1
|
Yodsanit N, Shirasu T, Huang Y, Yin L, Islam ZH, Gregg AC, Riccio AM, Tang R, Kent EW, Wang Y, Xie R, Zhao Y, Ye M, Zhu J, Huang Y, Hoyt N, Zhang M, Hossack JA, Salmon M, Kent KC, Guo LW, Gong S, Wang B. Targeted PERK inhibition with biomimetic nanoclusters confers preventative and interventional benefits to elastase-induced abdominal aortic aneurysms. Bioact Mater 2023; 26:52-63. [PMID: 36875050 PMCID: PMC9975632 DOI: 10.1016/j.bioactmat.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a progressive aortic dilatation, causing ∼80% mortality upon rupture. Currently, there is no approved drug therapy for AAA. Surgical repairs are invasive and risky and thus not recommended to patients with small AAAs which, however, account for ∼90% of the newly diagnosed cases. It is therefore a compelling unmet clinical need to discover effective non-invasive strategies to prevent or slow down AAA progression. We contend that the first AAA drug therapy will only arise through discoveries of both effective drug targets and innovative delivery methods. There is substantial evidence that degenerative smooth muscle cells (SMCs) orchestrate AAA pathogenesis and progression. In this study, we made an exciting finding that PERK, the endoplasmic reticulum (ER) stress Protein Kinase R-like ER Kinase, is a potent driver of SMC degeneration and hence a potential therapeutic target. Indeed, local knockdown of PERK in elastase-challenged aorta significantly attenuated AAA lesions in vivo. In parallel, we also conceived a biomimetic nanocluster (NC) design uniquely tailored to AAA-targeting drug delivery. This NC demonstrated excellent AAA homing via a platelet-derived biomembrane coating; and when loaded with a selective PERK inhibitor (PERKi, GSK2656157), the NC therapy conferred remarkable benefits in both preventing aneurysm development and halting the progression of pre-existing aneurysmal lesions in two distinct rodent models of AAA. In summary, our current study not only establishes a new intervention target for mitigating SMC degeneration and aneurysmal pathogenesis, but also provides a powerful tool to facilitate the development of effective drug therapy of AAA.
Collapse
Affiliation(s)
- Nisakorn Yodsanit
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Takuro Shirasu
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yitao Huang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- The Biomedical Sciences Graduate Program (BIMS), School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Li Yin
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Zain Husain Islam
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | | | - Alessandra Marie Riccio
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Runze Tang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Eric William Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yuyuan Wang
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Ruosen Xie
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yi Zhao
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Mingzhou Ye
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jingcheng Zhu
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yi Huang
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Nicholas Hoyt
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- School of Medicine and Health Sciences, George Washington University, Washington, DC, 20052, USA
| | - Mengxue Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - John A. Hossack
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Morgan Salmon
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - K. Craig Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Shaoqin Gong
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
2
|
Hartl L, Duitman J, Maarten FB, Spek CA. The Dual Role of C/EBPδ in Cancer. Crit Rev Oncol Hematol 2023; 185:103983. [PMID: 37024021 DOI: 10.1016/j.critrevonc.2023.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
CCAAT/Enhancer-Binding Protein delta (C/EBPδ) is a transcription factor involved in differentiation and inflammation. While sparsely expressed in adult tissues, aberrant expression of C/EBPδ has been associated with different cancers. Initially, re-expression of C/EBPδ in cell cultures limited tumor cell proliferation, assigning it a tumor suppressor role. However, opposing observations were made in pre-clinical models and patients, suggesting that C/EBPδ not only mediates cell proliferation but dictates a broader spectrum of tumorigenesis-related effects. It is now widely accepted that C/EBPδ contributes to an inflammatory, tumor-promoting microenvironment, aids hypoxia adaption and contributes to the recruitment of blood vessels for improved nutrient supply to tumor cells and facilitated extravasation. This review summarizes the work published on this transcription factor in the field of cancer over the past decade. It points out areas in which a consensus on C/EBPδ's role appears to emerge and seek to explain seemingly contradictory results.
