1
|
Chen Z, Xu L, Yuan Y, Zhang S, Xue R. Metabolic crosstalk between platelets and cancer: Mechanisms, functions, and therapeutic potential. Semin Cancer Biol 2025; 110:65-82. [PMID: 39954752 DOI: 10.1016/j.semcancer.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Platelets, traditionally regarded as passive mediators of hemostasis, are now recognized as pivotal regulators in the tumor microenvironment, establishing metabolic feedback loops with tumor and immune cells. Tumor-derived signals trigger platelet activation, which induces rapid metabolic reprogramming, particularly glycolysis, to support activation-dependent functions such as granule secretion, morphological changes, and aggregation. Beyond self-regulation, platelets influence the metabolic processes of adjacent cells. Through direct mitochondrial transfer, platelets reprogram tumor and immune cells, promoting oxidative phosphorylation. Additionally, platelet-derived cytokines, granules, and extracellular vesicles drive metabolic alterations in immune cells, fostering suppressive phenotypes that facilitate tumor progression. This review examines three critical aspects: (1) the distinctive metabolic features of platelets, particularly under tumor-induced activation; (2) the metabolic crosstalk between activated platelets and other cellular components; and (3) the therapeutic potential of targeting platelet metabolism to disrupt tumor-promoting networks. By elucidating platelet metabolism, this review highlights its essential role in tumor biology and its therapeutic implications.
Collapse
Affiliation(s)
- Zhixue Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lin Xu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yejv Yuan
- The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232001, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Cui H, Wang Y, Zhou T, Qu L, Zhang X, Wang Y, Han M, Yang S, Ren X, Wang G, Gang X. Targeting DGAT1 inhibits prostate cancer cells growth by inducing autophagy flux blockage via oxidative stress. Oncogene 2024; 43:136-150. [PMID: 37973951 DOI: 10.1038/s41388-023-02878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Impaired macroautophagy/autophagy flux has been implicated in the treatment of prostate cancer (PCa). However, the mechanism underlying autophagy dysregulation in PCa remains unknown. In the current study, we investigated the role of diacylglycerol acyltransferases 1 (DGAT1) and its potential effects on cellular energy homeostasis and autophagy flux in PCa. The results of immunohistochemical staining suggested that DGAT1 expression was positively corrected with tumor stage and node metastasis, indicating DGAT1 is an important factor involved in the development and progression of PCa. Furthermore, targeting DGAT1 remarkably inhibited cell proliferation in vitro and suppressed PCa growth in xenograft models by triggering severe oxidative stress and subsequently autophagy flux blockage. Mechanically, DGAT1 promoted PCa progression by maintaining cellular energy homeostasis, preserving mitochondrial function, protecting against reactive oxygen species, and subsequently promoting autophagy flux via regulating lipid droplet formation. Moreover, we found that fenofibrate exhibits as an upstream regulator of DGAT1. Fenofibrate performed its anti-PCa effect involved the aforementioned mechanisms, and partially dependent on the regulation of DGAT1. Collectively. These findings indicate that DGAT1 regulates PCa lipid droplets formation and is essential for PCa progression. Targeting DGAT1 might be a promising method to control the development and progression of PCa. Schematic representation of DGAT1 affects autophagy flux by regulating lipid homeostasis and maintaining mitochondrial function in prostate cancer (PCa). PCa is characterized up-regulation of DGAT1, leading to the translocation of free fatty acids into lipid droplets, thereby preventing PCa cell from lipotoxicity. Inhibition of DGAT1 suppresses growth of PCa by inducing oxidative stress and subsequently autophagy flux blockage. Further, the current results revealed that fenofibrate exhibits as an upstream regulator of DGAT1, and fenofibrate plays an anti-PCa role partially dependent on the regulation of DGAT1, suggesting a potential therapeutic approach to ameliorate this refractory tumor.
Collapse
Affiliation(s)
- Haiying Cui
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Yao Wang
- Department of Orthopedics, The Second Hospital Jilin University, Changchun, 130021, Jilin Province, China
| | - Tong Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Limei Qu
- Department of Pathology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Yingdi Wang
- Department of Urology, Jilin Oncological Hospital, Changchun, 130021, Jilin Province, China
| | - Mingyue Han
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Shuo Yang
- Department of Clinical Nutrition, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Xinhua Ren
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China.
