1
|
Li L, Liu P, Lv X, Yu T, Jin X, Wang R, Xie X, Wang Q, Liu Y, Saiyin W. Ablation of FAM20C caused short root defects via suppressing the BMP signaling pathway in mice. J Orofac Orthop 2023; 84:349-361. [PMID: 35316352 DOI: 10.1007/s00056-022-00386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/16/2022] [Indexed: 10/18/2022]
Abstract
Short root defects are prone to cause various periodontal diseases and lead to tooth loss in some serious cases. Studies about the mechanisms governing the development of the root are needed for a better understanding of the pathogenesis of short root defects. The protein family with sequence similarity 20 group C (FAM20C) is a Golgi casein kinase that has been well studied in the development of tooth crown formation. However, whether FAM20C plays a role in the development of tooth root is still unknown. Thus, we generated Sox2-Cre;Fam20cfl/fl (cKO) mice, in which Fam20c was ablated in both the dental epithelium and dental mesenchyme, and found that the cKO mice showed severe short root defects mainly by inhibiting the development of dental mesenchyme in the root region. In this investigation, we found morphological changes and differentiation defects, with reduced expression of dentin sialophosphoprotein (DSPP) in odontoblasts of the root region in cKO mice. Furthermore, the proliferation rate of apical papillary cells was reduced in the root of cKO mice. In addition, the levels of bone morphogenetic protein 4 (BMP4) and phospho-Smad1/5/8, and that of Osterix and Krüppel-like factor 4 (KLF4), two downstream target molecules of the BMP signaling pathway, were significantly reduced in the root of cKO mice. These results indicate that FAM20C plays an essential role in the development of the root by regulating the BMP signaling pathway.
Collapse
Affiliation(s)
- Lili Li
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Peihong Liu
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Xuechao Lv
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Tianliang Yu
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Xingai Jin
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Rui Wang
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Xiaohua Xie
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, 150001, Harbin, Heilongjiang, China
| | - Qingshan Wang
- Department of Vascular Surgery, The Heilongjiang Provincial Hospital, 82 Zhongshan Road, Xiangfang, 150036, Harbin, Heilongjiang, China
| | - Yingqun Liu
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Wuliji Saiyin
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China.
| |
Collapse
|
2
|
Zhou T, Chen G, Xu Y, Zhang S, Tang H, Qiu T, Guo W. CDC42-mediated Wnt signaling facilitates odontogenic differentiation of DPCs during tooth root elongation. Stem Cell Res Ther 2023; 14:255. [PMID: 37726858 PMCID: PMC10510226 DOI: 10.1186/s13287-023-03486-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND CDC42 is a member of Rho GTPase family, acting as a molecular switch to regulate cytoskeleton organization and junction maturation of epithelium in organ development. Tooth root pattern is a highly complicated and dynamic process that dependens on interaction of epithelium and mesenchyme. However, there is a lack of understanding of the role of CDC42 during tooth root elongation. METHODS The dynamic expression of CDC42 was traced during tooth development through immunofluorescence staining. Then we constructed a model of lentivirus or inhibitor mediated Cdc42 knockdown in Herwig's epithelial root sheath (HERS) cells and dental papilla cells (DPCs), respectively. Long-term influence of CDC42 abnormality was assessed via renal capsule transplantation and in situ injection of alveolar socket. RESULTS CDC42 displayed a dynamic spatiotemporal pattern, with abundant expression in HERS cells and apical DPCs in developing root. Lentivirus-mediated Cdc42 knockdown in HERS cells didn't disrupt cell junctions as well as epithelium-mesenchyme transition. However, inhibition of CDC42 in DPCs undermined cell proliferation, migration and odontogenic differentiation. Wnt/β-catenin signaling as the downstream target of CDC42 modulated DPCs' odontogenic differentiation. The transplantation and in situ injection experiments verified that loss of CDC42 impeded root extension via inhibiting the proliferation and differentiation of DPCs. CONCLUSIONS We innovatively revealed that CDC42 was responsible for guiding root elongation in a mesenchyme-specific manner. Furthermore, CDC42-mediated canonical Wnt signaling regulated odontogenic differentiation of DPCs during root formation.
