1
|
Liu Q, Xie J, Zhou R, Deng J, Nie W, Sun S, Wang H, Shi C. A matrix metalloproteinase-responsive hydrogel system controls angiogenic peptide release for repair of cerebral ischemia/reperfusion injury. Neural Regen Res 2025; 20:503-517. [PMID: 38819063 PMCID: PMC11317963 DOI: 10.4103/nrr.nrr-d-23-01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/12/2023] [Accepted: 01/29/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00028/figure1/v/2024-05-28T214302Z/r/image-tiff Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI (QK) are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases. However, conventional topical drug delivery often results in a burst release of the drug, leading to transient retention (inefficacy) and undesirable diffusion (toxicity) in vivo. Therefore, a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke. Matrix metalloproteinase-2 (MMP-2) is gradually upregulated after cerebral ischemia. Herein, vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG (TIMP) and customizable peptide amphiphilic (PA) molecules to construct nanofiber hydrogel PA-TIMP-QK. PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro. The results indicated that PA-TIMP-QK promoted neuronal survival, restored local blood circulation, reduced blood-brain barrier permeability, and restored motor function. These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Qi Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jianye Xie
- Department of General Practice, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Runxue Zhou
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Jin Deng
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Weihong Nie
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Shuwei Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Haiping Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
2
|
Chen J, Hu R, Shang L, Li X, Lin Y, Yao Y, Hu C. The HALP (hemoglobin, albumin, lymphocyte, and platelet) score is associated with hemorrhagic transformation after intravenous thrombolysis in patients with acute ischemic stroke. Front Neurol 2024; 15:1428120. [PMID: 39524911 PMCID: PMC11543568 DOI: 10.3389/fneur.2024.1428120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Background Hemorrhagic transformation (HT) after intravenous thrombolysis (IVT) with rt-PA can precipitate rapid neurological deterioration, poor prognosis, and even death. The HALP score (hemoglobin, albumin, lymphocyte, and platelet) is a novel indicator developed to reflect both systemic inflammation and the nutritional status of patients. The goal of this study was to reveal the relationship between the HALP score and the risk of HT after IVT in people with acute ischemic stroke (AIS). Methods A total of 753 patients with AIS were included in this study. Patients were divided into quartiles according to baseline HALP score. The HALP score was calculated as follows: hemoglobin (g/L) × albumin (g/L) × lymphocytes (/L)/platelets (/L). Binary logistic regression was used to reveal the connection between HALP score and HT. Results The baseline HALP score were significantly lower in the HT than non-HT patients (p < 0.001). The HALP score were divided into four quartiles: Q1 (<27.4), Q2 (27.4-37.6), Q3 (37.7-49.6), Q4 (>49.6), respectively. Moreover, the severity of HT increased with decreasing HALP level (p < 0.001). In multivariable logistic regression, taking the Q4 as the reference, the association between Q1 and HT remained, after adjusting for confounding variables [odds ratio (OR) = 3.197, 95% confidence interval (CI) = 1.634-6.635, p = 0.003]. Conclusion The HALP value can predict the HT risk after IVT in patients with AIS. A lower HALP level was associated with an increased severity of HT post-IVT.
Collapse
Affiliation(s)
- Jiahao Chen
- Department of Neurology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Rui Hu
- Department of Neurology, Yongkang First People’s Hospital, Jinhua, China
| | - Lejia Shang
- Ruao Town Health Service Center, Shaoxing, China
| | - Xiaoqin Li
- Department of Neurology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yisi Lin
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, China
| | - Yu Yao
- Department of Neurology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Chuanchen Hu
- Department of Neurology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
3
|
Grinchevskaya LR, Salikhova DI, Silachev DN, Goldshtein DV. Neural and Glial Regulation of Angiogenesis in CNS in Ischemic Stroke. Bull Exp Biol Med 2024:10.1007/s10517-024-06219-4. [PMID: 39266920 DOI: 10.1007/s10517-024-06219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 09/14/2024]
Abstract
CNS diseases associated with compromised blood supply and/or vascular integrity are one of the leading causes of mortality and disability in adults worldwide and are also among 10 most common causes of death in children. Angiogenesis is an essential element of regeneration processes upon nervous tissue damage and can play a crucial role in neuroprotection. Here we review the features of cerebral vascular regeneration after ischemic stroke, including the complex interactions between endothelial cells and other brain cell types (neural stem cells, astrocytes, microglia, and oligodendrocytes). The mechanisms of reciprocal influence of angiogenesis and neurogenesis, the role of astrocytes in the formation of the blood-brain barrier, and roles of microglia and oligodendrocytes in vascular regeneration are discussed. Understanding the mechanisms of angiogenesis regulation in CNS is of critical importance for the development of new treatments of neurovascular pathologies.
Collapse
Affiliation(s)
- L R Grinchevskaya
- Research Institute of Molecular and Cellular Medicine, Medical Institute, RUDN University, Moscow, Russia
| | - D I Salikhova
- Research Institute of Molecular and Cellular Medicine, Medical Institute, RUDN University, Moscow, Russia.
- Research Centre for Medical Genetics, Moscow, Russia.
| | - D N Silachev
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - D V Goldshtein
- Research Institute of Molecular and Cellular Medicine, Medical Institute, RUDN University, Moscow, Russia
- Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
4
|
Alhadidi QM, Bahader GA, Arvola O, Kitchen P, Shah ZA, Salman MM. Astrocytes in functional recovery following central nervous system injuries. J Physiol 2024; 602:3069-3096. [PMID: 37702572 PMCID: PMC11421637 DOI: 10.1113/jp284197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Astrocytes are increasingly recognised as partaking in complex homeostatic mechanisms critical for regulating neuronal plasticity following central nervous system (CNS) insults. Ischaemic stroke and traumatic brain injury are associated with high rates of disability and mortality. Depending on the context and type of injury, reactive astrocytes respond with diverse morphological, proliferative and functional changes collectively known as astrogliosis, which results in both pathogenic and protective effects. There is a large body of research on the negative consequences of astrogliosis following brain injuries. There is also growing interest in how astrogliosis might in some contexts be protective and help to limit the spread of the injury. However, little is known about how astrocytes contribute to the chronic functional recovery phase following traumatic and ischaemic brain insults. In this review, we explore the protective functions of astrocytes in various aspects of secondary brain injury such as oedema, inflammation and blood-brain barrier dysfunction. We also discuss the current knowledge on astrocyte contribution to tissue regeneration, including angiogenesis, neurogenesis, synaptogenesis, dendrogenesis and axogenesis. Finally, we discuss diverse astrocyte-related factors that, if selectively targeted, could form the basis of astrocyte-targeted therapeutic strategies to better address currently untreatable CNS disorders.
Collapse
Affiliation(s)
- Qasim M Alhadidi
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pharmacy, Al-Yarmok University College, Diyala, Iraq
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Oiva Arvola
- Division of Anaesthesiology, Jorvi Hospital, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Mootaz M Salman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Kavli Institute for NanoScience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Cheng XD, Zhang CX, Zhang Q, Zhou S, Jia LJ, Wang LR, Wang JH, Yu NW, Li BH. Predictive Role of Pre-Thrombolytic Neutrophil-Platelet Ratio on Hemorrhagic Transformation After Intravenous Thrombolysis in Acute Ischemic Stroke. Clin Appl Thromb Hemost 2024; 30:10760296231223192. [PMID: 38166411 PMCID: PMC10768614 DOI: 10.1177/10760296231223192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/04/2024] Open
Abstract
To investigate the predictive role of the neutrophil-platelet ratio (NPR) before intravenous thrombolysis (IVT) on hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS). AIS patients treated with IVT without endovascular therapy between June 2019 and February 2023 were included. Patients were divided into high NPR (>35) and low NPR (≤35) groups according to the optimal threshold NPR value for identifying high-risk patients before IVT. The baseline data and the incidence of HT and symptomatic intracranial hemorrhage (sICH) were compared between the two groups. The predictive role of the NPR and other related factors on HT after IVT was analyzed by multivariate logistic regression. A total of 247 patients were included, with an average age of 67.5 ± 12.4 years. Post-thrombolytic HT was observed in 18.6% of the patients, and post-thrombolytic sICH was observed in 1.2% of the patients. There were 69 patients in the high NPR group and 178 patients in the low NPR group. The incidence of HT in the high NPR group was significantly higher than that in the low NPR group (30.4% vs 16.3%, P < .05). The incidence of sICH was significantly higher in the high NPR group than in the low NPR group (14.5% vs 1.7%, P < .001). Multivariate logistic regression analysis showed that NPR > 35 was positively correlated with HT (odds ratio (OR) = 3.236, 95% confidence interval (CI): 1.481-7.068, P = .003) and sICH (OR = 13.644, 95% CI: 2.392-77.833, P = .003). A high NPR (>35) before IVT may be a predictor of HT in AIS patients. This finding may help clinicians make clinical decisions before IVT in AIS patients.