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
3
|
Hwang KW, Yun JW, Kim HS. Unveiling the Molecular Landscape of FOXA1 Mutant Prostate Cancer: Insights and Prospects for Targeted Therapeutic Strategies. Int J Mol Sci 2023; 24:15823. [PMID: 37958805 PMCID: PMC10650174 DOI: 10.3390/ijms242115823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Prostate cancer continues to pose a global health challenge as one of the most prevalent malignancies. Mutations of the Forkhead box A1 (FOXA1) gene have been linked to unique oncogenic features in prostate cancer. In this study, we aimed to unravel the intricate molecular characteristics of FOXA1 mutant prostate cancer through comprehensive in silico analysis of transcriptomic data from The Cancer Genome Atlas (TCGA). A comparison between FOXA1 mutant and control groups unearthed 1525 differentially expressed genes (DEGs), which map to eight intrinsic and six extrinsic signaling pathways. Interestingly, the majority of intrinsic pathways, but not extrinsic pathways, were validated using RNA-seq data of 22Rv1 cells from the GEO123619 dataset, suggesting complex biology in the tumor microenvironment. As a result of our in silico research, we identified novel therapeutic targets and potential drug candidates for FOXA1 mutant prostate cancer. KDM1A, MAOA, PDGFB, and HSP90AB1 emerged as druggable candidate targets, as we found that they have approved drugs throughout the drug database CADDIE. Notably, as most of the approved drugs targeting MAOA and KDM1A were monoamine inhibitors used for mental illness or diabetes, we suggest they have a potential to cure FOXA1 mutant primary prostate cancer without lethal side effects.
Collapse
Affiliation(s)
- Kyung Won Hwang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jae Won Yun
- Veterans Health Service Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea;
| | - Hong Sook Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
4
|
Mucke HAM. Drug Repurposing Patent Applications April-June 2023. Assay Drug Dev Technol 2023; 21:288-295. [PMID: 37668595 DOI: 10.1089/adt.2023.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
|
5
|
Huang S, Zhang NQ, Xu CJ, Huang WQ, Li DX, Li J, Yao LL, Sundquist K, Sundquist J, Jiang SH, Xing X, Hu LP, Zhang ZG, Ji J, Zhang XL. Dipyridamole enhances the anti-cancer ability of aspirin against colorectal cancer by inducing apoptosis in an unfolded protein response-dependent manner. Cell Oncol (Dordr) 2023; 46:953-967. [PMID: 36939950 DOI: 10.1007/s13402-023-00789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/21/2023] Open
Abstract
PURPOSE Available evidence indicates that dipyridamole enhances the anti-thrombotic effects of aspirin for the prevention of secondary strokes. Aspirin is a well-known non-steroid anti-inflammatory drug. This anti-inflammatory property has turned aspirin into a potential drug for inflammation-related cancers such as colorectal cancer (CRC). Here, we aimed to explore whether the anti-cancer effect of aspirin against CRC could be improved by combined administration with dipyridamole. METHODS Population-based clinical data analysis was conducted to assess a possible therapeutic effect of combined dipyridamole and aspirin treatment in inhibiting CRC compared with either monotherapy. This therapeutic effect was further verified in different CRC mouse models, i.e. an orthotopic xenograft mouse model, an AOM/DSS mouse model, an Apcmin/+ mouse model and a patient derived xenograft (PDX) mouse model. The in vitro effects of the drugs on CRC cells were tested using CCK8 and flow cytometry assays. RNA-Seq, Western blotting, qRT-PCR and flow cytometry were used to identify the underlying molecular mechanisms. RESULTS We found that dipyridamole combined with aspirin had a better inhibitory effect on CRC than either monotherapy alone. The enhanced anti-cancer effect of the combined use of dipyridamole with aspirin was found to rely on the induction of an overwhelmed endoplasmic reticulum (ER) stress and subsequent pro-apoptotic unfolded protein response (UPR), which was different from the anti-platelet effect. CONCLUSIONS Our data indicate that the anti-cancer effect of aspirin against CRC may be enhanced by combined administration with dipyridamole. In case further clinical studies confirm our findings, these may be repurposed as adjuvant agents.
