindolol, beta-blocking agents, and protein kinase inhibitors.
Conclusion
No research has been conducted on the relation of GRK1 and GRK7 to cancer, particularly CRC. In this work, genes GRK2, GRK3, GRK5, and GRK6 were found to be oncogenes in CRC. Although inhibitors against GRK2, GRK5, and GRK6 have previously been developed, further research, particularly preclinical and clinical studies, is needed before these agents may be used to treat CRC.
Collapse
|
4
|
G Protein-Coupled Receptor Kinase 4 Is a Novel Prognostic Factor in Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:2628879. [PMID: 35769816 PMCID: PMC9236775 DOI: 10.1155/2022/2628879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 11/25/2022]
Abstract
Purpose We previously reported that G protein-coupled receptor kinase (GRK) 4 halts cell cycle progression and induces cellular senescence in HEK293 cells. The present study was aimed at assessing the prognostic value of GRK4 in hepatocellular carcinoma (HCC). Methods GRK4 expression was detected by immunohistochemistry in paired tumoral and peritumoral tissues of 325 HCC patients. One hundred and twenty-six patients from Western China were utilized as a training cohort to develop a nomogram, while 86 patients from Eastern China were used as a validation cohort. The proliferation and migration of lentiviral-GRK4 expressing HepG2 cells were determined by MTT and wound healing assays. Results GRK4 was differentially expressed in HCC tissues. Tumoral GRK4 intensity, tumor type, and T stage were independent prognostic factors and used to form a nomogram for predicting overall survival (OS), which obtained a good concordance index of 0.82 and 0.77 in training and validation cohort, respectively. The positive and negative prediction values with nomogram were, respectively, 83% and 75% in training cohort and 100% and 52% in validation cohort. Patients with nomogram scores > 32 and 78 showed high risk for OS. Proliferation and motility capabilities were significantly restrained in GRK4-overexpressing HCC cells. Discussion. Low GRK4 expression in HCC tumor tissues indicates poor clinical outcomes. A prognostic nomogram including tumoral GRK4 expression would improve the predictive accuracy of OS in HCC patients. We also demonstrated that GRK4 overexpression inhibits proliferation and migration of HCC cells. The molecular mechanism underlying is worth further study.
Collapse
|
5
|
Upregulated IGFBP3 with Aging Is Involved in Modulating Apoptosis, Oxidative Stress, and Fibrosis: A Target of Age-Related Erectile Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6831779. [PMID: 35154570 PMCID: PMC8831074 DOI: 10.1155/2022/6831779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/24/2021] [Accepted: 12/11/2021] [Indexed: 12/04/2022]
Abstract
Aging has been deemed the primary factor in erectile dysfunction (ED). Herein, age-related changes in the erectile response and histomorphology were detected, and the relationship between aging and ED was investigated based on gene expression levels. Thirty male Sprague–Dawley (SD) rats were randomly divided into 6 groups, and intracavernous pressure (ICP) and mean arterial pressure (MAP) were measured. Subsequently, the corpus cavernosum (CC) was harvested and prepared for histological examinations of apoptosis, oxidative stress (OS), and fibrosis. Then, the microarray dataset (GSE10804) was analyzed to identify differentially expressed genes (DEGs) in ED progression, and hub genes were selected. In addition, aged CC smooth muscle cells (CCSMCs) were isolated to evaluate the function of the hub gene by siRNA interference, qRT–PCR, immunofluorescence staining, enzyme-linked immunosorbent assay, western blot analysis, CCK-8 assay, EdU staining, and flow cytometry approaches. The ICP/MAP and smooth muscle cell (SMC)/collagen ratios declined with aging, while apoptosis and OS levels increased with aging. The enriched functions and pathways of the DEGs were investigated, and 15 hub genes were identified, among which IGFBP3 was significantly upregulated. The IGFBP3 upregulation was verified in the CC of aging rats. Furthermore, aged CCSMCs were transfected with siRNA to knock down IGFBP3 expression. The viability and proliferation of the CCSMCs increased, while apoptosis, OS, and fibrosis decreased. Our findings demonstrate that the erectile response of SD rats declines in parallel with enhanced CC apoptosis, OS, and fibrosis with aging. Upregulation of IGFBP3 plays an important role; furthermore, downregulation of IGFBP3 improves the viability and proliferation of CCSMCs and alleviates apoptosis, OS, and fibrosis. Thus, IGFBP3 is a potential therapeutic target for age-related ED.
