1
|
Buckley Y, Stoll MSK, Hoppel CL, Mears JA. Fis1 regulates mitochondrial morphology, bioenergetics and removal of mitochondrial DNA damage in irradiated glioblastoma cells. J Cell Sci 2025; 138:jcs263459. [PMID: 39704270 PMCID: PMC11828467 DOI: 10.1242/jcs.263459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
In response to external stress, mitochondrial dynamics is often disrupted, but the associated physiologic changes are often uncharacterized. In many cancers, including glioblastoma (GBM), mitochondrial dysfunction has been observed. Understanding how mitochondrial dynamics and physiology contribute to treatment resistance will lead to more targeted and effective therapeutics. This study aims to uncover how mitochondria in GBM cells adapt to and resist ionizing radiation (IR), a component of the standard of care for GBM. Using several approaches, we investigated how mitochondrial dynamics and physiology adapt to radiation stress, and we uncover a novel role for Fis1, a pro-fission protein, in regulating the stress response through mitochondrial DNA (mtDNA) maintenance and altered mitochondrial bioenergetics. Importantly, our data demonstrate that increased fission in response to IR leads to removal of mtDNA damage and more efficient oxygen consumption through altered electron transport chain (ETC) activities in intact mitochondria. These findings demonstrate a key role for Fis1 in targeting damaged mtDNA for degradation and regulating mitochondrial bioenergetics through altered dynamics.
Collapse
Affiliation(s)
- Yuli Buckley
- Department of Pharmacology and Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA
| | - Maria S. K. Stoll
- Department of Pharmacology and Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA
| | - Charles L. Hoppel
- Department of Pharmacology and Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA
| | - Jason A. Mears
- Department of Pharmacology and Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA
| |
Collapse
|
2
|
Kandettu A, Kuthethur R, Chakrabarty S. A detailed review on the role of miRNAs in mitochondrial-nuclear cross talk during cancer progression. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167731. [PMID: 39978440 DOI: 10.1016/j.bbadis.2025.167731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/11/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that are associated with biochemical pathways through the post-transcriptional regulation of gene expression in different cell types. Based on their expression pattern and function, miRNAs can have oncogenic and tumor suppressor activities in different cancer cells. Altered mitochondrial function and bioenergetics are known hallmarks of cancer cells. Mitochondria play a central role in metabolic reprogramming during cancer progression. Cancer cells exploit mitochondrial function for cell proliferation, invasion, migration and metastasis. Genetic and epigenetic changes in nuclear genome contribute to altered mitochondrial function and metabolic reprogramming in cancer cells. Recent studies have identified the role of miRNAs as major facilitators of anterograde and retrograde signaling between the nucleus and mitochondria in cancer cells. Detailed analysis of the miRNA-mediated regulation of mitochondrial function in cancer cells may provide new avenues for the diagnosis, prognosis, and therapeutic management of the disease. Our review aims to discuss the role of miRNAs in nuclear-mitochondrial crosstalk regulating mitochondrial functions in different cancer types. We further discussed the potential application of mitochondrial miRNAs (mitomiRs) targeting mitochondrial biogenesis and metabolism in developing novel cancer therapy.
Collapse
Affiliation(s)
- Amoolya Kandettu
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS) Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Raviprasad Kuthethur
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS) Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS) Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
3
|
An X, Sun L, Zheng H, Xiao Y, Sun W, Yu D. Mitochondria-associated non-coding RNAs and their impact on drug resistance. Front Pharmacol 2025; 16:1472804. [PMID: 40078288 PMCID: PMC11897306 DOI: 10.3389/fphar.2025.1472804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Drug resistance is a prevalent challenge in clinical disease treatment, often leading to disease relapse and poor prognosis. Therefore, it is crucial to gain a deeper understanding of the molecular mechanisms underlying drug resistance and to develop targeted strategies for its effective prevention and management. Mitochondria, as vital energy-producing organelles within cells, have been recognized as key regulators of drug sensitivity. Processes such as mitochondrial fission, fusion, mitophagy, changes in membrane potential, reactive oxygen species (ROS) accumulation, and oxidative phosphorylation (OXPHOS) are all linked to drug sensitivity. Non-coding RNAs (ncRNAs) enriched in mitochondria (mtncRNA), whether transcribed from mitochondrial DNA (mtDNA) or from the nucleus and transported to mitochondria, can regulate the transcription and translation of mtDNA, thus influencing mitochondrial function, including mitochondrial substance exchange and energy metabolism. This, in turn, directly or indirectly affects cellular sensitivity to drugs. This review summarizes the types of mtncRNAs associated with drug resistance and the molecular mechanisms regulating drug resistance. Our aim is to provide insights and strategies for overcoming drug resistance by modulating mtncRNAs.
Collapse
Affiliation(s)
- Xingna An
- Department of Core Facility, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lina Sun
- Department of Hematology-Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Huan Zheng
- Department of Hematology-Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Yinghui Xiao
- Department of Core Facility, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Department of Core Facility, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Meinag FE, Fatahi M, Vahedian V, Maroufi NF, Mosayyebi B, Ahmadi E, Rahmati M. Modulatory effects of miRNAs in doxorubicin resistance: A mechanistic view. Funct Integr Genomics 2024; 24:150. [PMID: 39222264 DOI: 10.1007/s10142-024-01431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs and play an important role in controlling vital biological processes, including cell cycle control, apoptosis, metabolism, and development and differentiation, which lead to various diseases such as neurological, metabolic disorders, and cancer. Chemotherapy consider as gold treatment approaches for cancer patients. However, chemotherapeutic is one of the main challenges in cancer management. Doxorubicin (DOX) is an anti-cancer drug that interferes with the growth and spread of cancer cells. DOX is used to treat various types of cancer, including breast, nervous tissue, bladder, stomach, ovary, thyroid, lung, bone, muscle, joint and soft tissue cancers. Also recently, miRNAs have been identified as master regulators of specific genes responsible for the mechanisms that initiate chemical resistance. miRNAs have a regulatory effect on chemotherapy resistance through the regulation of apoptosis process. Also, the effect of miRNAs p53 gene as a key tumor suppressor was confirmed via studies. miRNAs can affect main biological pathways include PI3K pathway. This review aimed to present the current understanding of the mechanisms and effects of miRNAs on apoptosis, p53 and PTEN/PI3K/Akt signaling pathway related to DOX resistance.