Collapse
Affiliation(s)
- Shan Huang
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Nai-Qi Zhang
- Center for Primary Health Care Research, Lund University/Region Skåne, Lund, Sweden
| | - Chun-Jie Xu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Wu-Qing Huang
- School of Public Health, Fujian Medical University, Fuzhou City, P.R. China
| | - Dong-Xue Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lin-Li Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Lund, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Lund, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xin Xing
- Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Road, Shanghai, 201499, China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Jianguang Ji
- Center for Primary Health Care Research, Lund University/Region Skåne, Lund, Sweden.
| | - Xue-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| |
Collapse
|
6
|
Guo W, Dong X, Li Y, Li C, Tian Y, Gao H, Li T, Zhu H, Wang J, Yang C. Co-amorphous formulation of dipyridamole with p-hydroxybenzoic acid: Underlying molecular mechanisms, physical stability, dissolution behavior and pharmacokinetic study. Eur J Pharm Biopharm 2023; 184:139-149. [PMID: 36709922 DOI: 10.1016/j.ejpb.2023.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/02/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Coamorphization has been proven to be an effective approach to improve bioavailability of poorly soluble active pharmaceutical ingredients (APIs) by virtue of solubilization, and also contributes to overcome limitation of physical stability associated with amorphous drug alone. In current work, a co-amorphous formulation of dipyridamole (DPM), a poor solubility drug, with p-hydroxybenzoic acid (HBA) was prepared and investigated. At a molar ratio of 1:2, DPM and HBA were melted result in the formation of a binary co-amorphous system. The DPM-HBA co-amorphous was structurally characterized by powder X-ray diffraction (PXRD), temperature modulated differential scanning calorimetry (mDSC), high performance liquid chromatography (HPLC) and solution state 1H nuclear magnetic resonance (1H NMR). The molecular mechanisms in the co-amorphous were further analysed via Fourier-transform infrared (FTIR) and Raman spectroscopies, as well as density functional theory (DFT) calculation. All the results consistently revealed the presence of hydrogen bonding interactions between -OH of DPM and -COOH on HBA. Accelerated test and glass transition kinetics showed excellent physical stability of DPM-HBA co-amorphous compared with amorphous DPM along with glass transition temperatures (Tg). The phase-solubility study indicated that complexation occurred between DPM and HBA in solution, which contributed to the solubility and dissolution enhancement of DPM in co-amorphous system. Pharmacokinetic study of co-amorphous DPM-HBA in mouse plasma revealed that the DPM exhibited 1.78-fold and 2.64-fold improvement in AUC0‑∞ value compared with crystalline and amorphous DPM, respectively. This current study revealed coamorphization is an effective approach for DPM to improve the solubility and biopharmaceutical performance.
Collapse
Affiliation(s)
- Wei Guo
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Xueqing Dong
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Yuanchun Li
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Congwei Li
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Yawen Tian
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Huibing Gao
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Tiantian Li
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Hanruo Zhu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China.
| | - Caiqin Yang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China.
| |
Collapse
|
7
|
Gao J, Zhou C, Zhong Y, Shi L, Luo X, Su H, Li M, Xu Y, Zhang N, Zhou H. Dipyridamole interacts with the N-terminal domain of HSP90 and antagonizes the function of the chaperone in multiple cancer cell lines. Biochem Pharmacol 2023; 207:115376. [PMID: 36513142 DOI: 10.1016/j.bcp.2022.115376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Molecular chaperone HSP90 has been considered as a promising target for anti-cancer drug development for years. However, due to the heat shock response induced by the ATP competitive inhibitors against HSP90, the therapeutic efficacies of the compounds are compromised, which consequently restricts the clinical use of HSP90-targeted inhibitors. Therefore, there is a need to discover novel HSP90-targeted modulators which exhibit acceptable inhibition activity against the chaperone and do not induce significant heat shock response in the meantime. Here in this study, we firstly developed a tip-based affinity selection-mass spectrometry platform with optimized experimental conditions/parameters for HSP90-targeted active compound screening, and then applied it to fish out inhibitors against HSP90 from a collection of 2,395 compounds composed of FDA-approved drugs and drug candidates. Dipyridamole, which acts as an anti-thrombotic agent by modulating multiple targets and has a long history of safe use, was identified to interact with HSP90's N-terminal domain. The following conducted biophysical and biochemical experiments demonstrated that Dipyridamole could bind to HSP90's ATP binding pocket and function as an ATP competitive inhibitor of the chaperone. Finally, cellular-based assays including CESTA, cell viability assessment and proteomic analysis etc. were performed to evaluate whether the interaction between HSP90 and Dipyridamole contributes to the anti-tumor effects of the compound. We then found that Dipyridamole inhibits the growth and proliferation of human cancer cells by downregulating cell cycle regulators and upregulating apoptotic cell signaling, which are potentially mediated by the binding of Dipyridamole to HSP90 and to PDEs (phosphodiesterases), respectively.