Collapse
Affiliation(s)
- Xu-Dong Cheng
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Chun-Xi Zhang
- Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Zhang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Sen Zhou
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Li-Jun Jia
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Li-Rong Wang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jian-Hong Wang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Neng-Wei Yu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Bing-Hu Li
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Gong X, Wang N, Zhu H, Tang N, Wu K, Meng Q. Anti-NMDAR antibodies, the blood-brain barrier, and anti-NMDAR encephalitis. Front Neurol 2023; 14:1283511. [PMID: 38145121 PMCID: PMC10748502 DOI: 10.3389/fneur.2023.1283511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/03/2023] [Indexed: 12/26/2023] Open
Abstract
Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is an antibody-related autoimmune encephalitis. It is characterized by the existence of antibodies against NMDAR, mainly against the GluN1 subunit, in cerebrospinal fluid (CSF). Recent research suggests that anti-NMDAR antibodies may reduce NMDAR levels in this disorder, compromising synaptic activity in the hippocampus. Although anti-NMDAR antibodies are used as diagnostic indicators, the origin of antibodies in the central nervous system (CNS) is unclear. The blood-brain barrier (BBB), which separates the brain from the peripheral circulatory system, is crucial for antibodies and immune cells to enter or exit the CNS. The findings of cytokines in this disorder support the involvement of the BBB. Here, we aim to review the function of NMDARs and the relationship between anti-NMDAR antibodies and anti-NMDAR encephalitis. We summarize the present knowledge of the composition of the BBB, especially by emphasizing the role of BBB components. Finally, we further provide a discussion on the impact of BBB dysfunction in anti-NMDAR encephalitis.
Collapse
Affiliation(s)
- Xiarong Gong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Department of MR, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Niya Wang
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Hongyan Zhu
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Ning Tang
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Kunhua Wu
- Department of MR, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Qiang Meng
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
7
|
Manu DR, Slevin M, Barcutean L, Forro T, Boghitoiu T, Balasa R. Astrocyte Involvement in Blood-Brain Barrier Function: A Critical Update Highlighting Novel, Complex, Neurovascular Interactions. Int J Mol Sci 2023; 24:17146. [PMID: 38138976 PMCID: PMC10743219 DOI: 10.3390/ijms242417146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Neurological disorders have been linked to a defective blood-brain barrier (BBB), with dysfunctions triggered by stage-specific disease mechanisms, some of these being generated through interactions in the neurovascular unit (NVU). Advanced knowledge of molecular and signaling mechanisms in the NVU and the emergence of improved experimental models allow BBB permeability prediction and the development of new brain-targeted therapies. As NVU constituents, astrocytes are the most numerous glial cells, characterized by a heterogeneity that occurs as a result of developmental and context-based gene expression profiles and the differential expression of non-coding ribonucleic acids (RNAs). Due to their heterogeneity and dynamic responses to different signals, astrocytes may have a beneficial or detrimental role in the BBB's barrier function, with deep effects on the pathophysiology of (and on the progression of) central nervous system diseases. The implication of astrocytic-derived extracellular vesicles in pathological mechanisms, due to their ability to pass the BBB, must also be considered. The molecular mechanisms of astrocytes' interaction with endothelial cells at the BBB level are considered promising therapeutic targets in different neurological conditions. Nevertheless, a personalized and well-founded approach must be addressed, due to the temporal and spatial heterogeneity of reactive astrogliosis states during disease.
Collapse
Affiliation(s)
- Doina Ramona Manu
- Centre for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania; (D.R.M.); (M.S.)
| | - Mark Slevin
- Centre for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania; (D.R.M.); (M.S.)
- Department of Life Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK
| | - Laura Barcutean
- Neurology 1 Clinic, County Emergency Clinical Hospital, 540136 Targu Mures, Romania;
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Timea Forro
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
| | - Tudor Boghitoiu
- Psychiatry II Clinic, County Clinical Hospital, 540072 Targu Mures, Romania;
| | - Rodica Balasa
- Neurology 1 Clinic, County Emergency Clinical Hospital, 540136 Targu Mures, Romania;
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| |
Collapse
|
8
|
Lin W, Zhao XY, Cheng JW, Li LT, Jiang Q, Zhang YX, Han F. Signaling pathways in brain ischemia: Mechanisms and therapeutic implications. Pharmacol Ther 2023; 251:108541. [PMID: 37783348 DOI: 10.1016/j.pharmthera.2023.108541] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Ischemic stroke occurs when the arteries supplying blood to the brain are narrowed or blocked, inducing damage to brain tissue due to a lack of blood supply. One effective way to reduce brain damage and alleviate symptoms is to reopen blocked blood vessels in a timely manner and reduce neuronal damage. To achieve this, researchers have focused on identifying key cellular signaling pathways that can be targeted with drugs. These pathways include oxidative/nitrosative stress, excitatory amino acids and their receptors, inflammatory signaling molecules, metabolic pathways, ion channels, and other molecular events involved in stroke pathology. However, evidence suggests that solely focusing on protecting neurons may not yield satisfactory clinical results. Instead, researchers should consider the multifactorial and complex mechanisms underlying stroke pathology, including the interactions between different components of the neurovascular unit. Such an approach is more representative of the actual pathological process observed in clinical settings. This review summarizes recent research on the multiple molecular mechanisms and drug targets in ischemic stroke, as well as recent advances in novel therapeutic strategies. Finally, we discuss the challenges and future prospects of new strategies based on the biological characteristics of stroke.
Collapse
Affiliation(s)
- Wen Lin
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang-Yu Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Wen Cheng
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Li-Tao Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Quan Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yi-Xuan Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China.
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
9
|
Wang Y, Wei Y, Chen L, Yang Y, Jia F, Yu W, Zhou S, Yu S. Research progress of siVEGF complex and their application in antiangiogenic therapy. Int J Pharm 2023; 643:123251. [PMID: 37481098 DOI: 10.1016/j.ijpharm.2023.123251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Vascular endothelial growth factor (VEGF) is an important factor in the development of some diseases such as tumors, ocular neovascular disease and endometriosis. Inhibition of abnormal VEGF expression is one of the most effective means of treating these diseases. The resistance and side effects of currently used VEGF drugs limit their application. Herein, small interfering RNA for VEGF (siVEGF) are developed to inhibit VEGF expression at the genetic level by means of RNA interference. However, as a foreign substance entering the organism, siVEGF is prone to induce an immune response or mismatch, which adversely affects the organism. It is also subjected to enzymatic degradation and cell membrane blockage, which greatly reduces its therapeutic effect. Targeted siVEGF complexes are constructed by nanocarriers to avoid their clearance by the body and precisely target cells, exerting anti-vascular effects for the treatment of relevant diseases. In addition, some multifunctional complexes allow for the combination of siVEGF with other therapeutic tools to improve the treat efficiency of the disease. Therefore, this review describes the construction of the siVEGF complex, its mechanism of action, application in anti-blood therapy, and provides an outlook on its current problems and prospects.