Collapse
Affiliation(s)
- Fatemeh Ebadi Meinag
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Fatahi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Vahedian
- Department of Hematology, Transfusion Medicine and Cellular Therapy/Cell Therapy Center (CTC-USP), Clinical Hospital and Cancer Institute (ICESP), Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil
- Department of Clinical Medicine, Division of Medical Investigation Laboratory (LIM/31), Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology and Immuno-Oncology, Clinical Hospital, Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil
- Comprehensive Center for Translational and Precision Oncology (CTO), SP State Cancer Institute (ICESP), Sao Paulo, Brazil
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bashir Mosayyebi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Dimitrov G, Mangaldzhiev R, Slavov C, Popov E. Contemporary Molecular Markers for Predicting Systemic Treatment Response in Urothelial Bladder Cancer: A Narrative Review. Cancers (Basel) 2024; 16:3056. [PMID: 39272913 PMCID: PMC11394076 DOI: 10.3390/cancers16173056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
The search for dependable molecular biomarkers to enhance routine clinical practice is a compelling challenge across all oncology fields. Urothelial bladder carcinoma, known for its significant heterogeneity, presents difficulties in predicting responses to systemic therapies and outcomes post-radical cystectomy. Recent advancements in molecular cancer biology offer promising avenues to understand the disease's biology and identify emerging predictive biomarkers. Stratifying patients based on their recurrence risk post-curative treatment or predicting the efficacy of conventional and targeted therapies could catalyze personalized treatment selection and disease surveillance. Despite progress, reliable molecular biomarkers to forecast responses to systemic agents, in neoadjuvant, adjuvant, or palliative treatment settings, are still lacking, underscoring an urgent unmet need. This review aims to delve into the utilization of current and emerging molecular signatures across various stages of urothelial bladder carcinoma to predict responses to systemic therapy.
Collapse
Affiliation(s)
- George Dimitrov
- Department of Medical Oncology, Medical University of Sofia, University Hospital "Tsaritsa Yoanna", 1527 Sofia, Bulgaria
| | - Radoslav Mangaldzhiev
- Department of Medical Oncology, Medical University of Sofia, University Hospital "Tsaritsa Yoanna", 1527 Sofia, Bulgaria
| | - Chavdar Slavov
- Department of Urology, Medical University of Sofia, University Hospital "Tsaritsa Yoanna", 1527 Sofia, Bulgaria
| | - Elenko Popov
- Department of Urology, Medical University of Sofia, University Hospital "Tsaritsa Yoanna", 1527 Sofia, Bulgaria
| |
Collapse
|
6
|
Hazari V, Samali SA, Izadpanahi P, Mollaei H, Sadri F, Rezaei Z. MicroRNA-98: the multifaceted regulator in human cancer progression and therapy. Cancer Cell Int 2024; 24:209. [PMID: 38872210 DOI: 10.1186/s12935-024-03386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/25/2024] [Indexed: 06/15/2024] Open
Abstract
MicroRNA-98 (miR-98) stands as an important molecule in the intricate landscape of oncology. As a subset of microRNAs, these small non-coding RNAs have accompanied a new era in cancer research, underpinning their significant roles in tumorigenesis, metastasis, and therapeutic interventions. This review provides a comprehensive insight into the biogenesis, molecular properties, and physiological undertakings of miR-98, highlighting its double-edged role in cancer progression-acting both as a tumor promoter and suppressor. Intriguingly, miR-98 has profound implications for various aspects of cancer progression, modulating key cellular functions, including proliferation, apoptosis, and the cell cycle. Given its expression patterns, the potential of miR-98 as a diagnostic and prognostic biomarker, especially in liquid biopsies and tumor tissues, is explored, emphasizing the hurdles in translating these findings clinically. The review concludes by evaluating therapeutic avenues to modulate miR-98 expression, addressing the challenges in therapy resistance, and assessing the efficacy of miR-98 interventions. In conclusion, while miR-98's involvement in cancer showcases promising diagnostic and therapeutic avenues, future research should pivot towards understanding its role in tumor-stroma interactions, immune modulation, and metabolic regulation, thereby unlocking novel strategies for cancer management.
Collapse
Affiliation(s)
- Vajihe Hazari
- Department of Obstetrics and Gynecology, School of Medicine, Rooyesh Infertility Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Sahar Ahmad Samali
- Department of Microbiology, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| | | | - Homa Mollaei
- Department of Biology, Faculty of Sciences, University of Birjand, Birjand, Iran
| | - Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran.