Collapse
Affiliation(s)
- Jing Gao
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Chen Zhou
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yan Zhong
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Li Shi
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xuanyang Luo
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Minjun Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Naixia Zhang
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| | - Hu Zhou
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
8
|
A novel ReS 2–Nb 2CT x composite as a sensing platform for ultrasensitive and selective electrochemical detection of dipyramidole from human serum. GRAPHENE AND 2D MATERIALS 2022. [PMCID: PMC9758462 DOI: 10.1007/s41127-022-00055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The electrochemical detection of dipyridamole (DIPY) is highly essential since it is extensively used for the treatment of cardiovascular diseases and to impart inhibitory effects for cancer patients. In this work, we report the development of a novel composite of MXene and ReS2 (ReS2–Nb2CTx) by hydrothermal method. It was found that Nb2CTx was partially oxidized and ReS2 nanoparticles were distributed on the surface of Nb2CTx during the hydrothermal synthesis. The ReS2–Nb2CTx was used to modify carbon cloth electrodes and used for the electrochemical detection of DIPY. The ratio of ReS2 was optimized in the composite by varying the atomic ratio from 4 to 9 and it was found that 6ReS2–Nb2CTx showed the best sensing characteristics owing to the optimum interaction between ReS2 and Nb2CTx. The developed sensor was able to detect DIPY linearly in the range 100 pM–1 μM and achieved a limit of detection of (LOD) of 28 pM. The modified electrode exhibited excellent selectivity towards DIPY in the presence of other interferents in addition to its good storage stability and repeatability. Furthermore, the developed sensor was also used for the detection of DIPY in human serum samples. Thus, this work paves the way to develop MXene-based platform for fabrication of flexible device capable of monitoring the acute levels of DIPY.
Collapse
|
9
|
Huang HY, Lu TW, Liang HL, Hsu WH, Sung YW, Lee MY. Antiplatelet agents aspirin and dipyridamole, and the risk of different carcinoma in patients with type 2 diabetes mellitus: A Taiwan retrospective cohort study. Medicine (Baltimore) 2022; 101:e30468. [PMID: 36123870 PMCID: PMC9478216 DOI: 10.1097/md.0000000000030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Studies have shown aspirin decreases the risk of some cancers. However, the evidence reported the association between aspirin and cancer risk in the diabetic population. In this study, we investigate whether aspirin and dipyridamole decrease the risk of cancer in patients with type 2 diabetes. A total of 5308 patients with type 2 diabetes were identified by the National Health Insurance from 1998 to 2000 and followed up until 2013. The demographic characteristics among nondipyridamole nor aspirin, aspirin, and dipyridamole users were analyzed by using the χ(2) test. Cox proportional hazard regression models were used to determine the independent effects of no aspirin nor dipyridamole, aspirin, and dipyridamole users on the risk of different cancer. After adjustment with multiple covariates, both low and high doses of aspirin and dipyridamole decrease liver cancer with risk ratios of 0.56 (95% CI, 0.37-0.83), 0.14 (95% CI, 0.05-0.39), 0.61 (95% CI, 0.38-0.99), and 0.28 (95% CI, 0.12-0.66), respectively. Both low and high doses of aspirin decrease any types of cancer with risk ratios of 0.79 (95% CI, 0.64-0.98) and 0.49 (95% CI, 0.34-0.70), respectively. Therefore, we conclude aspirin may decrease any types of cancer and liver cancer, and dipyridamole may decrease the risk of liver cancer in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Hsing-Yi Huang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tz-Wen Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiu-Ling Liang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-Hao Hsu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Wen Sung
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Mei-Yueh Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Mei-Yueh Lee, Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan (e-mail: )
| |
Collapse
|
10
|
Zhang Q, Cao S, Qiu F, Kang N. Incomplete autophagy: Trouble is a friend. Med Res Rev 2022; 42:1545-1587. [PMID: 35275411 DOI: 10.1002/med.21884] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 01/18/2023]
Abstract