Collapse
Affiliation(s)
- Yan Wang
- Shanxi Medical University, Taiyuan 030001, China
| | - Yingying Wei
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Lin Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Fan Jia
- Shanxi Medical University, Taiyuan 030001, China
| | - Weiran Yu
- The Affiliated High School of Shanxi University, Taiyuan 030006, China
| | - Shizhao Zhou
- Shanxi Medical University, Taiyuan 030001, China
| | - Shiping Yu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China.
| |
Collapse
|
10
|
Sun C, Cao N, Wang Q, Liu N, Yang T, Li S, Pan L, Yao J, Zhang L, Liu M, Zhang G, Xiao X, Liu C. Icaritin induces resolution of inflammation by targeting cathepsin B to prevents mice from ischemia-reperfusion injury. Int Immunopharmacol 2023. [DOI: 10.1016/j.intimp.2023.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
11
|
Targeting Non-Coding RNA for CNS Injuries: Regulation of Blood-Brain Barrier Functions. Neurochem Res 2023; 48:1997-2016. [PMID: 36786944 DOI: 10.1007/s11064-023-03892-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Central nervous system (CNS) injuries are the most common cause of death and disability around the world. The blood-brain barrier (BBB) is located at the interface between the CNS and the surrounding environment, which protects the CNS from exogenous molecules, harmful agents or microorganisms in the blood. The disruption of BBB is a common feature of CNS injuries and participates in the pathological processes of secondary brain damage. Recently, a growing number of studies have indicated that non-coding RNAs (ncRNAs) play an important role in brain development and are involved in CNS injuries. In this review, we summarize the mechanisms of BBB breakdown after CNS injuries. We also discuss the effects of ncRNAs including long noncoding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs) on BBB damage in CNS injuries such as ischemic stroke, traumatic brain injury (TBI), intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH). In addition, we clarify the pharmacotherapies that could regulate BBB function via ncRNAs in CNS injuries, as well as the challenges and perspectives of ncRNAs on modulation of BBB function. Hence, on the basis of these effects, ncRNAs may be developed as therapeutic agents to protect the BBB for CNS injury patients.
Collapse
|
12
|
Stigmasterol protects human brain microvessel endothelial cells against ischemia-reperfusion injury through suppressing EPHA2 phosphorylation. Chin J Nat Med 2023; 21:127-135. [PMID: 36871980 DOI: 10.1016/s1875-5364(23)60390-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Indexed: 03/07/2023]
Abstract
Stigmasterol is a plant sterol with anti-apoptotic, anti-oxidative and anti-inflammatory effect through multiple mechanisms. In this study, we further assessed whether it exerts protective effect on human brain microvessel endothelial cells (HBMECs) against ischemia-reperfusion injury and explored the underlying mechanisms. HBMECs were used to establish an in vitro oxygen and glucose deprivation/reperfusion (OGD/R) model, while a middle cerebral artery occlusion (MCAO) model of rats were constructed. The interaction between stigmasterol and EPHA2 was detected by surface plasmon resonance (SPR) and cellular thermal shift assay (CETSA). The results showed that 10 μmol·L-1 stigmasterol significantly protected cell viability, alleviated the loss of tight junction proteins and attenuated the blood-brain barrier (BBB) damage induced by OGD/R in thein vitro model. Subsequent molecular docking showed that stigmasterol might interact with EPHA2 at multiple sites, including T692, a critical gatekeep residue of this receptor. Exogenous ephrin-A1 (an EPHA2 ligand) exacerbated OGD/R-induced EPHA2 phosphorylation at S897, facilitated ZO-1/claudin-5 loss, and promoted BBB leakage in vitro, which were significantly attenuated after stigmasterol treatment. The rat MCAO model confirmed these protective effects in vivo. In summary, these findings suggest that stigmasterol protects HBMECs against ischemia-reperfusion injury by maintaining cell viability, reducing the loss of tight junction proteins, and attenuating the BBB damage. These protective effects are at least meditated by its interaction with EPHA2 and inhibitory effect on EPHA2 phosphorylation.
Collapse
|
13
|
Long non-coding RNAs as biomarkers and therapeutic targets for ischemic stroke. Noncoding RNA Res 2022; 7:226-232. [PMID: 36187570 PMCID: PMC9508273 DOI: 10.1016/j.ncrna.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
Background The problem of ischemic stroke (IS) has become increasingly important in recent years, as it ranks first in the structure of disability and mortality, crowding out other vascular diseases. In this regard, the study of this pathology and the search for new therapeutic and diagnostic tools remains an urgent problem of modern medical science and practice. Long non-coding RNAs (lncRNAs)-based therapeutics and diagnostic tools offer a very attractive area of study. Therefore, this systematic review aims at summarizing current knowledge on promising lncRNAs as biomarkers and therapeutic targets for IS exploring original articles and literature reviews on in vivo, in vitro and ex vivo experiments. Methods The current systematic review was performed according to PRISMA guidelines. PubMed, MEDLINE and Google Scholar databases were comprehensively explored to perform the article search. Results 34 eligible studies were included and analyzed: 25 focused on lncRNAs-based therapeutics and 9 on lncRNAs-based diagnosis. We found 31 different lncRNAs tested as potential therapeutic and diagnostic molecules in cells and animal model experiments. Among all founded lncRNA-based therapeutics and non-invasive diagnostic tools, nuclear enriched abundant transcript 1 (NEAT1) emerged to be the most investigated and proposed as a potential molecule for IS diagnosis and treatment. Conclusions Our analysis provides a snapshot of the current scenario regarding the lncRNAs as therapeutic molecules and biomarkers in IS. Different lncRNAs are differently expressed in IS, and some of them can be further evaluated as therapeutic targets and biomarkers for early diagnosis and prognosis or treatment response. However, despite many efforts, none of the selected studies go beyond preclinical studies, and their translation into clinical practice seems to be very premature.
Collapse
|
14
|
Peng B, Hao S, Tong Z, Bai H, Pan S, Lim KL, Li L, Voelcker NH, Huang W. Blood-brain barrier (BBB)-on-a-chip: a promising breakthrough in brain disease research. LAB ON A CHIP 2022; 22:3579-3602. [PMID: 36004771 DOI: 10.1039/d2lc00305h] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The blood-brain barrier (BBB) represents a key challenge in developing brain-penetrating therapeutic molecules. BBB dysfunction is also associated with the onset and progression of various brain diseases. The BBB-on-a-chip (μBBB), an organ-on-chip technology, has emerged as a powerful in vitro platform that closely mimics the human BBB microenvironments. While the μBBB technology has seen wide application in the study of brain cancer, its utility in other brain disease models ("μBBB+") is less appreciated. Based on the advances of the μBBB technology and the evolution of in vitro models for brain diseases over the last decade, we propose the concept of a "μBBB+" system and summarize its major promising applications in pathological studies, personalized medical research, drug development, and multi-organ-on-chip approaches. We believe that such a sophisticated "μBBB+" system is a highly tunable and promising in vitro platform for further advancement of the understanding of brain diseases.
Collapse
Affiliation(s)
- Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Shiping Hao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Ziqiu Tong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Sijun Pan
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| | - Nicolas H Voelcker
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
15
|
Han R, Zhang P, Li H, Chen Y, Hao Y, Guo Q, Zhang A, Li D. Differential Expression and Correlation Analysis of Global Transcriptome for Hemorrhagic Transformation After Acute Ischemic Stroke. Front Neurosci 2022; 16:889689. [PMID: 35757529 PMCID: PMC9214200 DOI: 10.3389/fnins.2022.889689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
In order to explore the epigenetic characteristics of hemorrhagic transformation (HT) after acute ischemic stroke, we used transcriptome sequencing technology to analyze the global transcriptome expression profile of patients with and without HT after acute ischemic stroke and to study the differential expression of messenger RNA (mRNA), long noncoding RNA (lncRNA), circular RNA (circRNA) and mircoRNA (miRNA) between the two groups. To further explore the role of differentially expressed genes in HT, we annotated the function of differentially expressed genes by using gene ontology (GO) and pathway analysis on the results and showed that there were 1,051 differential expressions of lncRNAs, 2,575 differential expressions of mRNAs, 447 differential expressions of circRNAs and 47 miRNAs in patients with HT compared with non-HT patients. Pathway analysis showed that ubiquitin-mediated proteolysis, MAPK signal pathway, axon guidance, HIF-1 signal pathway, NOD-like receptor signal pathway, beta-alanine metabolism, Wnt signal pathway, sphingolipid signal pathway, neuroactive ligand-receptor interaction, and intestinal immune network used in IgA production play an important role in HT. Terms such as iron homeostasis, defense response, immune system process, DNA conformational change, production of transforming growth factor beta-2, and oxidoreductase activity were enriched in the gene list, suggesting a potential correlation with HT. A total of 261 lncRNA-miRNA relationship pairs and 21 circRNA-miRNA relationship pairs were obtained; additionally, 5 circRNAs and 13 lncRNAs were screened, which can be used as competing endogenous RNA (ceRNA) to compete with miRNA in the co-expression network. Co-expression network analysis shows that these differentially expressed circRNA and lncRNA may play a vital role in HT and provide valuable information for new biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Rongrong Han
- Department of Clinical Medicine, Jining Medical University, Jining, China
| | - Peng Zhang
- Department of Clinical Medicine, Jining Medical University, Jining, China
| | - Hongfang Li
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yun Chen
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yongnan Hao
- Department of Emergency Stroke, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qiang Guo
- Department of Emergency Stroke, Affiliated Hospital of Jining Medical University, Jining, China
| | - Aimei Zhang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Daojing Li
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
16
|
Van Breedam E, Ponsaerts P. Promising Strategies for the Development of Advanced In Vitro Models with High Predictive Power in Ischaemic Stroke Research. Int J Mol Sci 2022; 23:ijms23137140. [PMID: 35806146 PMCID: PMC9266337 DOI: 10.3390/ijms23137140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Although stroke is one of the world’s leading causes of death and disability, and more than a thousand candidate neuroprotective drugs have been proposed based on extensive in vitro and animal-based research, an effective neuroprotective/restorative therapy for ischaemic stroke patients is still missing. In particular, the high attrition rate of neuroprotective compounds in clinical studies should make us question the ability of in vitro models currently used for ischaemic stroke research to recapitulate human ischaemic responses with sufficient fidelity. The ischaemic stroke field would greatly benefit from the implementation of more complex in vitro models with improved physiological relevance, next to traditional in vitro and in vivo models in preclinical studies, to more accurately predict clinical outcomes. In this review, we discuss current in vitro models used in ischaemic stroke research and describe the main factors determining the predictive value of in vitro models for modelling human ischaemic stroke. In light of this, human-based 3D models consisting of multiple cell types, either with or without the use of microfluidics technology, may better recapitulate human ischaemic responses and possess the potential to bridge the translational gap between animal-based in vitro and in vivo models, and human patients in clinical trials.