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
7
|
Shi H, Tan Z, Duan B, Guo C, Li C, Luan T, Li N, Huang Y, Chen S, Gao J, Feng W, Xu H, Wang J, Fu S, Wang H. LASS2 enhances chemosensitivity to cisplatin by inhibiting PP2A-mediated β-catenin dephosphorylation in a subset of stem-like bladder cancer cells. BMC Med 2024; 22:19. [PMID: 38191448 PMCID: PMC10775422 DOI: 10.1186/s12916-023-03243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/01/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The benefits of first-line, cisplatin-based chemotherapy for muscle-invasive bladder cancer are limited due to intrinsic or acquired resistance to cisplatin. Increasing evidence has revealed the implication of cancer stem cells in the development of chemoresistance. However, the underlying molecular mechanisms remain to be elucidated. This study investigates the role of LASS2, a ceramide synthase, in regulating Wnt/β-catenin signaling in a subset of stem-like bladder cancer cells and explores strategies to sensitize bladder cancer to cisplatin treatment. METHODS Data from cohorts of our center and published datasets were used to evaluate the clinical characteristics of LASS2. Flow cytometry was used to sort and analyze bladder cancer stem cells (BCSCs). Tumor sphere formation, soft agar colony formation assay, EdU assay, apoptosis analysis, cell viability, and cisplatin sensitivity assay were used to investigate the functional roles of LASS2. Immunofluorescence, immunoblotting, coimmunoprecipitation, LC-MS, PCR array, luciferase reporter assays, pathway reporter array, chromatin immunoprecipitation, gain-of-function, and loss-of-function approaches were used to investigate the underlying mechanisms. Cell- and patient-derived xenograft models were used to investigate the effect of LASS2 overexpression and a combination of XAV939 on cisplatin sensitization and tumor growth. RESULTS Patients with low expression of LASS2 have a poorer response to cisplatin-based chemotherapy. Loss of LASS2 confers a stem-like phenotype and contributes to cisplatin resistance. Overexpression of LASS2 results in inhibition of self-renewal ability of BCSCs and increased their sensitivity to cisplatin. Mechanistically, LASS2 inhibits PP2A activity and dissociates PP2A from β-catenin, preventing the dephosphorylation of β-catenin and leading to the accumulation of cytosolic phospho-β-catenin, which decreases the transcription of the downstream genes ABCC2 and CD44 in BCSCs. Overexpression of LASS2 combined with a tankyrase inhibitor (XAV939) synergistically inhibits tumor growth and restores cisplatin sensitivity. CONCLUSIONS Targeting the LASS2 and β-catenin pathways may be an effective strategy to overcome cisplatin resistance and inhibit tumor growth in bladder cancer patients.
Collapse
Affiliation(s)
- Hongjin Shi
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Zhiyong Tan
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Bowen Duan
- Kunming Medical University, Kunming, China
| | - Chunming Guo
- School for Life Science, Yunnan University, Kunming, China
| | - Chong Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ting Luan
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Ning Li
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Yinglong Huang
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Shi Chen
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Jixian Gao
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Wei Feng
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Haole Xu
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
- Kunming Medical University, Kunming, China
| | - Jiansong Wang
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Shi Fu
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China.
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China.
| | - Haifeng Wang
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China.
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China.
| |
Collapse
|
8
|
Roy S, Das A, Bairagi A, Das D, Jha A, Srivastava AK, Chatterjee N. Mitochondria act as a key regulatory factor in cancer progression: Current concepts on mutations, mitochondrial dynamics, and therapeutic approach. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108490. [PMID: 38460864 DOI: 10.1016/j.mrrev.2024.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
The diversified impacts of mitochondrial function vs. dysfunction have been observed in almost all disease conditions including cancers. Mitochondria play crucial roles in cellular homeostasis and integrity, however, mitochondrial dysfunctions influenced by alterations in the mtDNA can disrupt cellular balance. Many external stimuli or cellular defects that cause cellular integrity abnormalities, also impact mitochondrial functions. Imbalances in mitochondrial activity can initiate and lead to accumulations of genetic mutations and can promote the processes of tumorigenesis, progression, and survival. This comprehensive review summarizes epigenetic and genetic alterations that affect the functionality of the mitochondria, with considerations of cellular metabolism, and as influenced by ethnicity. We have also reviewed recent insights regarding mitochondrial dynamics, miRNAs, exosomes that play pivotal roles in cancer promotion, and the impact of mitochondrial dynamics on immune cell mechanisms. The review also summarizes recent therapeutic approaches targeting mitochondria in anti-cancer treatment strategies.
Collapse
Affiliation(s)
- Sraddhya Roy
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Ananya Das
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Aparajita Bairagi
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Debangshi Das
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Ashna Jha
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Amit Kumar Srivastava
- CSIR-IICB Translational Research Unit Of Excellence, CN-6, Salt Lake, Sector - V, Kolkata 700091, India
| | - Nabanita Chatterjee
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
9
|
Garcia-Vallicrosa C, Falcon-Perez JM, Royo F. The Role of Longevity Assurance Homolog 2/Ceramide Synthase 2 in Bladder Cancer. Int J Mol Sci 2023; 24:15668. [PMID: 37958652 PMCID: PMC10650086 DOI: 10.3390/ijms242115668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The human CERS2 gene encodes a ceramide synthase enzyme, known as CERS2 (ceramide synthase 2). This protein is also known as LASS2 (LAG1 longevity assurance homolog 2) and TMSG1 (tumor metastasis-suppressor gene 1). Although previously described as a tumor suppressor for different types of cancer, such as prostate or liver cancer, it has also been observed to promote tumor growth in adenocarcinoma. In this review, we focus on the influence of CERS2 in bladder cancer (BC), approaching the existing literature about its structure and activity, as well as the miRNAs regulating its expression. From a mechanistic point of view, different explanations for the role of CERS2 as an antitumor protein have been proposed, including the production of long-chain ceramides, interaction with vacuolar ATPase, and its function as inhibitor of mitochondrial fission. In addition, we reviewed the literature specifically studying the expression of this gene in both BC and biopsy-derived tumor cell lines, complementing this with an analysis of public gene expression data and its association with disease progression. We also discuss the importance of CERS2 as a biomarker and the presence of CERS2 mRNA in extracellular vesicles isolated from urine.