Incomplete autophagy is an impaired self-eating process of intracellular macromolecules and organelles in which accumulated autophagosomes do not fuse with lysosomes for degradation, resulting in the blockage of autophagic flux. In this review, we summarized the literature over the past decade describing incomplete autophagy, and found that different from the double-edged sword effect of general autophagy on promoting cell survival or death, incomplete autophagy plays a crucial role in disrupting cellular homeostasis, and promotes only cell death. What matters is that incomplete autophagy is closely relevant to the pathogenesis and progression of various human diseases, which, meanwhile, intimately linking to the pharmacologic and toxicologic effects of several compounds. Here, we comprehensively reviewed the latest progress of incomplete autophagy on molecular mechanisms and signaling pathways. Moreover, implications of incomplete autophagy for pharmacotherapy are also discussed, which has great relevance for our understanding of the distinctive role of incomplete autophagy in cellular physiology and disease. Consequently, targeting incomplete autophagy may contribute to the development of novel generation therapeutic agents for diverse human diseases.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shijie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Department of Medicinal Chemistry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ning Kang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
11
|
Chang CY, Wu CC, Wang JD, Liao SL, Chen WY, Kuan YH, Wang WY, Chen CJ. Endoplasmic Reticulum Stress Contributed to Dipyridamole-Induced Impaired Autophagic Flux and Glioma Apoptosis. Int J Mol Sci 2022; 23:ijms23020579. [PMID: 35054765 PMCID: PMC8775759 DOI: 10.3390/ijms23020579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/03/2022] Open
Abstract
Elevation of intracellular cAMP levels has been implicated in glioma cell proliferation inhibition, differentiation, and apoptosis. Inhibition of phosphodiesterase is a way to elevate intracellular cAMP levels. The present study aimed to investigate the anti-glioma potential of dipyridamole, an inhibitor of phosphodiesterase. Upon treatment with dipyridamole, human U87 glioma cells decreased cell viability, clonogenic colonization, migration, and invasion, along with Noxa upregulation, Endoplasmic Reticulum (ER) stress, impaired autophagic flux, Yes-associated Protein 1 (YAP1) phosphorylation, and YAP1 reduction. Pharmacological and genetic studies revealed the ability of dipyridamole to initiate Noxa-guided apoptosis through ER stress. Additionally, the current study further identified the biochemical role of YAP1 in communicating with ER stress and autophagy under situations of dipyridamole treatment. YAP1 promoted autophagy and protected glioma cells from dipyridamole-induced apoptotic cell death. Dipyridamole impaired autophagic flux and rendered glioma cells more vulnerable to apoptotic cell death through ER stress-inhibitable YAP1/autophagy axis. The overall cellular changes caused by dipyridamole appeared to ensure a successful completion of apoptosis. Dipyridamole also duplicated the biochemical changes and apoptosis in glioma T98G cells. Since dipyridamole has additional biochemical and pharmacological properties, further research centered on the anti-glioma mechanisms of dipyridamole is still needed.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung 420, Taiwan;
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- Department of Financial Engineering, Providence University, Taichung 433, Taiwan
- Department of Data Science and Big Data Analytics, Providence University, Taichung 433, Taiwan
| | - Jiaan-Der Wang
- Children’s Medical Center, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung 407, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Wen-Yi Wang
- Department of Nursing, Hung Kuang University, Taichung 433, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-4-2359-2525 (ext. 4022)
| |
Collapse
|
12
|
Bu F, Zhang J, Shuai W, Liu J, Sun Q, Ouyang L. Repurposing drugs in autophagy for the treatment of cancer: From bench to bedside. Drug Discov Today 2021; 27:1815-1831. [PMID: 34808390 DOI: 10.1016/j.drudis.2021.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/14/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
Autophagy is a multistep degradation pathway involving the lysosome, which supports nutrient reuse and metabolic balance, and has been implicated as a process that regulates cancer genesis and development. Targeting tumors by regulating autophagy has become a therapeutic strategy of interest. Drugs with other indications can have antitumor activity by modulating autophagy, providing a shortcut to developing novel antitumor drugs (i.e., drug repurposing/repositioning), as successfully performed for chloroquine (CQ); an increasing number of repurposed drugs have since advanced into clinical trials. In this review, we describe the application of different drug-repurposing approaches in autophagy for the treatment of cancer and focus on repurposing drugs that target autophagy to treat malignant neoplasms.