Collapse
|
17
|
Yin J, Shi C, He W, Yan W, Deng J, Zhang B, Yin M, Pei H, Wang H. Specific bio-functional CBD-PR1P peptide binding VEGF to collagen hydrogels promotes the recovery of cerebral ischemia in rats. J Biomed Mater Res A 2022; 110:1579-1589. [PMID: 35603700 DOI: 10.1002/jbm.a.37409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/06/2022]
Abstract
Ischemic stroke was a leading cause of death and long-term disability. It was an effective way to improve cerebral ischemia injury by promoting angiogenesis and neuroprotection. Vascular endothelial growth factor (VEGF) was a potent pro-angiogenic factor, and had neuroprotective effect. A short peptide (PR1P) derived from the extracellular VEGF-binding glycoprotein-Prominin-1 was reported to specifically bind to VEGF. In order to realize sustained release of VEGF, a bio-functional peptide-CBD-PR1P was constructed, which target VEGF to collagen hydrogels to limit the diffusion of VEGF. When the collagen hydrogels loading with CBD-PR1P and VEGF were injected into the cerebral ischemic cortex, increased angiogenesis, decreased apoptosis and enhanced neurons survival were observed in the ischemic area, that promoted the motor functional recovery of cerebral ischemic injury. Thus, this targeting delivery system of VEGF provided a promising therapeutic strategy for cerebral ischemia.
Collapse
Affiliation(s)
- Jia Yin
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Wenli He
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wenjing Yan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jin Deng
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bing Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Mengmeng Yin
- The Second Department of Neurology, Qingdao Central Hospital, Qingdao, Shandong, China
| | - Haitao Pei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haiping Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
18
|
Qin X, Wang J, Chen S, Liu G, Wu C, Lv Q, He X, Bai X, Huang W, Liao H. Astrocytic p75 NTR expression provoked by ischemic stroke exacerbates the blood-brain barrier disruption. Glia 2022; 70:892-912. [PMID: 35064700 DOI: 10.1002/glia.24146] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/16/2022]
Abstract
The disruption of the blood-brain barrier (BBB) plays a critical role in the pathology of ischemic stroke. p75 neurotrophin receptor (p75NTR ) contributes to the disruption of the blood-retinal barrier in retinal ischemia. However, whether p75NTR influences the BBB permeability after acute cerebral ischemia remains unknown. The present study investigated the role and underlying mechanism of p75NTR on BBB integrity in an ischemic stroke mouse model, middle cerebral artery occlusion (MCAO). After 24 h of MCAO, astrocytes and endothelial cells in the infarct-affected brain area up-regulated p75NTR . Genetic p75NTR knockdown (p75NTR+/- ) or pharmacological inhibition of p75NTR using LM11A-31, a selective inhibitor of p75NTR , both attenuated brain damage and BBB leakage in MCAO mice. Astrocyte-specific conditional knockdown of p75NTR mediated with an adeno-associated virus significantly ameliorated BBB disruption and brain tissue damage, as well as the neurological functions after stroke. Further molecular biological examinations indicated that astrocytic p75NTR activated NF-κB and HIF-1α signals, which upregulated the expression of MMP-9 and vascular endothelial growth factor (VEGF), subsequently leading to tight junction degradation after ischemia. As a result, increased leukocyte infiltration and microglia activation exacerbated brain injury after stroke. Overall, our results provide novel insight into the role of astrocytic p75NTR in BBB disruption after acute cerebral ischemia. The p75NTR may therefore be a potential therapeutic target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xiaoying Qin
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Jianing Wang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Shujian Chen
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Gang Liu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Chaoran Wu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Qunyu Lv
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Xinran He
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Wenhui Huang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Hong Liao
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
19
|
Sun P, Hamblin MH, Yin KJ. Non-coding RNAs in the regulation of blood–brain barrier functions in central nervous system disorders. Fluids Barriers CNS 2022; 19:27. [PMID: 35346266 PMCID: PMC8959280 DOI: 10.1186/s12987-022-00317-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 12/26/2022] Open
Abstract
The blood–brain barrier (BBB) is an essential component of the neurovascular unit that controls the exchanges of various biological substances between the blood and the brain. BBB damage is a common feature of different central nervous systems (CNS) disorders and plays a vital role in the pathogenesis of the diseases. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNAs (circRNAs), are important regulatory RNA molecules that are involved in almost all cellular processes in normal development and various diseases, including CNS diseases. Cumulative evidences have demonstrated ncRNA regulation of BBB functions in different CNS diseases. In this review, we have summarized the miRNAs, lncRNAs, and circRNAs that can be served as diagnostic and prognostic biomarkers for BBB injuries, and demonstrated the involvement and underlying mechanisms of ncRNAs in modulating BBB structure and function in various CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury (TBI), spinal cord injury (SCI), multiple sclerosis (MS), Alzheimer's disease (AD), vascular cognitive impairment and dementia (VCID), brain tumors, brain infections, diabetes, sepsis-associated encephalopathy (SAE), and others. We have also discussed the pharmaceutical drugs that can regulate BBB functions via ncRNAs-related signaling cascades in CNS disorders, along with the challenges, perspective, and therapeutic potential of ncRNA regulation of BBB functions in CNS diseases.
Collapse
|
20
|
Liu QL, Zhang Z, Wei X, Zhou ZG. Noncoding RNAs in tumor metastasis: molecular and clinical perspectives. Cell Mol Life Sci 2021; 78:6823-6850. [PMID: 34499209 PMCID: PMC11073083 DOI: 10.1007/s00018-021-03929-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Metastasis is the main culprit of cancer-associated mortality and involves a complex and multistage process termed the metastatic cascade, which requires tumor cells to detach from the primary site, intravasate, disseminate in the circulation, extravasate, adapt to the foreign microenvironment, and form organ-specific colonization. Each of these processes has been already studied extensively for molecular mechanisms focused mainly on protein-coding genes. Recently, increasing evidence is pointing towards RNAs without coding potential for proteins, referred to as non-coding RNAs, as regulators in shaping cellular activity. Since those first reports, the detection and characterization of non-coding RNA have explosively thrived and greatly enriched the understanding of the molecular regulatory networks in metastasis. Moreover, a comprehensive description of ncRNA dysregulation will provide new insights into novel tools for the early detection and treatment of metastatic cancer. In this review, we focus on discussion of the emerging role of ncRNAs in governing cancer metastasis and describe step by step how ncRNAs impinge on cancer metastasis. In particular, we highlight the diagnostic and therapeutic applications of ncRNAs in metastatic cancer.