Collapse
Affiliation(s)
- Leonie Hartl
- Amsterdam UMC Location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, the Netherlands.
| | - JanWillem Duitman
- Amsterdam UMC Location University of Amsterdam, Department of Pulmonary Medicine, 1105 AZ Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, 1105 AZ Amsterdam, the Netherlands; Amsterdam Infection & Immunity, Inflammatory Diseases, 1105 AZ Amsterdam, the Netherlands
| | - F Bijlsma Maarten
- Amsterdam UMC Location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, the Netherlands
| | - C Arnold Spek
- Amsterdam UMC Location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
3
|
Xu D, Liu Z, Liang MX, Fei YJ, Zhang W, Wu Y, Tang JH. Endoplasmic reticulum stress targeted therapy for breast cancer. Cell Commun Signal 2022; 20:174. [PMCID: PMC9639265 DOI: 10.1186/s12964-022-00964-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractRecurrence, metastasis, and drug resistance are still big challenges in breast cancer therapy. Internal and external stresses have been proven to substantially facilitate breast cancer progression through molecular and systemic mechanisms. For example, endoplasmic reticulum stress (ERS) results in activation of the unfolded protein response (UPR), which are considered an important cellular stress response. More and more reports indicate its key role in protein homeostasis and other diverse functions involved in the process of breast cancer progression. Therefore, therapies targeting the activation of ERS and its downstream signaling pathways are potentially helpful and novel tools to counteract and fight breast cancer. However, recent advances in our understanding of ERS are focused on characterizing and modulating ERS between healthy and disease states, and so little attention has been paid to studying the role and clinical application of targeting ERS in a certain cancer. In this review, we summarize the function and main mechanisms of ERS in different molecular types of breast cancer, and focus on the development of agents targeting ERS to provide new treatment strategies for breast cancer.
Collapse
|
4
|
Isoliquiritigenin Inhibits Gastric Cancer Stemness, Modulates Tumor Microenvironment, and Suppresses Tumor Growth through Glucose-Regulated Protein 78 Downregulation. Biomedicines 2022; 10:biomedicines10061350. [PMID: 35740372 PMCID: PMC9220208 DOI: 10.3390/biomedicines10061350] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy is the treatment of choice for gastric cancer; however, the currently available therapeutic drugs for treatment have limited efficacy. Cancer stemness and the tumor microenvironment may play crucial roles in tumor growth and chemoresistance. Glucose-regulated protein 78 (GRP78) is an endoplasmic reticulum chaperone facilitating protein folding and cell homeostasis during stress and may participate in chemoresistance. Isoliquiritigenin (ISL) is a bioactive flavonoid found in licorice. In this study, we demonstrated the role of GRP78 in gastric cancer stemness and evaluated GRP78-mediated stemness inhibition, tumor microenvironment regulation, and chemosensitivity promotion by ISL. ISL not only suppressed GRP78-mediated gastric cancer stem cell–like characteristics, stemness-related protein expression, and cancer-associated fibroblast activation but also gastric tumor growth in xenograft animal studies. The findings indicated that ISL is a promising candidate for clinical use in combination chemotherapy.
Collapse
|
5
|
Ding J, Xu J, Deng Q, Ma W, Zhang R, He X, Liu S, Zhang L. Knockdown of Oligosaccharyltransferase Subunit Ribophorin 1 Induces Endoplasmic-Reticulum-Stress-Dependent Cell Apoptosis in Breast Cancer. Front Oncol 2021; 11:722624. [PMID: 34778038 PMCID: PMC8578895 DOI: 10.3389/fonc.2021.722624] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022] Open
Abstract
Ribophorin 1 (RPN1) is a major part of Oligosaccharyltransferase (OST) complex, which is vital for the N-linked glycosylation. Though it has been verified that the abnormal glycosylation is closely related to the development of breast cancer, the detail role of RPN1 in breast cancer remains unknown. In this study, we explored the public databases to investigate the relationship between the expression levels of OST subunits and the prognosis of breast cancer. Then, we focused on the function of RPN1 in breast cancer and its potential mechanisms. Our study showed that the expression of several OST subunits including RPN1, RPN2, STT3A STT3B, and DDOST were upregulated in breast cancer samples. The protein expression level of RPN1 was also upregulated in breast cancer. Higher expression of RPN1 was correlated with worse clinical features and poorer prognosis. Furthermore, knockdown of RPN1 suppressed the proliferation and invasion of breast cancer cells in vitro and induced cell apoptosis triggered by endoplasmic reticulum stress. Our results identified the oncogenic function of RPN1 in breast cancer, implying that RPN1 might be a potential biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Jiajun Ding