Collapse
Affiliation(s)
- Clara Garcia-Vallicrosa
- Exosomes Laboratory and Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (C.G.-V.); (J.M.F.-P.)
| | - Juan M. Falcon-Perez
- Exosomes Laboratory and Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (C.G.-V.); (J.M.F.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Felix Royo
- Exosomes Laboratory and Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (C.G.-V.); (J.M.F.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
10
|
Chin FW, Chan SC, Veerakumarasivam A. Homeobox Gene Expression Dysregulation as Potential Diagnostic and Prognostic Biomarkers in Bladder Cancer. Diagnostics (Basel) 2023; 13:2641. [PMID: 37627900 PMCID: PMC10453580 DOI: 10.3390/diagnostics13162641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 08/27/2023] Open
Abstract
Homeobox genes serve as master regulatory transcription factors that regulate gene expression during embryogenesis. A homeobox gene may have either tumor-promoting or tumor-suppressive properties depending on the specific organ or cell lineage where it is expressed. The dysregulation of homeobox genes has been reported in various human cancers, including bladder cancer. The dysregulated expression of homeobox genes has been associated with bladder cancer clinical outcomes. Although bladder cancer has high risk of tumor recurrence and progression, it is highly challenging for clinicians to accurately predict the risk of tumor recurrence and progression at the initial point of diagnosis. Cystoscopy is the routine surveillance method used to detect tumor recurrence. However, the procedure causes significant discomfort and pain that results in poor surveillance follow-up amongst patients. Therefore, the development of reliable non-invasive biomarkers for the early detection and monitoring of bladder cancer is crucial. This review provides a comprehensive overview of the diagnostic and prognostic potential of homeobox gene expression dysregulation in bladder cancer.
Collapse
Affiliation(s)
- Fee-Wai Chin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Soon-Choy Chan
- School of Liberal Arts, Science and Technology, Perdana University, Kuala Lumpur 50490, Malaysia
| | - Abhi Veerakumarasivam
- School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
11
|
Tan WL, Subha ST, Mohtarrudin N, Cheah YK. An insight into the associations between microRNA expression and mitochondrial functions in cancer cell and cancer stem cell. Mol Biol Rep 2023; 50:5395-5405. [PMID: 37074612 DOI: 10.1007/s11033-023-08421-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/31/2023] [Indexed: 04/20/2023]
Abstract
The self-renew ability of cancer stem cells (CSCs) continues to challenge our determination for accomplishing cancer therapy breakthrough. Ineffectiveness of current cancer therapies to eradicate CSCs has contributed to chemoresistance and tumor recurrence. Yet, the discoveries of highly effective therapies have not been thoroughly developed. Further insights into cancer metabolomics and gene-regulated mechanisms of mitochondria in CSCs can expedite the development of novel anticancer drugs. In cancer cells, the metabolism is reprogrammed from oxidative phosphorylation (OXPHOS) to glycolysis. This alteration allows the cancer cell to receive continuous energy supplies and avoid apoptosis. The pyruvate obtained from glycolysis produces acetyl-coenzyme A (Acetyl-CoA) via oxidative decarboxylation and enters the tricarboxylic acid cycle for adenosine triphosphate generation. Mitochondrial calcium ion (Ca2+) uptake is responsible for mitochondrial physiology regulation, and reduced uptake of Ca2+ inhibits apoptosis and enhances cell survival in cancer. There have been many discoveries of mitochondria-associated microRNAs (miRNAs) stimulating the metabolic alterations in mitochondria via gene regulation which promote cancer cell survival. These miRNAs are also found in CSCs where they regulate genes and activate different mechanisms to destroy the mitochondria and enhance CSCs survival. By targeting the miRNAs that induced mitochondrial destruction, the mitochondrial functions can be restored; thus, it triggers CSCs apoptosis and completely eliminates the CSCs. In general, this review article aims to address the associations between miRNAs with mitochondrial activities in cancer cells and cancer stem cells that support cancer cell survival and self-renewal.
Collapse
Affiliation(s)
- Wee Lin Tan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Sethu Thakachy Subha
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Institute of Bioscience UPM-MAKNA Cancer Research Laboratory (CANRES), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
12
|
Rosolen D, Nunes-Souza E, Marchi R, Tofolo MV, Antunes VC, Berti FCB, Fonseca AS, Cavalli LR. MiRNAs Action and Impact on Mitochondria Function, Metabolic Reprogramming and Chemoresistance of Cancer Cells: A Systematic Review. Biomedicines 2023; 11:biomedicines11030693. [PMID: 36979672 PMCID: PMC10045760 DOI: 10.3390/biomedicines11030693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 03/30/2023] Open
Abstract
MicroRNAs (miRNAs) are involved in the regulation of mitochondrial function and homeostasis, and in the modulation of cell metabolism, by targeting known oncogenes and tumor suppressor genes of metabolic-related signaling pathways involved in the hallmarks of cancer. This systematic review focuses on articles describing the role, association, and/or involvement of miRNAs in regulating the mitochondrial function and metabolic reprogramming of cancer cells. Following the PRISMA guidelines, the articles reviewed were published from January 2010 to September 2022, with the search terms "mitochondrial microRNA" and its synonyms (mitochondrial microRNA, mitochondrial miRNA, mito microRNA, or mitomiR), "reprogramming metabolism," and "cancer" in the title or abstract). Thirty-six original research articles were selected, revealing 51 miRNAs with altered expression in 12 cancers: bladder, breast, cervical, colon, colorectal, liver, lung, melanoma, osteosarcoma, pancreatic, prostate, and tongue. The actions of miRNAs and their corresponding target genes have been reported mainly in cell metabolic processes, mitochondrial dynamics, mitophagy, apoptosis, redox signaling, and resistance to chemotherapeutic agents. Altogether, these studies support the role of miRNAs in the metabolic reprogramming hallmark of cancer cells and highlight their potential as predictive molecular markers of treatment response and/or targets that can be used for therapeutic intervention.
Collapse
Affiliation(s)
- Daiane Rosolen
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Emanuelle Nunes-Souza
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Rafael Marchi
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Maria Vitoria Tofolo
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Valquíria C Antunes
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Fernanda C B Berti
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Aline S Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Luciane R Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, WA 20057, USA
| |
Collapse
|
13
|
Gallo Cantafio ME, Torcasio R, Viglietto G, Amodio N. Non-Coding RNA-Dependent Regulation of Mitochondrial Dynamics in Cancer Pathophysiology. Noncoding RNA 2023; 9:ncrna9010016. [PMID: 36827549 PMCID: PMC9964195 DOI: 10.3390/ncrna9010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Mitochondria are essential organelles which dynamically change their shape and number to adapt to various environmental signals in diverse physio-pathological contexts. Mitochondrial dynamics refers to the delicate balance between mitochondrial fission (or fragmentation) and fusion, that plays a pivotal role in maintaining mitochondrial homeostasis and quality control, impinging on other mitochondrial processes such as metabolism, apoptosis, mitophagy, and autophagy. In this review, we will discuss how dysregulated mitochondrial dynamics can affect different cancer hallmarks, significantly impacting tumor growth, survival, invasion, and chemoresistance. Special emphasis will be given to emerging non-coding RNA molecules targeting the main fusion/fission effectors, acting as novel relevant upstream regulators of the mitochondrial dynamics rheostat in a wide range of tumors.