Collapse
|
6
|
Yue W, Tran HT, Wang JP, Schiermeyer K, Gildea JJ, Xu P, Felder RA. The Hypertension Related Gene G-Protein Coupled Receptor Kinase 4 Contributes to Breast Cancer Proliferation. Breast Cancer (Auckl) 2021; 15:11782234211015753. [PMID: 34103922 PMCID: PMC8145586 DOI: 10.1177/11782234211015753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/12/2021] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Clinical studies have shown that breast cancer risk is increased in hypertensive women. The underlying molecular mechanism remains undetermined. The current study tests our hypothesis that G protein coupled receptor kinase 4 (GRK4) is a molecule that links hypertension and breast cancer. GRK4 plays an important role in regulation of renal sodium excretion. Sustained activation of GRK4 as in the circumstances of single nucleotide polymorphism (SNPs) causes hypertension. Expression of GRK4 in the kidney is regulated by cMyc, an oncogene that is amplified in breast cancer. METHODS Western analysis was used to evaluate GRK4 protein expression in seven breast cancer cell lines. GRK4 gene single nucleotide polymorphism in breast cancer cell lines and in breast cancer cDNA arrays were determined using TaqMan Genotyping qPRC. The function of GRK4 was evaluated in MCF-7 cells with cMyc knock-down and GRK4 re-expression and in MDA-MB-468 cells expressing inducible GRK4 shRNA lentivirus constructs. Nuclei counting and 5-Bromo-2'-deoxy-uridine (BrdU) labeling were used to evaluate cell growth and proliferation. RESULTS Genotyping of GRK4 SNPs in breast cancer cDNA arrays (n = 94) revealed that the frequency of carrying two hypertension related SNPs A142 V or R65 L is threefold higher in breast cancer patients than in healthy people (P = 7.53E-11). GRK4 protein is expressed in seven breast cancer cell lines but not the benign mammary epithelial cell line, MCF-10A. Three hypertension related SNPs in the GRK4 gene were identified in the breast cancer cell lines. Except for BT20, all other breast cancer lines have 1-3 GRK4 SNPs of which A142 V occurs in all 6 lines. MDA-MB-468 cells contain homozygous A142 V and R65 L SNPs. Knocking down cMyc in MCF-7 cells significantly reduced the growth rate, which was rescued by re-expression of GRK4. We then generated three stable GRK4 knock-down MDA-MB-468 lines using inducible lentiviral shRNA vectors. Doxycycline (Dox) induced GRK4 silencing significantly reduced GRK4 mRNA and protein levels, growth rates, and proliferation. As a marker of cell proliferation, the percentage of BrdU-labeled cells decreased from 45 ± 3% in the cells without Dox to 32 ± 5% in the cells treated with 0.1 µg/mL Dox. CONCLUSIONS GRK4 acts as an independent proliferation promotor in breast cancer. Our results suggest that targeted inhibition of GRK4 could be a new therapy for both hypertension and breast cancer.