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China.,Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jiahui Xu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiaodan Deng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Ma
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xueyan He
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
6
|
PERK signaling through C/EBPδ contributes to ER stress-induced expression of immunomodulatory and tumor promoting chemokines by cancer cells. Cell Death Dis 2021; 12:1038. [PMID: 34725321 PMCID: PMC8560861 DOI: 10.1038/s41419-021-04318-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022]
Abstract
Cancer cells experience endoplasmic reticulum (ER) stress due to activated oncogenes and conditions of nutrient deprivation and hypoxia. The ensuing unfolded protein response (UPR) is executed by ATF6, IRE1 and PERK pathways. Adaptation to mild ER stress promotes tumor cell survival and aggressiveness. Unmitigated ER stress, however, will result in cell death and is a potential avenue for cancer therapies. Because of this yin-yang nature of ER stress, it is imperative that we fully understand the mechanisms and dynamics of the UPR and its contribution to the complexity of tumor biology. The PERK pathway inhibits global protein synthesis while allowing translation of specific mRNAs, such as the ATF4 transcription factor. Using thapsigargin and tunicamycin to induce acute ER stress, we identified the transcription factor C/EBPδ (CEBPD) as a mediator of PERK signaling to secretion of tumor promoting chemokines. In melanoma and breast cancer cell lines, PERK mediated early induction of C/EBPδ through ATF4-independent pathways that involved at least in part Janus kinases and the STAT3 transcription factor. Transcriptional profiling revealed that C/EBPδ contributed to 20% of thapsigargin response genes including chaperones, components of ER-associated degradation, and apoptosis inhibitors. In addition, C/EBPδ supported the expression of the chemokines CXCL8 (IL-8) and CCL20, which are known for their tumor promoting and immunosuppressive properties. With a paradigm of short-term exposure to thapsigargin, which was sufficient to trigger prolonged activation of the UPR in cancer cells, we found that conditioned media from such cells induced cytokine expression in myeloid cells. In addition, activation of the CXCL8 receptor CXCR1 during thapsigargin exposure supported subsequent sphere formation by cancer cells. Taken together, these investigations elucidated a novel mechanism of ER stress-induced transmissible signals in tumor cells that may be particularly relevant in the context of pharmacological interventions.
Collapse
|
7
|
Liang D, Khoonkari M, Avril T, Chevet E, Kruyt FAE. The unfolded protein response as regulator of cancer stemness and differentiation: Mechanisms and implications for cancer therapy. Biochem Pharmacol 2021; 192:114737. [PMID: 34411568 DOI: 10.1016/j.bcp.2021.114737] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
The unfolded protein response (UPR) is an adaptive mechanism that regulates protein and cellular homeostasis. Three endoplasmic reticulum (ER) membrane localized stress sensors, IRE1, PERK and ATF6, coordinate the UPR in order to maintain ER proteostasis and cell survival, or induce cell death when homeostasis cannot be restored. However, recent studies have identified alternative functions for the UPR in developmental biology processes and cell fate decisions under both normal and cancerous conditions. In cancer, increasing evidence points towards the involvement of the three UPR sensors in oncogenic reprogramming and the regulation of tumor cells endowed with stem cell properties, named cancer stem cells (CSCs), that are considered to be the most malignant cells in tumors. Here we review the reported roles and underlying molecular mechanisms of the three UPR sensors in regulating stemness and differentiation, particularly in solid tumor cells, processes that have a major impact on tumor aggressiveness. Mainly PERK and IRE1 branches of the UPR were found to regulate CSCs and tumor development and examples are provided for breast cancer, colon cancer and aggressive brain tumors, glioblastoma. Although the underlying mechanisms and interactions between the different UPR branches in regulating stemness in cancer need to be further elucidated, we propose that PERK and IRE1 targeted therapy could inhibit self-renewal of CSCs or induce differentiation that is predicted to have therapeutic benefit. For this, more specific UPR modulators need to be developed with favorable pharmacological properties that together with patient stratification will allow optimal evaluation in clinical studies.