Collapse
Affiliation(s)
- Tao Zhou
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guoqing Chen
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuchan Xu
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuning Zhang
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huilin Tang
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Qiu
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Wu RX, Miao BB, Han FY, Niu SF, Liang YS, Liang ZB, Wang QH. Chromosome-Level Genome Assembly Provides Insights into the Evolution of the Special Morphology and Behaviour of Lepturacanthus savala. Genes (Basel) 2023; 14:1268. [PMID: 37372448 DOI: 10.3390/genes14061268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Savalani hairtail Lepturacanthus savala is a widely distributed fish along the Indo-Western Pacific coast, and contributes substantially to trichiurid fishery resources worldwide. In this study, the first chromosome-level genome assembly of L. savala was obtained by PacBio SMRT-Seq, Illumina HiSeq, and Hi-C technologies. The final assembled L. savala genome was 790.02 Mb with contig N50 and scaffold N50 values of 19.01 Mb and 32.77 Mb, respectively. The assembled sequences were anchored to 24 chromosomes by using Hi-C data. Combined with RNA sequencing data, 23,625 protein-coding genes were predicted, of which 96.0% were successfully annotated. In total, 67 gene family expansions and 93 gene family contractions were detected in the L. savala genome. Additionally, 1825 positively selected genes were identified. Based on a comparative genomic analysis, we screened a number of candidate genes associated with the specific morphology, behaviour-related immune system, and DNA repair mechanisms in L. savala. Our results preliminarily revealed mechanisms underlying the special morphological and behavioural characteristics of L. savala from a genomic perspective. Furthermore, this study provides valuable reference data for subsequent molecular ecology studies of L. savala and whole-genome analyses of other trichiurid fishes.
Collapse
Affiliation(s)
- Ren-Xie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ben-Ben Miao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Fang-Yuan Han
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yan-Shan Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhen-Bang Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qing-Hua Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
4
|
Duncan HF, Kobayashi Y, Yamauchi Y, Quispe-Salcedo A, Chao Feng Z, Huang J, Partridge NC, Nakatani T, D’Armiento J, Shimizu E. The Critical Role of MMP13 in Regulating Tooth Development and Reactionary Dentinogenesis Repair Through the Wnt Signaling Pathway. Front Cell Dev Biol 2022; 10:883266. [PMID: 35531096 PMCID: PMC9068941 DOI: 10.3389/fcell.2022.883266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022] Open
Abstract
Matrix-metalloproteinase-13 (MMP13) is important for bone formation and remodeling; however, its role in tooth development remains unknown. To investigate this, MMP13-knockout (Mmp13−/−) mice were used to analyze phenotypic changes in the dentin–pulp complex, mineralization-associated marker-expression, and mechanistic interactions. Immunohistochemistry demonstrated high MMP13-expression in pulp-tissue, ameloblasts, odontoblasts, and dentin in developing WT-molars, which reduced in adults, with human-DPC cultures demonstrating a >2000-fold increase in Mmp13-expression during mineralization. Morphologically, Mmp13−/− molars displayed critical alterations in the dentin-phenotype, affecting dentin-tubule regularity, the odontoblast-palisade and predentin-definition with significantly reduced dentin volume (∼30% incisor; 13% molar), and enamel and dentin mineral-density. Reactionary-tertiary-dentin in response to injury was reduced at Mmp13−/− molar cusp-tips but with significantly more dystrophic pulpal mineralization in MMP13-null samples. Odontoblast differentiation-markers, nestin and DSP, reduced in expression after MMP13-loss in vivo, with reduced calcium deposition in MMP13-null DPC cultures. RNA-sequencing analysis of WT and Mmp13−/− pulp highlighted 5,020 transcripts to have significantly >2.0-fold change, with pathway-analysis indicating downregulation of the Wnt-signaling pathway, supported by reduced in vivo expression of the Wnt-responsive gene Axin2. Mmp13 interaction with Axin2 could be partly responsible for the loss of odontoblastic activity and alteration to the tooth phenotype and volume which is evident in this study. Overall, our novel findings indicate MMP13 as critical for tooth development and mineralization processes, highlighting mechanistic interaction with the Wnt-signaling pathway.