Collapse
Affiliation(s)
- Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
13
|
Shi SL, Fukuda H, Chujo T, Kouwaki T, Oshiumi H, Tomizawa K, Wei FY. Export of RNA-derived modified nucleosides by equilibrative nucleoside transporters defines the magnitude of autophagy response and Zika virus replication. RNA Biol 2021; 18:478-495. [PMID: 34382915 PMCID: PMC8677048 DOI: 10.1080/15476286.2021.1960689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022] Open
Abstract
RNA contains a wide variety of posttranscriptional modifications covalently attached to its base or sugar group. These modified nucleosides are liberated from RNA molecules as the consequence of RNA catabolism and released into extracellular space, but the molecular mechanism of extracellular transport and its pathophysiological implications have been unclear. In the present study, we discovered that RNA-derived modified nucleosides are exported to extracellular space through equilibrative nucleoside transporters 1 and 2 (ENT1 and ENT2), with ENT1 showing higher preference for modified nucleosides than ENT2. Pharmacological inhibition or genetic deletion of ENT1 and ENT2 significantly attenuated export of modified nucleosides thereby resulting in their accumulation in cytosol. Using mutagenesis strategy, we identified an amino acid residue in ENT1 that is involved in the discrimination of unmodified and modified nucleosides. In ENTs-deficient cells, the elevated levels of intracellular modified nucleosides were closely associated with an induction of autophagy response as evidenced by increased LC3-II level. Importantly, we performed a screening of modified nucleosides capable of inducing autophagy and found that 1-methylguanosine (m1G) was sufficient to induce LC3-II levels. Pathophysiologically, defective export of modified nucleosides drastically induced Zika virus replication in an autophagy-dependent manner. In addition, we also found that pharmacological inhibition of ENTs by dilazep significantly induced Zika virus replication. Collectively, our findings highlight RNA-derived modified nucleosides as important signaling modulators that activate autophagy response and indicate that defective export of these modified nucleoside can have profound consequences for pathophysiology.
Collapse
Affiliation(s)
- Sheng-Lan Shi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Fukuda
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takahisa Kouwaki
- Department of Immunology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Oshiumi
- Department of Immunology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| |
Collapse
|
14
|
Huang W, Sundquist K, Sundquist J, Ji J. Use of dipyridamole is associated with lower risk of lymphoid neoplasms: a propensity score-matched cohort study. Br J Haematol 2021; 196:690-699. [PMID: 34553368 DOI: 10.1111/bjh.17851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/29/2022]
Abstract
The anti-cancer potential of dipyridamole has been suggested from experiments, but evidence from population-based studies is still lacking. We aimed to explore if dipyridamole use was related to a lower risk of lymphoid neoplasms. We identified individuals with prescription of aspirin after diagnosis of ischaemic cerebrovascular disease since 2006 by linking several Swedish registers. In these aspirin users, those with dipyridamole prescription were further identified as the study group and patients without dipyridamole were randomly selected as reference group with 1:1 ratio using a propensity score-matching approach. After a median of 6·67 years of follow-up, a total of 46 patients with dipyridamole use developed lymphoid neoplasms with an incidence rate of 0·49 per 1 000 person-years, while the rate in the matched group was 0·74 per 1 000 person-years. As compared to non-users, dipyridamole users were associated with a significantly decreased risk of lymphoid neoplasms [hazard ratio (HR) = 0·65; 95% confidence interval (CI) = 0·43-0·98]. Specifically, the reduced risk was observed for non-Hodgkin lymphomas (HR = 0·64; 95% CI = 0·42-0·94), especially B-cell lymphomas (HR = 0·56; 95% CI = 0·35-0·88). Dipyridamole use was related to a lower risk of lymphoid neoplasms, indicating a clinical potential of dipyridamole to be an adjunct anti-tumour agent against lymphoid neoplasms.