Collapse
Affiliation(s)
- Qiu-Luo Liu
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Zong-Guang Zhou
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
21
|
Takata F, Nakagawa S, Matsumoto J, Dohgu S. Blood-Brain Barrier Dysfunction Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction. Front Cell Neurosci 2021; 15:661838. [PMID: 34588955 PMCID: PMC8475767 DOI: 10.3389/fncel.2021.661838] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is involved in the onset or progression of various neurodegenerative diseases. Initiation of neuroinflammation is triggered by endogenous substances (damage-associated molecular patterns) and/or exogenous pathogens. Activation of glial cells (microglia and astrocytes) is widely recognized as a hallmark of neuroinflammation and triggers the release of proinflammatory cytokines, leading to neurotoxicity and neuronal dysfunction. Another feature associated with neuroinflammatory diseases is impairment of the blood-brain barrier (BBB). The BBB, which is composed of brain endothelial cells connected by tight junctions, maintains brain homeostasis and protects neurons. Impairment of this barrier allows trafficking of immune cells or plasma proteins into the brain parenchyma and subsequent inflammatory processes in the brain. Besides neurons, activated glial cells also affect BBB integrity. Therefore, BBB dysfunction can amplify neuroinflammation and act as a key process in the development of neuroinflammation. BBB integrity is determined by the integration of multiple signaling pathways within brain endothelial cells through intercellular communication between brain endothelial cells and brain perivascular cells (pericytes, astrocytes, microglia, and oligodendrocytes). For prevention of BBB disruption, both cellular components, such as signaling molecules in brain endothelial cells, and non-cellular components, such as inflammatory mediators released by perivascular cells, should be considered. Thus, understanding of intracellular signaling pathways that disrupt the BBB can provide novel treatments for neurological diseases associated with neuroinflammation. In this review, we discuss current knowledge regarding the underlying mechanisms involved in BBB impairment by inflammatory mediators released by perivascular cells.
Collapse
Affiliation(s)
- Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinsuke Nakagawa
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Junichi Matsumoto
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
22
|
Yang R, Xu B, Yang B, Fu J, Chen H, Wang X. Non-coding RNAs: the extensive and interactive regulators of the blood-brain barrier permeability. RNA Biol 2021; 18:108-116. [PMID: 34241576 PMCID: PMC8677028 DOI: 10.1080/15476286.2021.1950465] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB), which controls permeability into and out of the nervous system, is a tightly connected, structural, and functional separation between the central nervous system (CNS) and circulating blood. CNS diseases, such as Alzheimer’s disease, multiple sclerosis, traumatic brain injury, stroke, meningitis, and brain cancers, often develop with the increased BBB permeability and further leads to irreversible CNS injury. Non-coding RNAs (ncRNAs) are functional RNA molecules that generally lack the coding abilities but can actively regulate the mRNA expression and function through different mechanisms. Various types of ncRNAs, including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), are highly expressed in brain microvascular endothelial cells and are potential mediators of BBB permeability. Here, we summarized the recent research progress on miRNA, lncRNA, and circRNA roles regulating the BBB permeability in different CNS diseases. Understanding how these ncRNAs affect the BBB permeability shall provide important therapeutic insights into the prevention and control of the BBB dysfunction.
Collapse
Affiliation(s)
- Ruicheng Yang
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Bojie Xu
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Bo Yang
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Jiyang Fu
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China
| | - Huanchun Chen
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Xiangru Wang
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| |
Collapse
|
23
|
The interplay of neurovasculature and adult hippocampal neurogenesis. Neurosci Lett 2021; 760:136071. [PMID: 34147540 DOI: 10.1016/j.neulet.2021.136071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/06/2021] [Accepted: 06/15/2021] [Indexed: 01/14/2023]
Abstract
The subgranular zone of the dentate gyrus provides a local microenvironment (niche) for neural stem cells. In the adult brain, it has been established that the vascular compartment of such niches has a significant role in regulating adult hippocampal neurogenesis. More recently, evidence showed that neurovascular coupling, the relationship between blood flow and neuronal activity, also regulates hippocampal neurogenesis. Here, we review the most recent articles on addressing the intricate relationship between neurovasculature and adult hippocampal neurogenesis and a novel pathway where functional hyperemia enhances hippocampal neurogenesis. In the end, we have further reviewed recent research showing that impaired neurovascular coupling may cause declined neurogenesis and contribute to brain damage in neurodegenerative diseases.
Collapse
|
24
|
Baek SJ, Hammock BD, Hwang IK, Li Q, Moustaid-Moussa N, Park Y, Safe S, Suh N, Yi SS, Zeldin DC, Zhong Q, Bradbury JA, Edin ML, Graves JP, Jung HY, Jung YH, Kim MB, Kim W, Lee J, Li H, Moon JS, Yoo ID, Yue Y, Lee JY, Han HJ. Natural Products in the Prevention of Metabolic Diseases: Lessons Learned from the 20th KAST Frontier Scientists Workshop. Nutrients 2021; 13:1881. [PMID: 34072678 PMCID: PMC8227583 DOI: 10.3390/nu13061881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022] Open
Abstract
The incidence of metabolic and chronic diseases including cancer, obesity, inflammation-related diseases sharply increased in the 21st century. Major underlying causes for these diseases are inflammation and oxidative stress. Accordingly, natural products and their bioactive components are obvious therapeutic agents for these diseases, given their antioxidant and anti-inflammatory properties. Research in this area has been significantly expanded to include chemical identification of these compounds using advanced analytical techniques, determining their mechanism of action, food fortification and supplement development, and enhancing their bioavailability and bioactivity using nanotechnology. These timely topics were discussed at the 20th Frontier Scientists Workshop sponsored by the Korean Academy of Science and Technology, held at the University of Hawaii at Manoa on 23 November 2019. Scientists from South Korea and the U.S. shared their recent research under the overarching theme of Bioactive Compounds, Nanoparticles, and Disease Prevention. This review summarizes presentations at the workshop to provide current knowledge of the role of natural products in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Seung J. Baek
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Bruce D. Hammock
- Department of Entomology, University of California, Davis, CA 95616, USA;
| | - In-Koo Hwang
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Qingxiao Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences & Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Y.P.); (Y.Y.)
| | - Stephen Safe
- Department of Biochemistry & Biophysics, Texas A & M University, College Station, TX 77843, USA;
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
| | - Sun-Shin Yi
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Darryl C. Zeldin
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Qixin Zhong
- Department of Food Sciences, University of Tennessee, Knoxville, TN 37996, USA;
| | - Jennifer Alyce Bradbury
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Matthew L. Edin
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Joan P. Graves
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Hyo-Young Jung
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Young-Hyun Jung
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Woosuk Kim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Jaehak Lee
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Hong Li
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Jong-Seok Moon
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Ik-Dong Yoo
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Y.P.); (Y.Y.)
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Ho-Jae Han
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| |
Collapse
|
25
|
Li C, Chen L, Wang Y, Wang T, Di D, Zhang H, Zhao H, Shen X, Guo J. Protein Nanoparticle-Related Osmotic Pressure Modifies Nonselective Permeability of the Blood-Brain Barrier by Increasing Membrane Fluidity. Int J Nanomedicine 2021; 16:1663-1680. [PMID: 33688184 PMCID: PMC7935347 DOI: 10.2147/ijn.s291286] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Intracellular tension plays a crucial role in the destruction of the blood-brain barrier (BBB) in response to lesion stimuli. Tight junction structure could be primarily affected by tension activity. In this study, we aimed to determine the effects of extracellular BBB damage on intracellular tension activity, and elucidate the mechanism underlying the effects of intracellular protein nanoparticle-related osmotic pressure on BBB permeability. METHODS The intracellular tension for tight junction proteins occludin and ZO1 was evaluated using the fluorescence resonance energy transfer (FRET)-based tension probes and cpstFRET analysis. The changes in mobility ratios of occludin were evaluated via the fluorescence recovery after photobleaching (FRAP) test. The cytoplasmic osmotic pressure (OP) was measured using Osmometer. The count rate of cytoplasmic nanoparticles was detected by Nanosight NS300. The activation of cofilin and stathmin was examined by Western blot analysis. The BBB permeability in vivo was determined via the changes of Evans Blue (EB) injected into SD rats. The tight junction formation was assessed by the measurement of transendothelial electrical resistance (TEER). Intracellular calcium or chloride ions were measured using Fluo-4 AM or MQAE dyes. RESULTS BBB lesions were accompanied by changes in occludin/ZO1 tension. Increases in intracellular osmotic pressure were involved in alteration of BBB permeability, possibly through the depolymerization of microfilaments or microtubules and mass production of protein nanoparticles according to the Donnan effect. Recovery of protein nanoparticle-related osmotic pressure could effectively reverse the effects of changes in occludin/ZO1 tension under BBB lesions. Outward tension of intracellular osmotic potential also caused upregulation of membrane fluidity, which promoted nonselective drug influx. CONCLUSION Our results suggest a crucial mechanical mechanism underlying BBB lesions, and protein nanoparticle-related osmotic pressure could be a novel therapeutic target for BBB lesion-related brain diseases.