Collapse
Affiliation(s)
- Henry F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
- *Correspondence: Henry F. Duncan, ; Emi Shimizu,
| | - Yoshifumi Kobayashi
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Yukako Yamauchi
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
| | | | - Zhi Chao Feng
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Jia Huang
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Nicola C. Partridge
- Department of Molecular Pathobiology, New York University Dentistry, New York, NY, United States
| | - Teruyo Nakatani
- Department of Molecular Pathobiology, New York University Dentistry, New York, NY, United States
| | - Jeanine D’Armiento
- Department of Physiology and Cellular Biophysics, Columbia University Medical Centre, New York, NY, United States
| | - Emi Shimizu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
- *Correspondence: Henry F. Duncan, ; Emi Shimizu,
| |
Collapse
|
5
|
Wang J, Yuan L, Xu X, Zhang Z, Ma Y, Hong L, Ma J. Rho-GEF Trio regulates osteosarcoma progression and osteogenic differentiation through Rac1 and RhoA. Cell Death Dis 2021; 12:1148. [PMID: 34893584 PMCID: PMC8664940 DOI: 10.1038/s41419-021-04448-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 11/08/2022]
Abstract
Osteosarcoma (OS) is the most common primary bone tumor. Its high mortality rate and metastasis rate seriously threaten human health. Currently, the treatment has reached a plateau, hence we urgently need to explore new therapeutic directions. In this paper, we found that Trio was highly expressed in osteosarcoma than normal tissues and promoted the proliferation, migration, and invasion of osteosarcoma cells. Furthermore, Trio inhibited osteosarcoma cells' osteogenic differentiation in vitro and accelerated the growth of osteosarcoma in vivo. Given Trio contains two GEF domains, which have been reported as the regulators of RhoGTPases, we further discovered that Trio could regulate osteosarcoma progression and osteogenic differentiation through activating RhoGTPases. In summary, all our preliminary results showed that Trio could be a potential target and prognostic marker of osteosarcoma.
Collapse
Affiliation(s)
- Junyi Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, 210029, Nanjing, China
| | - Lichan Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, 210029, Nanjing, China
| | - Xiaohong Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, 210029, Nanjing, China
| | - Zhongyin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, 210029, Nanjing, China
| | - Yuhuan Ma
- Nanjing Foreign Language School, 210008, Nanjing, Jiangsu, China
| | - Leilei Hong
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, 210029, Nanjing, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, 210029, Nanjing, China.
| |
Collapse
|
6
|
Abramyan J, Geetha-Loganathan P, Šulcová M, Buchtová M. Role of Cell Death in Cellular Processes During Odontogenesis. Front Cell Dev Biol 2021; 9:671475. [PMID: 34222243 PMCID: PMC8250436 DOI: 10.3389/fcell.2021.671475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/24/2021] [Indexed: 01/20/2023] Open
Abstract
The development of a tooth germ in a precise size, shape, and position in the jaw, involves meticulous regulation of cell proliferation and cell death. Apoptosis, as the most common type of programmed cell death during embryonic development, plays a number of key roles during odontogenesis, ranging from the budding of the oral epithelium during tooth initiation, to later tooth germ morphogenesis and removal of enamel knot signaling center. Here, we summarize recent knowledge about the distribution and function of apoptotic cells during odontogenesis in several vertebrate lineages, with a special focus on amniotes (mammals and reptiles). We discuss the regulatory roles that apoptosis plays on various cellular processes during odontogenesis. We also review apoptosis-associated molecular signaling during tooth development, including its relationship with the autophagic pathway. Lastly, we cover apoptotic pathway disruption, and alterations in apoptotic cell distribution in transgenic mouse models. These studies foster a deeper understanding how apoptotic cells affect cellular processes during normal odontogenesis, and how they contribute to dental disorders, which could lead to new avenues of treatment in the future.