Collapse
Affiliation(s)
- Dong Liang
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Mohammad Khoonkari
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Tony Avril
- INSERM U1242, Université de Rennes, Rennes, France; Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Eric Chevet
- INSERM U1242, Université de Rennes, Rennes, France; Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Frank A E Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
8
|
Amodio G, Pagliara V, Moltedo O, Remondelli P. Structural and Functional Significance of the Endoplasmic Reticulum Unfolded Protein Response Transducers and Chaperones at the Mitochondria-ER Contacts: A Cancer Perspective. Front Cell Dev Biol 2021; 9:641194. [PMID: 33842465 PMCID: PMC8033034 DOI: 10.3389/fcell.2021.641194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/22/2021] [Indexed: 01/15/2023] Open
Abstract
In the last decades, the endoplasmic reticulum (ER) has emerged as a key coordinator of cellular homeostasis, thanks to its physical interconnection to almost all intracellular organelles. In particular, an intense and mutual crosstalk between the ER and mitochondria occurs at the mitochondria–ER contacts (MERCs). MERCs ensure a fine-tuned regulation of fundamental cellular processes, involving cell fate decision, mitochondria dynamics, metabolism, and proteostasis, which plays a pivotal role in the tumorigenesis and therapeutic response of cancer cells. Intriguingly, recent studies have shown that different components of the unfolded protein response (UPR) machinery, including PERK, IRE1α, and ER chaperones, localize at MERCs. These proteins appear to exhibit multifaceted roles that expand beyond protein folding and UPR transduction and are often related to the control of calcium fluxes to the mitochondria, thus acquiring relevance to cell survival and death. In this review, we highlight the novel functions played by PERK, IRE1α, and ER chaperones at MERCs focusing on their impact on tumor development.
Collapse
Affiliation(s)
- Giuseppina Amodio
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Valentina Pagliara
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Ornella Moltedo
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Paolo Remondelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| |
Collapse
|
9
|
p97/VCP is highly expressed in the stem-like cells of breast cancer and controls cancer stemness partly through the unfolded protein response. Cell Death Dis 2021; 12:286. [PMID: 33731668 PMCID: PMC7969628 DOI: 10.1038/s41419-021-03555-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
p97/VCP, an evolutionarily concerned ATPase, partakes in multiple cellular proteostatic processes, including the endoplasmic reticulum (ER)-associated protein degradation (ERAD). Elevated expression of p97 is common in many cancers and is often associated with poor survival. Here we report that the levels of p97 positively correlated with the histological grade, tumor size, and lymph node metastasis in breast cancers. We further examined p97 expression in the stem-like cancer cells or cancer stem cells (CSCs), a cell population that purportedly underscores cancer initiation, therapeutic resistance, and recurrence. We found that p97 was consistently at a higher level in the CD44+/CD24-, ALDH+, or PKH26+ CSC populations than the respective non-CSC populations in human breast cancer tissues and cancer cell lines and p97 expression also positively correlated with that of SOX2, another CSC marker. To assess the role of p97 in breast cancers, cancer proliferation, mammosphere, and orthotopic growth were analyzed. Similarly as p97 depletion, two pharmacological inhibitors, which targets the ER-associated p97 or globally inhibits p97's ATPase activity, markedly reduced cancer growth and the CSC population. Importantly, depletion or inhibition of p97 greatly suppressed the proliferation of the ALDH+ CSCs and the CSC-enriched mammospheres, while exhibiting much less or insignificant inhibitory effects on the non-CSC cancer cells. Comparable phenotypes produced by blocking ERAD suggest that ER proteostasis is essential for the CSC integrity. Loss of p97 gravely activated the unfolded protein response (UPR) and modulated the expression of multiple stemness and pluripotency regulators, including C/EBPδ, c-MYC, SOX2, and SKP2, which collectively contributed to the demise of CSCs. In summary, p97 controls the breast CSC integrity through multiple targets, many of which directly affect cancer stemness and are induced by UPR activation. Our findings highlight the importance of p97 and ER proteostasis in CSC biology and anticancer therapy.