Collapse
Affiliation(s)
| | - Roberta Torcasio
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| |
Collapse
|
14
|
Li F, Zheng Z, Chen W, Li D, Zhang H, Zhu Y, Mo Q, Zhao X, Fan Q, Deng F, Han C, Tan W. Regulation of cisplatin resistance in bladder cancer by epigenetic mechanisms. Drug Resist Updat 2023; 68:100938. [PMID: 36774746 DOI: 10.1016/j.drup.2023.100938] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Bladder cancer is one of the most common malignancies in the world. Cisplatin is one of the most potent and widely used anticancer drugs and has been employed in several malignancies. Cisplatin-based combination chemotherapies have become important adjuvant therapies for bladder cancer patients. Cisplatin-based treatment often results in the development of chemoresistance, leading to therapeutic failure and limiting its application and effectiveness in bladder cancer. To develop improved and more effective cancer therapy, research has been conducted to elucidate the underlying mechanism of cisplatin resistance. Epigenetic modifications have been demonstrated involved in drug resistance to chemotherapy, and epigenetic biomarkers, such as urine tumor DNA methylation assay, have been applied in patients screening or monitoring. Here, we provide a systematic description of epigenetic mechanisms, including DNA methylation, noncoding RNA regulation, m6A modification and posttranslational modifications, related to cisplatin resistance in bladder cancer.
Collapse
Affiliation(s)
- Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaosong Zheng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Chen
- Department of Urology, Institute of Precision Medicine, Zigong Forth People's Hospital, Zigong, Sichuan, China
| | - Dongqing Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Henghui Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuanchao Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qixin Mo
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinlei Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Conghui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
The Roles of miRNAs in Predicting Bladder Cancer Recurrence and Resistance to Treatment. Int J Mol Sci 2023; 24:ijms24020964. [PMID: 36674480 PMCID: PMC9864802 DOI: 10.3390/ijms24020964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Bladder cancer (BCa) is associated with significant morbidity, with development linked to environmental, lifestyle, and genetic causes. Recurrence presents a significant issue and is managed in the clinical setting with intravesical chemotherapy or immunotherapy. In order to address challenges such as a limited supply of BCG and identifying cases likely to recur, it would be advantageous to use molecular biomarkers to determine likelihood of recurrence and treatment response. Here, we review microRNAs (miRNAs) that have shown promise as predictors of BCa recurrence. MiRNAs are also discussed in the context of predicting resistance or susceptibility to BCa treatment.
Collapse
|
16
|
Huang CC, Liu HY, Hsu TW, Lee WC. Updates on the Pivotal Roles of Mitochondria in Urothelial Carcinoma. Biomedicines 2022; 10:biomedicines10102453. [PMID: 36289714 PMCID: PMC9599371 DOI: 10.3390/biomedicines10102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are important organelles responsible for energy production, redox homeostasis, oncogenic signaling, cell death, and apoptosis. Deregulated mitochondrial metabolism and biogenesis are often observed during cancer development and progression. Reports have described the crucial roles of mitochondria in urothelial carcinoma (UC), which is a major global health challenge. This review focuses on research advances in the role of mitochondria in UC. Here, we discuss the pathogenic roles of mitochondria in UC and update the mitochondria-targeted therapies. We aim to offer a better understanding of the mitochondria-modulated pathogenesis of UC and hope that this review will allow the development of novel mitochondria-targeted therapies.
Collapse
Affiliation(s)
- Chiang-Chi Huang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hui-Ying Liu
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Tsuen-Wei Hsu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Correspondence: ; Tel.: +886-7-731-7123 (ext. 8306)
| |
Collapse
|
17
|
Wu Y, Lan H, Zhang D, Hu Z, Zhang J, Li Z, Xia P, Tang X, Cai X, Yu P. Research progress on ncRNAs regulation of mitochondrial dynamics in diabetes. J Cell Physiol 2022; 237:4112-4131. [PMID: 36125936 DOI: 10.1002/jcp.30878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
Abstract
Diabetes mellitus and its complications are major health concerns worldwide that should be routinely monitored for evaluating disease progression. And there is currently much evidence to suggest a critical role for mitochondria in the common pathogenesis of diabetes and its complications. Mitochondrial dynamics are involved in the development of diabetes through mediating insulin signaling and insulin resistance, and in the development of diabetes and its complications through mediating endothelial impairment and other closely related pathophysiological mechanisms of diabetic cardiomyopathy (DCM). noncoding RNAs (ncRNAs) are closely linked to mitochondrial dynamics by regulating the expression of mitochondrial dynamic-associated proteins, or by regulating key proteins in related signaling pathways. Therefore, this review summarizes the research progress on the regulation of Mitochondrial Dynamics by ncRNAs in diabetes and its complications, which is a promising area for future antibodies or targeted drug development.