Collapse
Affiliation(s)
- John Abramyan
- Department of Natural Sciences, University of Michigan–Dearborn, Dearborn, MI, United States
| | | | - Marie Šulcová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Marcela Buchtová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
7
|
Luo Y, Qu K, Kuai L, Ru Y, Huang K, Yan X, Xing M. Epigenetics in psoriasis: perspective of DNA methylation. Mol Genet Genomics 2021; 296:1027-1040. [PMID: 34137900 DOI: 10.1007/s00438-021-01804-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/11/2021] [Indexed: 12/21/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by excessive proliferation of keratinocytes (KCs). Onset of psoriasis is related to genetic, immune and environmental factors. The environment can interact with the genome through epigenetic modifications, including DNA methylation, and this modification is involved in the pathogenesis of psoriasis. In addition to a skin disease, psoriasis is also considered a systemic disease. We reviewed the current literature of psoriatic DNA methylation for studies from several aspects on the DNA methylation distribution patterns in different tissues/cells, single-nucleotide polymorphisms, and candidate disease genes and identified target genes regulated by DNA methylation that have been directly/indirectly validated. This review contributes to a comprehensive understanding of the important a role that DNA methylation plays in psoriasis from a holistic perspective and will promote the implementation of DNA methylation in diagnostic and therapeutic strategies for psoriatic patients.
Collapse
Affiliation(s)
- Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Keshen Qu
- Department of Traditional Chinese Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Keke Huang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiaoning Yan
- Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, No. 4 West Glorious Gate, Xi'an, 710003, People's Republic of China.
| | - Meng Xing
- Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, No. 4 West Glorious Gate, Xi'an, 710003, People's Republic of China.
| |
Collapse
|
8
|
Guo S, Meng L, Liu H, Yuan L, Zhao N, Ni J, Zhang Y, Ben J, Li YP, Ma J. Trio cooperates with Myh9 to regulate neural crest-derived craniofacial development. Am J Cancer Res 2021; 11:4316-4334. [PMID: 33754063 PMCID: PMC7977452 DOI: 10.7150/thno.51745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 02/07/2021] [Indexed: 02/06/2023] Open
Abstract
Trio is a unique member of the Rho-GEF family that has three catalytic domains and is vital for various cellular processes in both physiological and developmental settings. TRIO mutations in humans are involved in craniofacial abnormalities, in which patients present with mandibular retrusion. However, little is known about the molecular mechanisms of Trio in neural crest cell (NCC)-derived craniofacial development, and there is still a lack of direct evidence to assign a functional role to Trio in NCC-induced craniofacial abnormalities. Methods: In vivo, we used zebrafish and NCC-specific knockout mouse models to investigate the phenotype and dynamics of NCC development in Trio morphants. In vitro, iTRAQ, GST pull-down assays, and proximity ligation assay (PLA) were used to explore the role of Trio and its potential downstream mediators in NCC migration and differentiation. Results: In zebrafish and mouse models, disruption of Trio elicited a migration deficit and impaired the differentiation of NCC derivatives, leading to craniofacial growth deficiency and mandibular retrusion. Moreover, Trio positively regulated Myh9 expression and directly interacted with Myh9 to coregulate downstream cellular signaling in NCCs. We further demonstrated that disruption of Trio or Myh9 inhibited Rac1 and Cdc42 activity, specifically affecting the nuclear export of β-catenin and NCC polarization. Remarkably, craniofacial abnormalities caused by trio deficiency in zebrafish could be partially rescued by the injection of mRNA encoding myh9, ca-Rac1, or ca-Cdc42. Conclusions: Here, we identified that Trio, interacting mostly with Myh9, acts as a key regulator of NCC migration and differentiation during craniofacial development. Our results indicate that trio morphant zebrafish and Wnt1-cre;Triofl/fl mice offer potential model systems to facilitate the study of the pathogenic mechanisms of Trio mutations causing craniofacial abnormalities.