Collapse
|
10
|
Wang Q, Zhao Y, Zheng H, Wang Q, Wang W, Liu B, Han H, Zhang L, Chen K. CCDC170 affects breast cancer apoptosis through IRE1 pathway. Aging (Albany NY) 2020; 13:1332-1356. [PMID: 33291081 PMCID: PMC7835043 DOI: 10.18632/aging.202315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/03/2020] [Indexed: 01/29/2023]
Abstract
Genome-wide association studies have revealed that multiple single-nucleotide polymorphisms in the intergenic region between estrogen receptor 1 and coiled-coil domain containing 170 (CCDC170) are associated with breast cancer risk. We performed microarray and bioinformatics analyses to identify genes that were induced upon CCDC170 overexpression, and confirmed our findings by evaluating paraffin-embedded breast cancer tissues and conducting cellular assays. In CCDC170-overexpressing MCF7 breast cancer cells, microarray analyses revealed that inositol-requiring enzyme 1 (IRE1) was the most elevated gene in enriched pathways. In breast cancer tissues, IRE1 expression correlated positively with CCDC170 and X-box binding protein 1 expression at both the mRNA and protein levels. In a survival analysis, patients with higher CCDC170 levels exhibited better disease-free survival. Western blotting indicated that overexpressing CCDC170 in MCF7 cells increased protein levels of IRE1α, estrogen receptor α and X-box binding protein 1, while silencing CCDC170 reduced them. CCDC170 overexpression promoted apoptosis in MCF7 cells, and this effect was more obvious under endoplasmic reticulum stress. MCF7 cells overexpressing CCDC170 were more sensitive to paclitaxel. Our study showed that higher CCDC170 expression is associated with a better prognosis in breast cancer patients and that CCDC170 may promote apoptosis through the IRE1α pathway.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China.,Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Key Laboratory of Molecular Cancer Epidemiology, Tianjin 300060, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, P.R. China
| | - Yanrui Zhao
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China.,Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Key Laboratory of Molecular Cancer Epidemiology, Tianjin 300060, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, P.R. China
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China.,Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Key Laboratory of Molecular Cancer Epidemiology, Tianjin 300060, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, P.R. China
| | - Qinghua Wang
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China.,Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Key Laboratory of Molecular Cancer Epidemiology, Tianjin 300060, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, P.R. China
| | - Wei Wang
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China.,Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Key Laboratory of Molecular Cancer Epidemiology, Tianjin 300060, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, P.R. China
| | - Ben Liu
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China.,Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Key Laboratory of Molecular Cancer Epidemiology, Tianjin 300060, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, P.R. China
| | - Hongwei Han
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China.,Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Key Laboratory of Molecular Cancer Epidemiology, Tianjin 300060, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, P.R. China
| | - Lina Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China.,Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Key Laboratory of Molecular Cancer Epidemiology, Tianjin 300060, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, P.R. China.,Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China.,Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Key Laboratory of Molecular Cancer Epidemiology, Tianjin 300060, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, P.R. China
| |
Collapse
|
11
|
Zhao G, Wang X, Qu L, Zhu Z, Hong J, Hou H, Li Z, Wang J, Lv Z. The Clinical and Molecular Characteristics of Sex-Determining Region Y-Box 2 and its Prognostic Value in Breast Cancer: A Systematic Meta-Analysis. Breast Care (Basel) 2020; 16:16-26. [PMID: 33716628 DOI: 10.1159/000505806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/02/2020] [Indexed: 01/17/2023] Open
Abstract