Collapse
Affiliation(s)
- Yifan Wu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Huixin Lan
- Huankui College, Nanchang University, Nanchang, Jiangxi, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Ziyan Hu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xia Cai
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
18
|
Wagner A, Kosnacova H, Chovanec M, Jurkovicova D. Mitochondrial Genetic and Epigenetic Regulations in Cancer: Therapeutic Potential. Int J Mol Sci 2022; 23:ijms23147897. [PMID: 35887244 PMCID: PMC9321253 DOI: 10.3390/ijms23147897] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are dynamic organelles managing crucial processes of cellular metabolism and bioenergetics. Enabling rapid cellular adaptation to altered endogenous and exogenous environments, mitochondria play an important role in many pathophysiological states, including cancer. Being under the control of mitochondrial and nuclear DNA (mtDNA and nDNA), mitochondria adjust their activity and biogenesis to cell demands. In cancer, numerous mutations in mtDNA have been detected, which do not inactivate mitochondrial functions but rather alter energy metabolism to support cancer cell growth. Increasing evidence suggests that mtDNA mutations, mtDNA epigenetics and miRNA regulations dynamically modify signalling pathways in an altered microenvironment, resulting in cancer initiation and progression and aberrant therapy response. In this review, we discuss mitochondria as organelles importantly involved in tumorigenesis and anti-cancer therapy response. Tumour treatment unresponsiveness still represents a serious drawback in current drug therapies. Therefore, studying aspects related to genetic and epigenetic control of mitochondria can open a new field for understanding cancer therapy response. The urgency of finding new therapeutic regimens with better treatment outcomes underlines the targeting of mitochondria as a suitable candidate with new therapeutic potential. Understanding the role of mitochondria and their regulation in cancer development, progression and treatment is essential for the development of new safe and effective mitochondria-based therapeutic regimens.
Collapse
Affiliation(s)
- Alexandra Wagner
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Helena Kosnacova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Miroslav Chovanec
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Correspondence:
| |
Collapse
|
19
|
The role of tumour microenvironment-driven miRNAs in the chemoresistance of muscle-invasive bladder cancer-a review. Urol Oncol 2022; 40:133-148. [PMID: 35246373 DOI: 10.1016/j.urolonc.2022.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 12/27/2022]
Abstract
Successful treatment for muscle-invasive bladder cancer is challenged by the ability of cancer cells to resist chemotherapy. While enormous progress has been made toward understanding the divergent molecular mechanisms underlying chemoresistance, the heterogenous interplay between the bladder tumour and its microenvironment presents significant challenges in comprehending the occurrence of chemoresistance. The last decade has seen exponential interest in the exploration of microRNA (miRNA) as a tool in the management of chemoresistance. In this review, we highlight the miRNAs involved in the tumour microenvironment crosstalk that contributes to the chemoresistance in bladder cancer. Decrypting the role of miRNAs in the interplay beholds scope for future clinical translational application in managing the long-standing concerns of chemoresistance in muscle-invasive bladder cancer.
Collapse
|
20
|
Chemotherapy Resistance: Role of Mitochondrial and Autophagic Components. Cancers (Basel) 2022; 14:cancers14061462. [PMID: 35326612 PMCID: PMC8945922 DOI: 10.3390/cancers14061462] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chemotherapy resistance is a common occurrence during cancer treatment that cancer researchers are attempting to understand and overcome. Mitochondria are a crucial intracellular signaling core that are becoming important determinants of numerous aspects of cancer genesis and progression, such as metabolic reprogramming, metastatic capability, and chemotherapeutic resistance. Mitophagy, or selective autophagy of mitochondria, can influence both the efficacy of tumor chemotherapy and the degree of drug resistance. Regardless of the fact that mitochondria are well-known for coordinating ATP synthesis from cellular respiration in cellular bioenergetics, little is known its mitophagy regulation in chemoresistance. Recent advancements in mitochondrial research, mitophagy regulatory mechanisms, and their implications for our understanding of chemotherapy resistance are discussed in this review. Abstract Cancer chemotherapy resistance is one of the most critical obstacles in cancer therapy. One of the well-known mechanisms of chemotherapy resistance is the change in the mitochondrial death pathways which occur when cells are under stressful situations, such as chemotherapy. Mitophagy, or mitochondrial selective autophagy, is critical for cell quality control because it can efficiently break down, remove, and recycle defective or damaged mitochondria. As cancer cells use mitophagy to rapidly sweep away damaged mitochondria in order to mediate their own drug resistance, it influences the efficacy of tumor chemotherapy as well as the degree of drug resistance. Yet despite the importance of mitochondria and mitophagy in chemotherapy resistance, little is known about the precise mechanisms involved. As a consequence, identifying potential therapeutic targets by analyzing the signal pathways that govern mitophagy has become a vital research goal. In this paper, we review recent advances in mitochondrial research, mitophagy control mechanisms, and their implications for our understanding of chemotherapy resistance.
Collapse
|
21
|
Uzuner E, Ulu GT, Gürler SB, Baran Y. The Role of MiRNA in Cancer: Pathogenesis, Diagnosis, and Treatment. Methods Mol Biol 2022; 2257:375-422. [PMID: 34432288 DOI: 10.1007/978-1-0716-1170-8_18] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is also determined by the alterations of oncogenes and tumor suppressor genes. These gene expressions can be regulated by microRNAs (miRNA). At this point, researchers focus on addressing two main questions: "How are oncogenes and/or tumor suppressor genes regulated by miRNAs?" and "Which other mechanisms in cancer cells are regulated by miRNAs?" In this work we focus on gathering the publications answering these questions. The expression of miRNAs is affected by amplification, deletion or mutation. These processes are controlled by oncogenes and tumor suppressor genes, which regulate different mechanisms of cancer initiation and progression including cell proliferation, cell growth, apoptosis, DNA repair, invasion, angiogenesis, metastasis, drug resistance, metabolic regulation, and immune response regulation in cancer cells. In addition, profiling of miRNA is an important step in developing a new therapeutic approach for cancer.