Collapse
|
9
|
刘 建, 王 宪, 吕 达, 乔 敏, 张 立, 孟 焕, 徐 莉, 毛 铭. [Association between root abnormalities and related pathogenic genes in patients with generalized aggressive periodontitis]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2020; 53:16-23. [PMID: 33550331 PMCID: PMC7867985 DOI: 10.19723/j.issn.1671-167x.2021.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To explore the association between the abnormal root morphology and bone metabolism or root development related gene polymorphism in patients with generalized aggressive periodontitis. METHODS In the study, 179 patients with generalized aggressive periodontitis were enrolled, with an average age of (27.23±5.19) years, male / female = 67/112. The average number of teeth remaining in the mouth was (26.80±1.84). Thirteen single nucleotide polymorphisms (SNPs) of nine genes which related to bone metabolism and root development were detected by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). Root abnormalities were identified using periapical radiographs. The abnormal root morphology included cone-rooted teeth, slender-root teeth, short-rooted teeth, curved-rooted teeth, syncretic-rooted molars, and molar root abnormalities. The number of teeth and incidence of abnormal root morphology in different genotypes of 13 SNPs were analyzed. RESULTS The constituent ratio of root with root abnormality in GAgP patients was 14.49%(695/4 798). The average number of teeth with abnormal root morphology in GAgP was (3.88±3.84). The average number of teeth with abnormal root morphology in CC, CT and TT genotypes in vitamin D receptor (VDR) rs2228570 was (4.66±4.10), (3.71±3.93) and (2.68±2.68). There was significant difference between TT genotype and CC genotype (t = 2.62, P =0.01). The average number of root morphological abnormalities in CC, CT and TT genotypes of Calcitotin Receptor (CTR) gene rs2283002 was (5.02±3.70), (3.43±3.95), and (3.05±3.12). The incidence of root morphological abnormalities in CC genotype was higher than that in the patients with CT and TT, and the difference was statistically significant(87.86% vs. 65.26% & 63.64%, P=0.006, adjusted OR =3.71, 95%CI: 1.45-9.50). There was no significant difference in the incidence of abnormal root morphology between CT and TT genotypes. CONCLUSION VDR rs2228570 and CTR rs2283002 may be associated with the occurrence of abnormal root morphology in patients with generalized aggressive periodontitis, which is worthy of further research.
Collapse
Affiliation(s)
- 建 刘
- />北京大学口腔医学院·口腔医院,牙周科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 宪娥 王
- />北京大学口腔医学院·口腔医院,牙周科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 达 吕
- />北京大学口腔医学院·口腔医院,牙周科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 敏 乔
- />北京大学口腔医学院·口腔医院,牙周科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 立 张
- />北京大学口腔医学院·口腔医院,牙周科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 焕新 孟
- />北京大学口腔医学院·口腔医院,牙周科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 莉 徐
- />北京大学口腔医学院·口腔医院,牙周科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 铭馨 毛
- />北京大学口腔医学院·口腔医院,牙周科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
10
|
Gu J, Yang Z, Yuan L, Guo S, Wang D, Zhao N, Meng L, Liu H, Chen W, Ma J. Rho-GEF trio regulates osteoclast differentiation and function by Rac1/Cdc42. Exp Cell Res 2020; 396:112265. [PMID: 32898553 DOI: 10.1016/j.yexcr.2020.112265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 01/09/2023]
Abstract
Many bone diseases result from abnormal bone resorption by osteoclasts (OCs). Studying OC related regulatory genes is necessary for the development of new therapeutic strategies. Rho GTPases have been proven to regulate OC differentiation and function and only mature OCs can carry out bone resorption. Here we demonstrate that Rac1 and Cdc42 exchange factor Triple functional domain (Trio) is critical for bone resorption caused by OCs. In this study, we created LysM-Cre;Triofl/fl conditional knockout mice in which Trio was conditionally ablated in monocytes. LysM-Cre;Triofl/fl mice showed increased bone mass due to impaired bone resorption caused by OCs. Furthermore, our in vitro analysis indicated that Trio conditional deficiency significantly suppressed OC differentiation and function. At the molecular level, Trio deficiency significantly inhibited the expression of genes critical for osteoclastogenesis and OC function. Mechanistically, our researches suggested that perturbed Rac1/Cdc42-PAK1-ERK/p38 signaling could be used to explain the lower ability of bone resorption in CKO mice. Taken together, this study indicates that Trio is a regulator of OCs. Studying the role of Trio in OCs provides a potential new insight for the treatment of OC related bone diseases.