Collapse
Affiliation(s)
- Chen Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - LinLin Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - YuanYuan Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - TingTing Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Dong Di
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Hao Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Science and Technology Experimental Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - HuanHuan Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Xu Shen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Jun Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Science and Technology Experimental Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
26
|
Yuan S, Liu KJ, Qi Z. Occludin regulation of blood-brain barrier and potential therapeutic target in ischemic stroke. Brain Circ 2020; 6:152-162. [PMID: 33210038 PMCID: PMC7646391 DOI: 10.4103/bc.bc_29_20] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/14/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
Occludin is a key structural component of the blood–brain barrier (BBB) that has recently become an important focus of research in BBB damages. Many studies have demonstrated that occludin could regulate the integrity and permeability of the BBB. The function of BBB depends on the level of occludin protein expression in brain endothelial cells. Moreover, occludin may serve as a potential biomarker for hemorrhage transformation after acute ischemic stroke. In this review, we summarize the role of occludin in BBB integrity and the regulatory mechanisms of occludin in the permeability of BBB after ischemic stroke. Multiple factors have been found to regulate occludin protein functions in maintaining BBB permeability, such as Matrix metalloproteinas-mediated cleavage, phosphorylation, ubiquitination, and related inflammatory factors. In addition, various signaling pathways participate in regulating the occludin expression, including nuclear factor-kappa B, mitogen-activated protein kinase, protein kinase c, RhoK, and ERK1/2. Emerging therapeutic interventions for ischemic stroke targeting occludin are described, including normobaric hyperoxia, Chinese medicine, chemical drugs, genes, steroid hormones, small molecular peptides, and other therapies. Since occludin has been shown to play a critical role in regulating BBB integrity, further preclinical studies will help evaluate and validate occludin as a viable therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Shuhua Yuan
- Department of Research Laboratory in Brain Injury and Protection, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Zhifeng Qi
- Department of Research Laboratory in Brain Injury and Protection, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Zhao Y, Yang J, Li C, Zhou G, Wan H, Ding Z, Wan H, Zhou H. Role of the neurovascular unit in the process of cerebral ischemic injury. Pharmacol Res 2020; 160:105103. [PMID: 32739425 DOI: 10.1016/j.phrs.2020.105103] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022]
Abstract
Cerebral ischemic injury exhibits both high morbidity and mortality worldwide. Traditional research of the pathogenesis of cerebral ischemic injury has focused on separate analyses of the involved cell types. In recent years, the neurovascular unit (NVU) mechanism of cerebral ischemic injury has been proposed in modern medicine. Hence, more effective strategies for the treatment of cerebral ischemic injury may be provided through comprehensive analysis of brain cells and the extracellular matrix. However, recent studies that have investigated the function of the NVU in cerebral ischemic injury have been insufficient. In addition, the metabolism and energy conversion of the NVU depend on interactions among multiple cell types, which make it difficult to identify the unique contribution of each cell type. Therefore, in the present review, we comprehensively summarize the regulatory effects and recovery mechanisms of four major cell types (i.e., astrocytes, microglia, brain-microvascular endothelial cells, and neurons) in the NVU under cerebral ischemic injury, as well as discuss the interactions among these cell types in the NVU. Furthermore, we discuss the common signaling pathways and signaling factors that mediate cerebral ischemic injury in the NVU, which may help to provide a theoretical basis for the comprehensive elucidation of cerebral ischemic injury.
Collapse
Affiliation(s)
- Yu Zhao
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Chang Li
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Guoying Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Haofang Wan
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Zhishan Ding
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
28
|
Zhou Y, Shao A, Yao Y, Tu S, Deng Y, Zhang J. Dual roles of astrocytes in plasticity and reconstruction after traumatic brain injury. Cell Commun Signal 2020; 18:62. [PMID: 32293472 PMCID: PMC7158016 DOI: 10.1186/s12964-020-00549-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of fatality and disability worldwide. Despite its high prevalence, effective treatment strategies for TBI are limited. Traumatic brain injury induces structural and functional alterations of astrocytes, the most abundant cell type in the brain. As a way of coping with the trauma, astrocytes respond in diverse mechanisms that result in reactive astrogliosis. Astrocytes are involved in the physiopathologic mechanisms of TBI in an extensive and sophisticated manner. Notably, astrocytes have dual roles in TBI, and some astrocyte-derived factors have double and opposite properties. Thus, the suppression or promotion of reactive astrogliosis does not have a substantial curative effect. In contrast, selective stimulation of the beneficial astrocyte-derived molecules and simultaneous attenuation of the deleterious factors based on the spatiotemporal-environment can provide a promising astrocyte-targeting therapeutic strategy. In the current review, we describe for the first time the specific dual roles of astrocytes in neuronal plasticity and reconstruction, including neurogenesis, synaptogenesis, angiogenesis, repair of the blood-brain barrier, and glial scar formation after TBI. We have also classified astrocyte-derived factors depending on their neuroprotective and neurotoxic roles to design more appropriate targeted therapies. Video Abstract
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Province, Zhejiang, 310009, Hangzhou, China.
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Province, Zhejiang, 310009, Hangzhou, China
| |
Collapse
|
29
|
Spampinato SF, Bortolotto V, Canonico PL, Sortino MA, Grilli M. Astrocyte-Derived Paracrine Signals: Relevance for Neurogenic Niche Regulation and Blood-Brain Barrier Integrity. Front Pharmacol 2019; 10:1346. [PMID: 31824311 PMCID: PMC6881379 DOI: 10.3389/fphar.2019.01346] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/24/2019] [Indexed: 01/12/2023] Open
Abstract
Astrocytes are essential for proper regulation of the central nervous system (CNS). Importantly, these cells are highly secretory in nature. Indeed they can release hundreds of molecules which play pivotal physiological roles in nervous tissues and whose abnormal regulation has been associated with several CNS disorders. In agreement with these findings, recent studies have provided exciting insights into the key contribution of astrocyte-derived signals in the pleiotropic functions of these cells in brain health and diseases. In the future, deeper analysis of the astrocyte secretome is likely to further increase our current knowledge on the full potential of these cells and their secreted molecules not only as active participants in pathophysiological events, but as pharmacological targets or even as therapeutics for neurological and psychiatric diseases. Herein we will highlight recent findings in our and other laboratories on selected molecules that are actively secreted by astrocytes and contribute in two distinct functions with pathophysiological relevance for the astroglial population: i) regulation of neural stem cells (NSCs) and their progeny within adult neurogenic niches; ii) modulation of the blood–brain barrier (BBB) integrity and function.