Collapse
Affiliation(s)
- Wuqing Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fujian, China.,Department of Clinical Sciences Malmö, Center for Primary Health Care Research, Lund University, Lund, Sweden
| | - Kristina Sundquist
- Department of Clinical Sciences Malmö, Center for Primary Health Care Research, Lund University, Lund, Sweden.,Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Functional Pathology, Center for Community-based Healthcare Research and Education (CoHRE), School of Medicine, Shimane University, Matsue, Japan
| | - Jan Sundquist
- Department of Clinical Sciences Malmö, Center for Primary Health Care Research, Lund University, Lund, Sweden.,Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Functional Pathology, Center for Community-based Healthcare Research and Education (CoHRE), School of Medicine, Shimane University, Matsue, Japan
| | - Jianguang Ji
- Department of Clinical Sciences Malmö, Center for Primary Health Care Research, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Zhou X, Wang F, Wu H, Chen X, Zhang Y, Lin J, Cai Y, Xiang J, He N, Hu Z, Jin X. Thymoquinone Suppresses the Proliferation, Migration and Invasiveness through Regulating ROS, Autophagic Flux and miR-877-5p in Human Bladder Carcinoma Cells. Int J Biol Sci 2021; 17:3456-3475. [PMID: 34512159 PMCID: PMC8416733 DOI: 10.7150/ijbs.60401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/01/2021] [Indexed: 12/13/2022] Open
Abstract
Bladder carcinoma is among the top 10 most frequently diagnosed cancer types in the world. As a phytochemical active metabolic, thymoquinone (TQ) is extracted from seeds of Nigella sativa, possessing various biological properties in a wide range of diseases. Moreover, the outstanding anti-cancer effect of TQ is attracting increasing attentions. In certain circumstances, moderate autophagy is regarded to facilitate the adaptation of malignant cells to different stressors. Conversely, closely linked with the mitochondrial membrane potential (MMP) loss, the upregulation of intracellular reactive oxygen species (ROS) is reported to activate the cell apoptosis in many cancer types. Furthermore, the vital effects of microRNAs in the pathological processes of cancer cells have also been confirmed by previous studies. The present research confirms that TQ restrains the viability, proliferation, migration and invasion through activating caspase-dependent apoptosis in bladder carcinoma cells, which is mediated by TQ induced ROS increase in bladder carcinoma cells. Furthermore, TQ is proved to block the fusion of autophagosomes and lysosomes, causing the accumulation of autophagosomes and subsequent cell apoptosis. In addition, TQ is also found to initiate the miR-877-5p/PD-L1 axis, which suppresses the epithelial mesenchymal transition (EMT) and invasion of bladder carcinoma cells. Taken together, TQ induces the apoptosis through upregulating ROS level and impairing autophagic flux, and inhibiting the EMT and cell invasion via activating the miR-877-5p/PD-L1 axis in bladder carcinoma cells.
Collapse
Affiliation(s)
- Xuejian Zhou
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of medicine, Hangzhou, PR China
| | - Feifan Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of medicine, Hangzhou, PR China
| | - Hongshen Wu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of medicine, Hangzhou, PR China
| | - Xianwu Chen
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of medicine, Hangzhou, PR China
| | - Yan Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of medicine, Hangzhou, PR China
| | - Juntao Lin
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of medicine, Hangzhou, PR China
| | - Yueshu Cai
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of medicine, Hangzhou, PR China
| | - Jiayong Xiang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of medicine, Hangzhou, PR China
| | - Ning He
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of medicine, Hangzhou, PR China
| | - Zhenghui Hu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of medicine, Hangzhou, PR China
| | - Xiaodong Jin
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of medicine, Hangzhou, PR China
| |
Collapse
|
16
|
Wang JD, Wang YY, Lin SY, Chang CY, Li JR, Huang SW, Chen WY, Liao SL, Chen CJ. Exosomal HMGB1 Promoted Cancer Malignancy. Cancers (Basel) 2021; 13:877. [PMID: 33669632 PMCID: PMC7921955 DOI: 10.3390/cancers13040877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Reciprocal crosstalk between platelets and malignancies underscores the potential of antiplatelet therapy in cancer treatment. In this study, we found that human chronic myeloid leukemia K562 cell-differentiated megakaryocytes and murine platelets produced bioactive substances and these are released into the extracellular space, partly in their exosomal form. High-mobility group box 1 (HMGB1) is a type of exosomal cargo, and the antiplatelet drugs aspirin and dipyridamole interfered with its incorporation into the exosomes. Those released substances and exosomes, along with exogenous HMGB1, promoted cancer cell survival and protected cells from doxorubicin cytotoxicity. In a tumor-bearing model established using murine Lewis lung carcinoma (LLC) cells and C57BL/6 mice, the tumor suppressive effect of dipyridamole correlated well with decreased circulating white blood cells, soluble P-selectin, TGF-β1 (Transforming Growth Factor-β1), exosomes, and exosomal HMGB1, as well as tumor platelet infiltration. Exosome release inhibitor GW4869 exhibited suppressive effects as well. The suppressive effect of dipyridamole on cancer cell survival was paralleled by a reduction of HMGB1/receptor for advanced glycation end-products axis, and proliferation- and migration-related β-catenin, Yes-associated protein 1, Runt-related transcription factor 2, and TGF- β1/Smad signals. Therefore, exosomes and exosomal HMGB1 appear to have roles in platelet-driven cancer malignancy and represent targets of antiplatelet drugs in anticancer treatment.