Collapse
Affiliation(s)
- Erez Uzuner
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Gizem Tugçe Ulu
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Sevim Beyza Gürler
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yusuf Baran
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey.
| |
Collapse
|
22
|
Wang H, Shi W, Zeng D, Huang Q, Xie J, Wen H, Li J, Yu X, Qin L, Zhou Y. pH-activated, mitochondria-targeted, and redox-responsive delivery of paclitaxel nanomicelles to overcome drug resistance and suppress metastasis in lung cancer. J Nanobiotechnology 2021; 19:152. [PMID: 34022909 PMCID: PMC8141180 DOI: 10.1186/s12951-021-00895-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background Mitochondria play a role in the occurrence, development, drug resistance, metastasis, and other functions of cancer and thus are a drug target. An acid-activated mitochondria-targeting drug nanocarrier with redox-responsive function was constructed in the present study. However, whether this vector can precisely delivery paclitaxel (PTX) to enhance therapeutic efficacy in drug-resistant lung cancer is unknown. Results Acid-cleavable dimethylmaleic anhydride (DA) was used to modify pluronic P85-conjugated mitochondria-targeting triphenylphosphonium (TPP) using disulfide bonds as intermediate linkers (DA-P85-SS-TPP and DA-P-SS-T). The constructed nanocarriers demonstrated enhanced cellular uptake and selective mitochondrial targeting at extracellular pH characteristic for a tumor (6.5) and were characterized by extended circulation in the blood. TPP promoted the targeting of the DA-P-SS-T/PTX nanomicelles to the mitochondrial outer membrane to decrease the membrane potential and ATP level, resulting in inhibition of P-glycoprotein and suppression of drug resistance and cancer metastasis. PTX was also rapidly released in the presence of high glutathione (GSH) levels and directly diffused into the mitochondria, resulting in apoptosis of drug-resistant lung cancer cells. Conclusions These promising results indicated that acid-activated mitochondria-targeting and redox-responsive nanomicelles potentially represent a significant advancement in cancer treatment. Graphic Abstarct ![]()
Collapse
Affiliation(s)
- He Wang
- Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangdong, 510260, Guangzhou, People's Republic of China
| | - Wenwen Shi
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangdong, 511436, Guangzhou, People's Republic of China
| | - Danning Zeng
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangdong, 511436, Guangzhou, People's Republic of China.,Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangdong, 510260, Guangzhou, People's Republic of China
| | - Qiudi Huang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangdong, 511436, Guangzhou, People's Republic of China
| | - Jiacui Xie
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangdong, 511436, Guangzhou, People's Republic of China
| | - Huaying Wen
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangdong, 511436, Guangzhou, People's Republic of China
| | - Jinfang Li
- Department of Pharmaceutical Sciences, Xinjiang Second Medical College, Kelamayi, 830011, Xinjiang, People's Republic of China
| | - Xiyong Yu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangdong, 511436, Guangzhou, People's Republic of China
| | - Linghao Qin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China.
| | - Yi Zhou
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangdong, 511436, Guangzhou, People's Republic of China.
| |
Collapse
|
23
|
Jafari A, Babajani A, Abdollahpour-Alitappeh M, Ahmadi N, Rezaei-Tavirani M. Exosomes and cancer: from molecular mechanisms to clinical applications. Med Oncol 2021; 38:45. [PMID: 33743101 DOI: 10.1007/s12032-021-01491-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/04/2021] [Indexed: 12/15/2022]
Abstract
Exosomes are extracellular nanovesicles secreted from almost all types of normal and cancer cells. Collective evidence suggests that exosomes participate in cell-cell communication via transmitting their cargo, including nucleic acids, proteins, and metabolites to recipient cells. Tumor-derived exosomes (TEXs) play prominent roles in the regulation of molecular pathways in malignancies. Internalization of exosomes by tumor cells affects cellular pathways and several cancer hallmarks, including reprogramming of stromal cells, modulating immune responses, reconstructing extracellular matrix architecture, or even endowing tumor cells with drug features resistance. The unique biogenesis pathways of exosomes, their composition, low immunogenicity, and nontoxicity, together with their ability to target tumor cells, bring them up as an attractive vesicles for cancer therapy. Thus, understanding the molecular mechanisms of exosomes' participation in tumorigenesis will be critical for the next generation of cancer therapeutics. This review aims to summarize the exosomes' roles in different mechanisms underlying cancer progression for the rational design of tailored strategies against this illness. The present study also highlights the new findings on using these smart vesicles as therapeutic targets and potential biomarkers. Recent advances in exosome biology will open up new, more effective, less invasive, and more individualized clinical applications for treating cancer patients.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nayebali Ahmadi
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Proteomics Research Center, Department of Medical Lab Technology, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Stempor PA, Avni D, Leibowitz R, Sidi Y, Stępień M, Dzieciątkowski T, Dobosz P. Comprehensive Analysis of Correlations in the Expression of miRNA Genes and Immune Checkpoint Genes in Bladder Cancer Cells. Int J Mol Sci 2021; 22:2553. [PMID: 33806327 PMCID: PMC7961343 DOI: 10.3390/ijms22052553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
Personalised medicine is the future and hope for many patients, including those with cancers. Early detection, as well as rapid, well-selected treatment, are key factors leading to a good prognosis. MicroRNA mediated gene regulation is a promising area of development for new diagnostic and therapeutic methods, crucial for better prospects for patients. Bladder cancer is a frequent neoplasm, with high lethality and lacking modern, advanced therapeutic modalities, such as immunotherapy. MicroRNAs are involved in bladder cancer pathogenesis, proliferation, control and response to treatment, which we summarise in this perspective in response to lack of recent review publications in this field. We further performed a correlation-based analysis of microRNA and gene expression data in bladder cancer (BLCA) TCGA dataset. We identified 27 microRNAs hits with opposite expression profiles to genes involved in immune response in bladder cancer, and 24 microRNAs hits with similar expression profiles. We discuss previous studies linking the functions of these microRNAs to bladder cancer and assess if they are good candidates for personalised medicine therapeutics and diagnostics. The discussed functions include regulation of gene expression, interplay with transcription factors, response to treatment, apoptosis, cell proliferation and angiogenesis, initiation and development of cancer, genome instability and tumour-associated inflammatory reaction.