Collapse
Affiliation(s)
- Simona Federica Spampinato
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Valeria Bortolotto
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Pier Luigi Canonico
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Maria Angela Sortino
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
30
|
Cárdenas-Rivera A, Campero-Romero AN, Heras-Romero Y, Penagos-Puig A, Rincón-Heredia R, Tovar-Y-Romo LB. Early Post-stroke Activation of Vascular Endothelial Growth Factor Receptor 2 Hinders the Receptor 1-Dependent Neuroprotection Afforded by the Endogenous Ligand. Front Cell Neurosci 2019; 13:270. [PMID: 31312121 PMCID: PMC6614187 DOI: 10.3389/fncel.2019.00270] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) has long been connected to the development of tissue lesion following ischemic stroke. Contradictory findings either situate VEGF as a promoter of large infarct volumes or as a potential attenuator of damage due to its well documented neuroprotective capability. The core of this discrepancy mostly lies on the substantial number of pleiotropic functions driven by VEGF. Mechanistically, these effects are activated through several VEGF receptors for which various closely related ligands exist. Here, we tested in an experimental model of stroke how the differential activation of VEGF receptors 1 and 2 would modify functional and histological outcomes in the acute phase post-ischemia. We also assessed whether VEGF-mediated responses would involve the modulation of inflammatory mechanisms and how this trophic factor acted specifically on neuronal receptors. We produced ischemic infarcts in adult rats by transiently occluding the middle cerebral artery and induced the pharmacological inhibition of VEGF receptors by i.c.v. administration of the specific VEGFR2 inhibitor SU1498 and the pan-VEGFR blocker Axitinib. We evaluated the neurological performance of animals at 24 h following stroke and the occurrence of brain infarctions analyzed at the gross metabolic and neuronal viability levels. We also assessed the induction of peripheral pro- and anti-inflammatory cytokines in the cerebrospinal fluid and blood and assessed the polarization of activated microglia. Finally, we studied the direct involvement of cortical neuronal receptors for VEGF with in vitro assays of excitotoxic damage. Preferential VEGFR1 activation by the endogenous ligand promotes neuronal protection and prevents the presentation of large volume infarcts that highly correlate with neurological performance, while the concomitant activation of VEGFR2 reduces this effect, even in the presence of exogenous ligand. This process partially involves the polarization of microglia to the state M2. At the cellular level, neurons also responded better to the preferential activation of VEGFR1 when challenged to N-methyl-D-aspartate-induced excitotoxicity. Endogenous activation of VEGFR2 hinders the neuroprotective mechanisms mediated by the activation of VEGFR1. The selective modulation of these concurrent processes might enable the development of therapeutic approaches that target specific VEGFR1-mediated signaling during the acute phase post-stroke.
Collapse
Affiliation(s)
- Alfredo Cárdenas-Rivera
- Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aura N Campero-Romero
- Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yessica Heras-Romero
- Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Andrés Penagos-Puig
- Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Microscopy Core Unit, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis B Tovar-Y-Romo
- Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
31
|
Wang Q, Deng Y, Huang L, Zeng W, Chen S, Lv B, Jiang W, Han Y, Ding H, Wen M, Zeng H. Hypertonic saline downregulates endothelial cell-derived VEGF expression and reduces blood-brain barrier permeability induced by cerebral ischaemia via the VEGFR2/eNOS pathway. Int J Mol Med 2019; 44:1078-1090. [PMID: 31524227 PMCID: PMC6657973 DOI: 10.3892/ijmm.2019.4262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to explore the possible mechanisms by which hypertonic saline (HS) effectively ameliorates cerebral oedema via the vascular endothelial growth factor receptor 2 (VEGFR2)-mediated endothelial nitric oxide synthase (eNOS) pathway of endothelial cells in rats. A middle cerebral artery occlusion (MCAO) model in Sprague-Dawley rats and an oxygen-glucose deprivation (OGD) model in cells were used in the present study. Evans blue (EB) staining and a horseradish peroxidase flux assay were performed to evaluate the protective effect of 10% HS on the blood-brain barrier (BBB). The expression levels of vascular endothelial growth factor (VEGF), VEGFR2, zonula occludens 1 (ZO1) and occludin were quantified. The results demonstrated that 10% HS effectively reduced EB extravasation in the peri-ischaemic brain tissue. At 24 h after MCAO, the protein expression levels of VEGF and VEGFR2 in the peri-ischaemic brain tissue were downregulated following treatment with 10% HS. In vitro experiments demonstrated that the permeability of a monolayer endothelial cell barrier was decreased significantly following HS treatment. In addition, VEGF and VEGFR2 protein expression levels were increased in endothelial cells under hypoxic conditions, but that effect was suppressed by HS treatment. Furthermore, HS inhibited the downregulation of ZO1 and occludin effectively, possibly through the VEGFR2/phospholipase C γ1 (PLCγ1)/eNOS signalling pathway. In conclusion, 10% HS may alleviate cerebral oedema through reducing ischaemia-induced BBB permeability, as a consequence of inhibiting VEGFR2/PLCγ1/eNOS-mediated downregulation of ZO1 and occludin.
Collapse
Affiliation(s)
- Qiaosheng Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yiyu Deng
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Linqiang Huang
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Wenxin Zeng
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Shenglong Chen
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Bo Lv
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Wenqiang Jiang
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yongli Han
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Hongguang Ding
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Miaoyun Wen
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Hongke Zeng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
32
|
Chen J, Sun L, Ding GB, Chen L, Jiang L, Wang J, Wu J. Oxygen-Glucose Deprivation/Reoxygenation Induces Human Brain Microvascular Endothelial Cell Hyperpermeability Via VE-Cadherin Internalization: Roles of RhoA/ROCK2. J Mol Neurosci 2019; 69:49-59. [PMID: 31187440 DOI: 10.1007/s12031-019-01326-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
Abstract
The destruction of the blood-brain barrier (BBB) contributes to a spectrum of neurological diseases such as stroke, and the hyperpermeability of endothelial cells is one of the characters of stroke, which is possibly exacerbated after reperfusion. However, the underlying mechanisms involving hyperpermeability after reperfusion between the endothelial cells remain poorly understood. Therefore, in the present study, the human microvascular endothelial cells (HBMECs) were exposed to oxygen-glucose deprivation/reperfusion (OGD/R) to mimic ischemic stroke condition in vitro with the aim to investigate the potential mechanisms induced by OGD/R. The permeability of cultured HBMECs was measured using FITC-labeled dextran in a Transwell system and transendothelial electrical resistance (TEER), while the RhoA activity was detected by pull-down assay. In addition, the phosphorylation of MYPT1, which reflects the activation of ROCK and the internalization of VE-cadherin, was detected by Western blot. It showed that OGD/R treatment significantly increased the permeability of HBMEC monolayers and facilitated the internalization of VE-cadherin in HBMEC monolayers. Pull-down assay showed that RhoA activation was obviously enhanced after OGD/R treatment, while RhoA and ROCK inhibitor significantly reversed OGD/R-induced HBMEC monolayers hyperpermeability and the internalization of VE-cadherin. Meanwhile, the knockdown assay showed that RhoA small interfering RNA (siRNA) led to similar effects. The inactivation of the downstream effector protein ROCK was also examined. Intriguingly, ROCK2 rather than ROCK1 exerted its adverse effects on HBMEC monolayer integrity, since ROCK2 knockdown markedly reverses the injury of OGD/R in HBMEC monolayers. In conclusion, the present study provides evidence that OGD/R may induce HBMEC monolayer hyperpermeability via RhoA/ROCK2-mediated VE-cadherin internalization, which may provide an impetus for the development of therapeutics targeting BBB damage in ischemic stroke.
Collapse
Affiliation(s)
- Jie Chen
- Department of Neurology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Sun
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gui-Bing Ding
- Department of Neurology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Neurology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Jiang
- Department of Emergency Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Wang
- The Laboratory of Neurotoxicology, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Jin Wu
- Department of Neurology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
33
|
Kunze R, Marti HH. Angioneurins - Key regulators of blood-brain barrier integrity during hypoxic and ischemic brain injury. Prog Neurobiol 2019; 178:101611. [PMID: 30970273 DOI: 10.1016/j.pneurobio.2019.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
The loss of blood-brain barrier (BBB) integrity leading to vasogenic edema and brain swelling is a common feature of hypoxic/ischemic brain diseases such as stroke, but is also central to the etiology of other CNS disorders. In the past decades, numerous proteins, belonging to the family of angioneurins, have gained increasing attention as potential therapeutic targets for ischemic stroke, but also other CNS diseases attributed to BBB dysfunction. Angioneurins encompass mediators that affect both neuronal and vascular function. Recently, increasing evidence has been accumulated that certain angioneurins critically determine disease progression and outcome in stroke among others through multifaceted effects on the compromised BBB. Here, we will give a concise overview about the family of angioneurins. We further describe the most important cellular and molecular components that contribute to structural integrity and low permeability of the BBB under steady-state conditions. We then discuss BBB alterations in ischemic stroke, and highlight underlying cellular and molecular mechanisms. For the most prominent angioneurin family members including vascular endothelial growth factors, angiopoietins, platelet-derived growth factors and erythropoietin, we will summarize current scientific literature from experimental studies in animal models, and if available from clinical trials, on the following points: (i) spatiotemporal expression of these factors in the healthy and hypoxic/ischemic CNS, (ii) impact of loss- or gain-of-function during cerebral hypoxia/ischemia for BBB integrity and beyond, and (iii) potential underlying molecular mechanisms. Moreover, we will highlight novel therapeutic strategies based on the activation of endogenous angioneurins that might improve BBB dysfuntion during ischemic stroke.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany.