Objective Transcription factor SOX2 (sex-determining region Y-box 2) has a crucial role in the maintenance of the stem cell state. However, current evidence regarding the role of SOX2 in breast cancer is conflicting. We conducted this meta-analysis to clarify the association of SOX2 expression with clinical and molecular features and its prognostic effect on breast cancer. Methods All relevant articles were searched using electronic databases. The pooled odds ratios (ORs) or hazard ratios (HRs: multivariate Cox survival analysis) with their 95% confidence intervals (CIs) were calculated. Results A final total of 18 studies containing 3,080 patients with breast cancer were included. SOX2 protein expression was not related to age, menopausal status, lymph node metastasis, lymphovascular invasion, molecular estrogen receptor status, progesterone receptor status, triple-negative status, and the overall survival in breast cancer, but was closely associated with advanced tumor grade (grade 3 vs. grade 1-2: OR = 2.74, 95% CI = 1.85-4.06, p < 0.001), clinical stage (stage 3-4 vs. stage 0-2: OR = 2.46, 95% CI = 1.37-4.40, p = 0.002), pT stage (T stage 2-4 vs. T stage 1: OR = 1.52, 95% CI = 1.07-2.17, p = 0.019), molecular human epidermal growth factor receptor 2 (HER2) status (positive vs. negative: OR = 1.61, 95% CI = 1.21-2.14, p = 0.001), epidermal growth factor receptor (EGFR) status (positive vs. negative: OR = 2.21, 95% CI = 1.13-4.33, p = 0.021), and worse disease-free survival (DFS) (HR = 2.66, 95% CI = 1.20-5.91, p = 0.016) of breast cancer. Conclusions SOX2 expression is correlated with breast cancer progression, HER2 status, and EGFR status, and may be an independent prognostic marker for predicting poor DFS.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Xiaozhen Wang
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Limei Qu
- Department of Pathology, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Zhu Zhu
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Jinghui Hong
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Haiqin Hou
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Zuonong Li
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Jun Wang
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Zheng Lv
- Cancer Center, the First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Garcia-Mayea Y, Mir C, Masson F, Paciucci R, LLeonart ME. Insights into new mechanisms and models of cancer stem cell multidrug resistance. Semin Cancer Biol 2020; 60:166-180. [PMID: 31369817 DOI: 10.1016/j.semcancer.2019.07.022] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022]
Abstract
The acquisition of genetic alterations, clonal evolution, and the tumor microenvironment promote cancer progression, metastasis and therapy resistance. These events correspond to the establishment of the great phenotypic heterogeneity and plasticity of cancer cells that contribute to tumor progression and resistant disease. Targeting resistant cancers is a major challenge in oncology; however, the underlying processes are not yet fully understood. Even though current treatments can reduce tumor size and increase life expectancy, relapse and multidrug resistance (MDR) ultimately remain the second cause of death in developed countries. Recent evidence points toward stem-like phenotypes in cancer cells, promoted by cancer stem cells (CSCs), as the main culprit of cancer relapse, resistance (radiotherapy, hormone therapy, and/or chemotherapy) and metastasis. Many mechanisms have been proposed for CSC resistance, such as drug efflux through ABC transporters, overactivation of the DNA damage response (DDR), apoptosis evasion, prosurvival pathways activation, cell cycle promotion and/or cell metabolic alterations. Nonetheless, targeted therapy toward these specific CSC mechanisms is only partially effective to prevent or abolish resistance, suggesting underlying additional causes for CSC resilience. This article aims to provide an integrated picture of the MDR mechanisms that operate in CSCs' behavior and to propose a novel model of tumor evolution during chemotherapy. Targeting the pathways mentioned here might hold promise and reveal new strategies for future clinical therapeutic approaches.
Collapse
Affiliation(s)
- Y Garcia-Mayea
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - C Mir
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - F Masson
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - R Paciucci
- Clinical Biochemistry Group, Vall d'Hebron Hospital and Vall d´Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - M E LLeonart
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain; Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Spain.