Collapse
Affiliation(s)
- Przemysław A. Stempor
- SmartImmune Ltd, Accelerate Cambridge, University of Cambridge Judge Business School, Cambridge CB4 1EE, UK;
| | - Dror Avni
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashome 52621, Israel;
| | - Raya Leibowitz
- Oncology Institute, Shamir Medical Center, Be’er Yaakov, Tel Hashome 52621, Israel;
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel;
| | - Yechezkel Sidi
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel;
| | - Maria Stępień
- Faculty of Medicine, Medical University of Lublin, 20-059 Lublin, Poland;
| | | | - Paula Dobosz
- Department of Hematology, Transplantationand Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
25
|
Purohit PK, Saini N. Mitochondrial microRNA (MitomiRs) in cancer and complex mitochondrial diseases: current status and future perspectives. Cell Mol Life Sci 2021; 78:1405-1421. [PMID: 33084945 PMCID: PMC11072739 DOI: 10.1007/s00018-020-03670-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/13/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023]
Abstract
Mitochondria are not only important for cellular bioenergetics but also lie at the heart of critical metabolic pathways. They can rapidly adjust themselves in response to changing conditions and the metabolic needs of the cell. Mitochondrial involvement as well as its dysfunction has been found to be associated with variety of pathological processes and diseases. mitomiRs are class of miRNA(s) that regulate mitochondrial gene expression and function. This review sheds light on the role of mitomiRs in regulating different biological processes-mitochondrial dynamics, oxidative stress, cell metabolism, chemoresistance, apoptosis,and their relevance in metabolic diseases, neurodegenerative disorders, and cancer. Insilico analysis of predicted targets of mitomiRs targeting energy metabolism identified several significantly altered pathways (needs in vivo validations) that may provide a new therapeutic approach for the treatment of human diseases. Last part of the review discusses about the clinical aspects of miRNA(s) and mitomiRs in Medicine.
Collapse
Affiliation(s)
- Paresh Kumar Purohit
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201 002, India
| | - Neeru Saini
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India.
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
26
|
Non coding RNAs as the critical factors in chemo resistance of bladder tumor cells. Diagn Pathol 2020; 15:136. [PMID: 33183321 PMCID: PMC7659041 DOI: 10.1186/s13000-020-01054-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bladder cancer (BCa) is the ninth frequent and 13th leading cause of cancer related deaths in the world which is mainly observed among men. There is a declining mortality rates in developed countries. Although, the majority of BCa patients present Non-Muscle-Invasive Bladder Cancer (NMIBC) tumors, only 30% of patients suffer from muscle invasion and distant metastases. Radical cystoprostatectomy, radiation, and chemotherapy have proven to be efficient in metastatic tumors. However, tumor relapse is observed in a noticeable ratio of patients following the chemotherapeutic treatment. Non-coding RNAs (ncRNAs) are important factors during tumor progression and chemo resistance which can be used as diagnostic and prognostic biomarkers of BCa. MAIN BODY In present review we summarized all of the lncRNAs and miRNAs associated with chemotherapeutic resistance in bladder tumor cells. CONCLUSIONS This review paves the way of introducing a prognostic panel of ncRNAs for the BCa patients which can be useful to select a proper drug based on the lncRNA profiles of patients to reduce the cytotoxic effects of chemotherapy in such patients.
Collapse
|
27
|
Downregulation of miR-125b promotes resistance of glioma cells to TRAIL through overexpression of Tafazzin which is a mitochondrial protein. Aging (Albany NY) 2020; 11:2670-2680. [PMID: 31056533 PMCID: PMC6535077 DOI: 10.18632/aging.101939] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 04/24/2019] [Indexed: 01/06/2023]
Abstract
Overexpression of Tafazzin (TAZ), a mitochondrial protein, is often observed in many cancers. However, the association between aberrant expression of TAZ and drug resistance remains unclear. The aim of this study is to explore the role of TAZ in regulating the TRAIL resistance in glioma. We thus established the TRAIL resistance models on glioma by using the U87 and U251 cell lines (U87/R and U251/R). As the results, obvious overexpression of TAZ was observed in U87/R and U251/R cells. However, knockdown of TAZ increased the sensitivity of U87/R and U251/R cells to TRAIL-induced apoptosis. By contrast, expression of miR-125b was downregulated in U87/R and U251/R cells compared to the parental U87 and U251 cells. Furthermore, decrease of miR-125b was responsible for overexpression of TAZ, because the results of dual-luciferase reporter assays verified that TAZ was targeted by miR-125b. We then showed that enforced expression of miR-125b resensitized the U87/R and U251/R cells to TRAIL-dependent damage of mitochondria and activation of caspase-9 and -3. We demonstrated that overexpression of TAZ caused by downregulation of miR-125b promoted resistance of glioma cells to TRAIL. MiR-125b/TAZ axis may represent a potential strategy to reverse the TRAIL in glioma.
Collapse
|
28
|
Kopecka J, Gazzano E, Castella B, Salaroglio IC, Mungo E, Massaia M, Riganti C. Mitochondrial metabolism: Inducer or therapeutic target in tumor immune-resistance? Semin Cell Dev Biol 2019; 98:80-89. [PMID: 31100351 DOI: 10.1016/j.semcdb.2019.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/08/2023]
Abstract
Mitochondria have been considered for a long time only as the principal source of building blocks and energy upon aerobic conditions. Recently they emerged as key players in cell proliferation, invasion and resistance to therapy. The most aggressive tumors are able to evade the immune-surveillance. Alterations in the mitochondria metabolism either in cancer cells or in host immune system cells are involved in such tumor-induced immune-suppression. This review will focus on the main mitochondrial dysfunctions in tumor and immune cell populations determining immune-resistance, and on the therapies that may target mitochondrial metabolism and restore a powerful anti-tumor immune-activity.
Collapse
Affiliation(s)
- Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | - Elena Gazzano
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | - Barbara Castella
- Laboratory of Blood Tumor Immunology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Iris C Salaroglio
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | - Eleonora Mungo
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | - Massimo Massaia
- Laboratory of Blood Tumor Immunology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy; Hematology Division, AO S Croce e Carle, Cuneo, Italy; Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy; Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Italy.
| |
Collapse
|