Collapse
Affiliation(s)
- Wei Yue
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Hanh T. Tran
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Ji-ping Wang
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Katherine Schiermeyer
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - John J. Gildea
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Peng Xu
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Robin A. Felder
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
7
|
Candesartan Neuroprotection in Rat Primary Neurons Negatively Correlates with Aging and Senescence: a Transcriptomic Analysis. Mol Neurobiol 2019; 57:1656-1673. [PMID: 31811565 DOI: 10.1007/s12035-019-01800-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
Preclinical experiments and clinical trials demonstrated that angiotensin II AT1 receptor overactivity associates with aging and cellular senescence and that AT1 receptor blockers (ARBs) protect from age-related brain disorders. In a primary neuronal culture submitted to glutamate excitotoxicity, gene set enrichment analysis (GSEA) revealed expression of several hundred genes altered by glutamate and normalized by candesartan correlated with changes in expression in Alzheimer's patient's hippocampus. To further establish whether our data correlated with gene expression alterations associated with aging and senescence, we compared our global transcriptional data with additional published datasets, including alterations in gene expression in the neocortex and cerebellum of old mice, human frontal cortex after age of 40, gene alterations in the Werner syndrome, rodent caloric restriction, Ras and oncogene-induced senescence in fibroblasts, and to tissues besides the brain such as the muscle and kidney. The most significant and enriched pathways associated with aging and senescence were positively correlated with alterations in gene expression in glutamate-injured neurons and, conversely, negatively correlated when the injured neurons were treated with candesartan. Our results involve multiple genes and pathways, including CAV1, CCND1, CDKN1A, CHEK1, ICAM1, IL-1B, IL-6, MAPK14, PTGS2, SERPINE1, and TP53, encoding proteins associated with aging and senescence hallmarks, such as inflammation, oxidative stress, cell cycle and mitochondrial function alterations, insulin resistance, genomic instability including telomere shortening and DNA damage, and the senescent-associated secretory phenotype. Our results demonstrate that AT1 receptor blockade ameliorates central mechanisms of aging and senescence. Using ARBs for prevention and treatment of age-related disorders has important translational value.
Collapse
|
8
|
Luo Y, Huang X, Yang J, Huang L, Li R, Wu Q, Jiang X. Proteomics analysis of G protein-coupled receptor kinase 4-inhibited cellular growth of HEK293 cells. J Proteomics 2019; 207:103445. [DOI: 10.1016/j.jprot.2019.103445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/25/2019] [Accepted: 07/14/2019] [Indexed: 12/12/2022]
|
9
|
Santos-Otte P, Leysen H, van Gastel J, Hendrickx JO, Martin B, Maudsley S. G Protein-Coupled Receptor Systems and Their Role in Cellular Senescence. Comput Struct Biotechnol J 2019; 17:1265-1277. [PMID: 31921393 PMCID: PMC6944711 DOI: 10.1016/j.csbj.2019.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/17/2022] Open
Abstract
Aging is a complex biological process that is inevitable for nearly all organisms. Aging is the strongest risk factor for development of multiple neurodegenerative disorders, cancer and cardiovascular disorders. Age-related disease conditions are mainly caused by the progressive degradation of the integrity of communication systems within and between organs. This is in part mediated by, i) decreased efficiency of receptor signaling systems and ii) an increasing inability to cope with stress leading to apoptosis and cellular senescence. Cellular senescence is a natural process during embryonic development, more recently it has been shown to be also involved in the development of aging disorders and is now considered one of the major hallmarks of aging. G-protein-coupled receptors (GPCRs) comprise a superfamily of integral membrane receptors that are responsible for cell signaling events involved in nearly every physiological process. Recent advances in the molecular understanding of GPCR signaling complexity have expanded their therapeutic capacity tremendously. Emerging data now suggests the involvement of GPCRs and their associated proteins in the development of cellular senescence. With the proven efficacy of therapeutic GPCR targeting, it is reasonable to now consider GPCRs as potential platforms to control cellular senescence and the consequently, age-related disorders.