| |
Collapse
|
13
|
Azoulay‐Ginsburg S, Trobiani L, Setini A, Favaloro FL, Giorda E, Jacob A, Hauschner H, Levy L, Cestra G, De Jaco A, Gruzman A. A Lipophilic 4‐Phenylbutyric Acid Derivative That Prevents Aggregation and Retention of Misfolded Proteins. Chemistry 2020; 26:1834-1845. [DOI: 10.1002/chem.201904292] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/17/2019] [Indexed: 12/20/2022]
Affiliation(s)
| | - Laura Trobiani
- Department of Biology and Biotechnology “Charles Darwin”, andPasteur Institute—Cenci Bolognetti FoundationSapienza University of Rome Piazzale Aldo Moro 5 Rome 00185 Italy
| | - Andrea Setini
- Department of Biology and Biotechnology “Charles Darwin”, andPasteur Institute—Cenci Bolognetti FoundationSapienza University of Rome Piazzale Aldo Moro 5 Rome 00185 Italy
| | - Flores Lietta Favaloro
- Department of Biology and Biotechnology “Charles Darwin”, andPasteur Institute—Cenci Bolognetti FoundationSapienza University of Rome Piazzale Aldo Moro 5 Rome 00185 Italy
| | - Ezio Giorda
- Ospedale Pediatrico Bambin Gesù-Rome Piazza di Sant'Onofrio 4 Rome 00165 Italy
| | - Avi Jacob
- Faculty of Life SciencesBar-Ilan University Ramat-Gan 5290002 Israel
| | - Hagit Hauschner
- Faculty of Life SciencesBar-Ilan University Ramat-Gan 5290002 Israel
| | - Laura Levy
- Department of ChemistryBar-Ilan University Ramat-Gan 5290002 Israel
| | - Gianluca Cestra
- Department of Biology and Biotechnology “Charles Darwin”, andPasteur Institute—Cenci Bolognetti FoundationSapienza University of Rome Piazzale Aldo Moro 5 Rome 00185 Italy
- Institute of Molecular Biology and Pathology—National Research CouncilSapienza University of Rome Piazzale Aldo Moro 5 Rome 00185 Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnology “Charles Darwin”, andPasteur Institute—Cenci Bolognetti FoundationSapienza University of Rome Piazzale Aldo Moro 5 Rome 00185 Italy
| | - Arie Gruzman
- Department of ChemistryBar-Ilan University Ramat-Gan 5290002 Israel
| |
Collapse
|
14
|
Dual role of Endoplasmic Reticulum Stress-Mediated Unfolded Protein Response Signaling Pathway in Carcinogenesis. Int J Mol Sci 2019; 20:ijms20184354. [PMID: 31491919 PMCID: PMC6770252 DOI: 10.3390/ijms20184354] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer constitutes a grave problem nowadays in view of the fact that it has become one of the main causes of death worldwide. Poor clinical prognosis is presumably due to cancer cells metabolism as tumor microenvironment is affected by oxidative stress. This event triggers adequate cellular response and thereby creates appropriate conditions for further cancer progression. Endoplasmic reticulum (ER) stress occurs when the balance between an ability of the ER to fold and transfer proteins and the degradation of the misfolded ones become distorted. Since ER is an organelle relatively sensitive to oxidative damage, aforementioned conditions swiftly cause the activation of the unfolded protein response (UPR) signaling pathway. The output of the UPR, depending on numerous factors, may vary and switch between the pro-survival and the pro-apoptotic branch, and hence it displays opposing effects in deciding the fate of the cancer cell. The role of UPR-related proteins in tumorigenesis, such as binding the immunoglobulin protein (BiP) and inositol-requiring enzyme-1α (IRE1α), activating transcription factor 6 (ATF6) or the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), has already been specifically described so far. Nevertheless, due to the paradoxical outcomes of the UPR activation as well as gaps in current knowledge, it still needs to be further investigated. Herein we would like to elicit the actual link between neoplastic diseases and the UPR signaling pathway, considering its major branches and discussing its potential use in the development of a novel, anti-cancer, targeted therapy.
Collapse
|
15
|
Sicari D, Fantuz M, Bellazzo A, Valentino E, Apollonio M, Pontisso I, Di Cristino F, Dal Ferro M, Bicciato S, Del Sal G, Collavin L. Mutant p53 improves cancer cells' resistance to endoplasmic reticulum stress by sustaining activation of the UPR regulator ATF6. Oncogene 2019; 38:6184-6195. [PMID: 31312025 DOI: 10.1038/s41388-019-0878-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/27/2019] [Accepted: 06/30/2019] [Indexed: 12/17/2022]
Abstract
Missense mutations in the TP53 gene are frequent in human cancers, giving rise to mutant p53 proteins that can acquire oncogenic properties. Gain of function mutant p53 proteins can enhance tumour aggressiveness by promoting cell invasion, metastasis and chemoresistance. Accumulating evidences indicate that mutant p53 proteins can also modulate cell homeostatic processes, suggesting that missense p53 mutation may increase resistance of tumour cells to intrinsic and extrinsic cancer-related stress conditions, thus offering a selective advantage. Here we provide evidence that mutant p53 proteins can modulate the Unfolded Protein Response (UPR) to increase cell survival upon Endoplasmic Reticulum (ER) stress, a condition to which cancer cells are exposed during tumour formation and progression, as well as during therapy. Mechanistically, this action of mutant p53 is due to enhanced activation of the pro-survival UPR effector ATF6, coordinated with inhibition of the pro-apoptotic UPR effectors JNK and CHOP. In a triple-negative breast cancer cell model with missense TP53 mutation, we found that ATF6 activity is necessary for viability and invasion phenotypes. Together, these findings suggest that ATF6 inhibitors might be combined with mutant p53-targeting drugs to specifically sensitise cancer cells to endogenous or chemotherapy-induced ER stress.