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
34
|
Feng SQ, Zong SY, Liu JX, Chen Y, Xu R, Yin X, Zhao R, Li Y, Luo TT. VEGF Antagonism Attenuates Cerebral Ischemia/Reperfusion-Induced Injury via Inhibiting Endoplasmic Reticulum Stress-Mediated Apoptosis. Biol Pharm Bull 2019; 42:692-702. [PMID: 30828041 DOI: 10.1248/bpb.b18-00628] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endoplasmic reticulum (ER) stress-mediated apoptosis pathway is considered to play a vital role in mediating stroke and other cerebrovascular diseases. Previous studies have showed that vascular endothelial growth factor (VEGF) antagonism reduced cerebral ischemic-reperfusion (CI/R) damage, but whether attenuation of ER stress-induced apoptosis is contributing to its mechanisms remains elusive. Our study aimed to investigate the protective effect of VEGF antagonism on CI/R-induced injury. First, oxygen-glucose deprivation and re-oxygenation (OGD/R) BEND3 cell model was constructed to estimate small interfering RNA (siRNA)-VEGF on damage of endothelial cells. Next, in animal model, CI/R mice were induced by middle cerebral artery occlusion (MCAO) for 2 h followed by 24 h reperfusion to investigate cerebral tissue damage. For treatment group, mice received 100 µg/kg anti-VEGF antibodies at 30 min before MCAO, followed by 24 h reperfusion. Our findings demonstrated that pre-administration of siRNA-VEGF before OGD/R changed the biological characteristics of BEND3 cells, reversed the levels of X-box binding protein-1 (XBP-1) and glucose-regulated protein 78 (GRP78), showing siRNA-VEGF attenuated, at least in part, the oxidative damage in OGD/R cell by down-regulating ER stress. In mice experiment, pre-administration of anti-VEGF antibody reduced the brain infarct volume and edema extent and improved neurological scores outcome of CI/R injury mice. Pathological and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining results also confirmed this protective effect. The expressions of VEGF, CATT/EBP homologous protein (CHOP), inositol requiring enzyme 1α (IRE-1α), and cleaved-caspase12 and c-jun N-terminal kinase (JNK) phosphorylation were also prominently decreased. These results suggested that inhibition of endogenous VEGF attenuates CI/R-induced injury via inhibiting ER stress-mediated apoptosis.
Collapse
Affiliation(s)
- Shu-Qing Feng
- Department of Ultrasound, The First People's Hospital of Yunnan Province.,Department of Ultrasound, The Affiliated Hospital of Kunming University of Science and Technology
| | - Shao-Yun Zong
- Department of Ultrasound, The First People's Hospital of Yunnan Province.,Department of Ultrasound, The Affiliated Hospital of Kunming University of Science and Technology
| | - Jia-Xin Liu
- Medical School of Kunming University of Science and Technology
| | - Yang Chen
- Department of Ultrasound, The First People's Hospital of Yunnan Province.,Department of Ultrasound, The Affiliated Hospital of Kunming University of Science and Technology
| | - Rong Xu
- Department of Ultrasound, The First People's Hospital of Yunnan Province.,Department of Ultrasound, The Affiliated Hospital of Kunming University of Science and Technology
| | - Xin Yin
- Department of Ultrasound, The First People's Hospital of Yunnan Province.,Department of Ultrasound, The Affiliated Hospital of Kunming University of Science and Technology
| | - Rong Zhao
- Yunnan province Hospital of Traditional Chinese Medical
| | - Ying Li
- Department of Rehabilitation, The First People's Hospital of Yunnan Province.,Department of Rehabilitation, The Affiliated Hospital of Kunming University of Science and Technology
| | - Ting-Ting Luo
- Department of Ultrasound, The First People's Hospital of Yunnan Province.,Department of Ultrasound, The Affiliated Hospital of Kunming University of Science and Technology
| |
Collapse
|
35
|
Dual Roles of Astrocyte-Derived Factors in Regulation of Blood-Brain Barrier Function after Brain Damage. Int J Mol Sci 2019; 20:ijms20030571. [PMID: 30699952 PMCID: PMC6387062 DOI: 10.3390/ijms20030571] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) is a major functional barrier in the central nervous system (CNS), and inhibits the extravasation of intravascular contents and transports various essential nutrients between the blood and the brain. After brain damage by traumatic brain injury, cerebral ischemia and several other CNS disorders, the functions of the BBB are disrupted, resulting in severe secondary damage including brain edema and inflammatory injury. Therefore, BBB protection and recovery are considered novel therapeutic strategies for reducing brain damage. Emerging evidence suggests key roles of astrocyte-derived factors in BBB disruption and recovery after brain damage. The astrocyte-derived vascular permeability factors include vascular endothelial growth factors, matrix metalloproteinases, nitric oxide, glutamate and endothelin-1, which enhance BBB permeability leading to BBB disruption. By contrast, the astrocyte-derived protective factors include angiopoietin-1, sonic hedgehog, glial-derived neurotrophic factor, retinoic acid and insulin-like growth factor-1 and apolipoprotein E which attenuate BBB permeability resulting in recovery of BBB function. In this review, the roles of these astrocyte-derived factors in BBB function are summarized, and their significance as therapeutic targets for BBB protection and recovery after brain damage are discussed.
Collapse
|
36
|
Guo T, Wang Y, Guo Y, Wu S, Chen W, Liu N, Wang Y, Geng D. 1, 25-D 3 Protects From Cerebral Ischemia by Maintaining BBB Permeability via PPAR-γ Activation. Front Cell Neurosci 2018; 12:480. [PMID: 30618630 PMCID: PMC6304345 DOI: 10.3389/fncel.2018.00480] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/23/2018] [Indexed: 12/23/2022] Open
Abstract
The blood-brain barrier (BBB) is a physical and biochemical barrier that maintains cerebral homeostasis. BBB dysfunction in an ischemic stroke, results in brain injury and subsequent neurological impairment. The aim of this study was to determine the possible protective effects of 1, 25-dihydroxyvitamin D3 [1, 25(OH)2D3, 1, 25-D3, vit D] on BBB dysfunction, at the early stages of an acute ischemic brain injury. We analyzed the effects of 1, 25-D3 on BBB integrity in terms of histopathological changes, the neurological deficit, infarct size and the expression of brain derived neurotrophic factor (BDNF), in a middle cerebral artery occlusion/reperfusion (MCAO/R) rat model. BBB permeability and the expression of permeability-related proteins in the brain were also evaluated by Evans blue (EB) staining and Western blotting respectively. To determine the possible mechanism underlying the role of 1, 25-D3 in BBB maintenance, after MCAO/R, the rats were treated with the specific peroxisome proliferator-activated receptor gamma (PPARγ) inhibitor GW9662. Supplementation with 1, 25-D3 markedly improved the neurological scores of the rats, decreased the infarct volume, prevented neuronal deformation and upregulated the expression of the tight junction (TJ) and BDNF proteins in their brains. Furthermore, it activated PPARγ but downregulated neuro-inflammatory cytokines such as nuclear factor kappa-B (NF-κB) and tumor necrosis factor-α (TNF-α), after MCAO/R. Taken together, 1, 25-D3 protects against cerebral ischemia by maintaining BBB permeability, upregulating the level of BDNF and inhibiting PPARγ-mediated neuro-inflammation.
Collapse
Affiliation(s)
- Ting Guo
- Department of Neurology, Xuzhou Medical University, Xuzhou, China
| | - Yanqiang Wang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yuanfang Guo
- Department of Respiratory Medicine, Ganyu District People’s Hospital, Lianyungang, China
| | - Shuguang Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Chen
- Department of Neurology, The Central Hospital of Xuzhou, Xuzhou, China
| | - Na Liu
- Department of Neurology, Xuzhou Medical University, Xuzhou, China
| | - Yu Wang
- Department of Neurology, Xuzhou Medical University, Xuzhou, China
| | - Deqin Geng
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|