Collapse
Affiliation(s)
- Jiawen Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China; Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Zhiwen Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China; Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Lichan Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China; Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China; Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Dan Wang
- Department of Stomatatology, Lianshui County People's Hospital, Kangda College of Nanjing Medical University, Huai'an, 223400, China
| | - Na Zhao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China; Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Li Meng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China; Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Haojie Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China; Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Wenjing Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China; Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China; Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China.
| |
Collapse
|
11
|
Huang D, Ren J, Li R, Guan C, Feng Z, Bao B, Wang W, Zhou C. Tooth Regeneration: Insights from Tooth Development and Spatial-Temporal Control of Bioactive Drug Release. Stem Cell Rev Rep 2020; 16:41-55. [PMID: 31834583 PMCID: PMC6987083 DOI: 10.1007/s12015-019-09940-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tooth defect and tooth loss are common clinical diseases in stomatology. Compared with the traditional oral restoration treatment, tooth regeneration has unique advantages and is currently the focus of oral biomedical research. It is known that dozens of cytokines/growth factors and other bioactive factors are expressed in a spatial-temporal pattern during tooth development. On the other hand, the technology for spatial-temporal control of drug release has been intensively studied and well developed recently, making control release of these bioactive factors mimicking spatial-temporal pattern more feasible than ever for the purpose of tooth regeneration. This article reviews the research progress on the tooth development and discusses the future of tooth regeneration in the context of spatial-temporal release of developmental factors.
Collapse
Affiliation(s)
- Delan Huang
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jianhan Ren
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Runze Li
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chenyu Guan
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhicai Feng
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Baicheng Bao
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Weicai Wang
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chen Zhou
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Yu M, Jiang Z, Wang Y, Xi Y, Yang G. Molecular mechanisms for short root anomaly. Oral Dis 2020; 27:142-150. [PMID: 31883171 DOI: 10.1111/odi.13266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022]
Abstract
Short root anomaly (SRA) is a dental disorder that presents an abnormal root morphology with short and blunt dental roots. In this situation, many dental treatments face a difficult challenge, especially orthodontic and prosthodontic treatments. Therefore, an understanding of how SRA develops is urgently needed. Here we describe that the abnormal expression of nuclear factor I C-type (Nfic), osterix (Osx), hedgehog (Hh), bone morphogenetic proteins (BMPs), transforming growth factor-β (TGF-β), Smad, Wnt, β-catenin, and dickkopf-related protein 1 (DKK1) leads to SRA. These factors interact with each other and constitute complicated signaling network in tooth formation. Specifically, BMP signaling inhibits the activity of Wnt/β-catenin directly or by inducing Osx via Runx2-dependent and Runx2-independent pathways. And Osx is a main inhibitor of Wnt/β-catenin signaling. In return, Wnt/β-catenin signaling has an antagonistic action of BMP pathway and a stimulation of Runx2. We highlight the importance of Wnt/β-catenin signaling in the pathological mechanisms. Either suppression or overactivation of this signaling influences the normal odontogenesis. Finally, we list rescue experiments on animal models, which have been reported to restore the interrupted cell differentiation and impaired tooth formation. We hope to find potential treatments for SRA based on these evidences in the future.
Collapse
Affiliation(s)
- Mengjia Yu
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Zhiwei Jiang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Yang Wang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Yue Xi
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Guoli Yang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| |
Collapse
|
13
|
Ferreira LSS, Fernandes CS, Vieira MNN, De Felice FG. Insulin Resistance in Alzheimer's Disease. Front Neurosci 2018; 12:830. [PMID: 30542257 PMCID: PMC6277874 DOI: 10.3389/fnins.2018.00830] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
The epidemiological connection between diabetes, obesity, and dementia represents an important public health challenge but also an opportunity to further understand these conditions. The key intersection among the three diseases is insulin resistance, which has been classically described to occur in peripheral tissues in diabetes and obesity and has recently been shown to develop in Alzheimer's disease (AD) brains. Here we review encouraging preclinical and clinical data indicating the potential of targeting impaired insulin signaling with antidiabetic drugs to treat dementia. We further discuss biological mechanisms through which peripheral metabolic dysregulation may lead to brain malfunction, providing possible explanations for the connection between diabetes, obesity, and AD. Finally, we briefly discuss how lifelong allostatic load may interact with aging to increase the risk of dementia in late life.
Collapse
Affiliation(s)
- Laís S. S. Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline S. Fernandes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo N. N. Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda G. De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biomedical and Molecular Sciences, Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|