Collapse
Key Words
- ADP-ribosylation factor GTPase-activating protein, (Arf-GAP)
- AT1R blockers, (ARB)
- Aging
- Angiotensin II, (Ang II)
- Ataxia telangiectasia mutated, (ATM)
- Cellular senescence
- G protein-coupled receptor kinase interacting protein 2 (GIT2)
- G protein-coupled receptor kinase interacting protein 2, (GIT2)
- G protein-coupled receptor kinase, (GRK)
- G protein-coupled receptors (GPCRs)
- G protein-coupled receptors, (GPCRs)
- Hutchinson–Gilford progeria syndrome, (HGPS)
- Lysophosphatidic acid, (LPA)
- Regulator of G-protein signaling, (RGS)
- Relaxin family receptor 3, (RXFP3)
- active state, (R*)
- angiotensin type 1 receptor, (AT1R)
- angiotensin type 2 receptor, (AT2R)
- beta2-adrenergic receptor, (β2AR)
- cyclin-dependent kinase 2, (CDK2)
- cyclin-dependent kinase inhibitor 1, (cdkn1A/p21)
- endothelial cell differentiation gene, (Edg)
- inactive state, (R)
- latent semantic indexing, (LSI)
- mitogen-activated protein kinase, (MAPK)
- nuclear factor kappa-light-chain-enhancer of activated B cells, (NF- κβ)
- protein kinases, (PK)
- purinergic receptors family, (P2Y)
- renin-angiotensin system, (RAS)
- retinoblastoma, (RB)
- senescence associated secretory phenotype, (SASP)
- stress-induced premature senescence, (SIPS)
- transcription factor E2F3, (E2F3)
- transmembrane, (TM)
- tumor suppressor gene PTEN, (PTEN)
- tumor suppressor protein 53, (p53)
- vascular smooth muscle cells, (VSMC)
- β-Arrestin
Collapse
Affiliation(s)
- Paula Santos-Otte
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01062 Dresden, Germany
| | - Hanne Leysen
- Receptor Biology Lab, University of Antwerp, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Jaana van Gastel
- Receptor Biology Lab, University of Antwerp, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Jhana O. Hendrickx
- Receptor Biology Lab, University of Antwerp, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Bronwen Martin
- Receptor Biology Lab, University of Antwerp, 2610 Antwerp, Belgium
| | - Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
10
|
Leysen H, van Gastel J, Hendrickx JO, Santos-Otte P, Martin B, Maudsley S. G Protein-Coupled Receptor Systems as Crucial Regulators of DNA Damage Response Processes. Int J Mol Sci 2018; 19:E2919. [PMID: 30261591 PMCID: PMC6213947 DOI: 10.3390/ijms19102919] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptors (GPCRs) and their associated proteins represent one of the most diverse cellular signaling systems involved in both physiological and pathophysiological processes. Aging represents perhaps the most complex biological process in humans and involves a progressive degradation of systemic integrity and physiological resilience. This is in part mediated by age-related aberrations in energy metabolism, mitochondrial function, protein folding and sorting, inflammatory activity and genomic stability. Indeed, an increased rate of unrepaired DNA damage is considered to be one of the 'hallmarks' of aging. Over the last two decades our appreciation of the complexity of GPCR signaling systems has expanded their functional signaling repertoire. One such example of this is the incipient role of GPCRs and GPCR-interacting proteins in DNA damage and repair mechanisms. Emerging data now suggest that GPCRs could function as stress sensors for intracellular damage, e.g., oxidative stress. Given this role of GPCRs in the DNA damage response process, coupled to the effective history of drug targeting of these receptors, this suggests that one important future activity of GPCR therapeutics is the rational control of DNA damage repair systems.
Collapse
Affiliation(s)
- Hanne Leysen
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Jaana van Gastel
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
- Translational Neurobiology Group, Center of Molecular Neurology, VIB, 2610 Antwerp, Belgium.
| | - Jhana O Hendrickx
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
- Translational Neurobiology Group, Center of Molecular Neurology, VIB, 2610 Antwerp, Belgium.
| | - Paula Santos-Otte
- Institute of Biophysics, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| | - Bronwen Martin
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Stuart Maudsley
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
- Translational Neurobiology Group, Center of Molecular Neurology, VIB, 2610 Antwerp, Belgium.
| |
Collapse
|