Collapse
Affiliation(s)
- Daria Sicari
- National Laboratory CIB (LNCIB), AREA Science Park, 34149, Trieste, Italy.,Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Marco Fantuz
- National Laboratory CIB (LNCIB), AREA Science Park, 34149, Trieste, Italy.,Department of Life Sciences, University of Trieste, 34127, Trieste, Italy.,International School for Advanced Studies (SISSA), Trieste, Italy
| | - Arianna Bellazzo
- National Laboratory CIB (LNCIB), AREA Science Park, 34149, Trieste, Italy.,Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Elena Valentino
- National Laboratory CIB (LNCIB), AREA Science Park, 34149, Trieste, Italy.,Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Mattia Apollonio
- National Laboratory CIB (LNCIB), AREA Science Park, 34149, Trieste, Italy.,Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Ilaria Pontisso
- National Laboratory CIB (LNCIB), AREA Science Park, 34149, Trieste, Italy.,Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Francesca Di Cristino
- National Laboratory CIB (LNCIB), AREA Science Park, 34149, Trieste, Italy.,Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Marco Dal Ferro
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, 41100, Modena, Italy
| | - Giannino Del Sal
- National Laboratory CIB (LNCIB), AREA Science Park, 34149, Trieste, Italy. .,Department of Life Sciences, University of Trieste, 34127, Trieste, Italy. .,IFOM, the FIRC Institute of Molecular Oncology, Trieste, Italy.
| | - Licio Collavin
- National Laboratory CIB (LNCIB), AREA Science Park, 34149, Trieste, Italy. .,Department of Life Sciences, University of Trieste, 34127, Trieste, Italy.
| |
Collapse
|
16
|
Zhang QL, Lian DD, Zhu MJ, Li XM, Lee JK, Yoon TJ, Lee JH, Jiang RH, Kim CD. Antitumor Effect of Albendazole on Cutaneous Squamous Cell Carcinoma (SCC) Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3689517. [PMID: 31281836 PMCID: PMC6590486 DOI: 10.1155/2019/3689517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/26/2022]
Abstract
Drug repurposing and/or repositioning is an alternative method to develop new treatment for certain diseases. Albendazole was originally developed as an anthelmintic medication, and it has been used to treat a variety of parasitic infestations. In this study, we investigated the antitumor effect of albendazole and putative action mechanism. Results showed that albendazole dramatically decreased the cell viability of SCC cell lines (SCC12 and SCC13 cells). Albendazole increased apoptosis-related signals, including cleaved caspase-3 and PARP-1 in a dose-dependent fashion. The mechanistic study showed that albendazole induced endoplasmic reticulum (ER) stress, evidenced by increase of CHOP, ATF-4, caspase-4, and caspase-12. Pretreatment with ER stress inhibitor 4-PBA attenuated albendazole-induced apoptosis of SCC cells. In addition, albendazole decreased the colony-forming ability of SCC cells, together with inhibition of Wnt/β-catenin signaling. These results indicate that albendazole shows an antitumor effect via regulation of ER stress and cancer stemness, suggesting that albendazole could be repositioned for cutaneous SCC treatment.
Collapse
Affiliation(s)
- Qing-Ling Zhang
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - De-De Lian
- Department of Intensive Care Unit, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ming Ji Zhu
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xue Mei Li
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Kyung Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Tae-Jin Yoon
- Department of Dermatology and Institute of Health Sciences, School of Medicine, Gyeongsang National University & Hospital, Jinju, Republic of Korea
| | - Jeung-Hoon Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Skin Med Company, Daejeon, Republic of Korea
| | - Ri-Hua Jiang
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Chang Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|