Collapse
Affiliation(s)
- Jiaan-Der Wang
- Children’s Medical Center, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung City 407, Taiwan
| | - Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Institute of Clinical Medicine, National Yang Ming University, Taipei City 112, Taiwan;
| | - Shih-Yi Lin
- Institute of Clinical Medicine, National Yang Ming University, Taipei City 112, Taiwan;
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan;
| | - Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Shi-Wei Huang
- Translational Cell Therapy Center, China Medical University Hospital, Taichung City 404, Taiwan;
- Institute of New Drug Development, China Medical University, Taichung City 404, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan;
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
| |
Collapse
|
17
|
Abdelghany L, El-Mahdy N, Kawabata T, Goto S, Li TS. Dipyridamole induces the phosphorylation of CREB to promote cancer cell proliferation. Oncol Lett 2021; 21:251. [PMID: 33664815 PMCID: PMC7882894 DOI: 10.3892/ol.2021.12512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/30/2020] [Indexed: 11/06/2022] Open
Abstract
Dipyridamole, a traditional anti-platelet drug, has been reported to inhibit the proliferation of cancer cells. The present study aimed to investigate the possibility of dipyridamole as an adjuvant of chemotherapy by enhancing the cytotoxicity of an anti-cancer drug. The cytotoxicity of colorectal cancer cells (HCT-8), CD133+/CD44+ stem-like subpopulation of HCT-8 cells and lymphoma cells (U937) to dipyridamole and/or doxorubicin was evaluated using MTT proliferation and colony forming assays. The expression levels of phosphorylated cAMP-regulatory element-binding protein (pCREB) and poly(ADP-ribose) polymerase-1 (PARP-1) in cells were analyzed via western blotting and immunofluorescence. The present study reported controversial data regarding the anti-cancer effect of dipyridamole. Dipyridamole increased, rather than inhibited, the proliferation of HCT-8 and U937 cells in a dose-dependent manner. Furthermore, it was found that dipyridamole significantly increased the expression levels of pCREB and PARP-1. However, the combined usage of dipyridamole significantly enhanced the cytotoxicity of doxorubicin to HCT-8 cells at particular doses. Based on the current findings, dipyridamole likely induces the phosphorylation of CREB to promote the proliferation of cancer cells, but may enhance the cytotoxicity of anti-cancer drugs at particular doses.
Collapse
Affiliation(s)
- Lina Abdelghany
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Nageh El-Mahdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Tsuyoshi Kawabata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| |
Collapse
|
18
|
Xie Y, Zhang J, Lu B, Bao Z, Zhao J, Lu X, Wei Y, Yao K, Jiang Y, Yuan Q, Zhang X, Li B, Chen X, Dong Z, Liu K. Mefloquine Inhibits Esophageal Squamous Cell Carcinoma Tumor Growth by Inducing Mitochondrial Autophagy. Front Oncol 2020; 10:1217. [PMID: 32850358 PMCID: PMC7400730 DOI: 10.3389/fonc.2020.01217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) has a worldwide impact on human health, due to its high incidence and mortality. Therefore, identifying compounds to increase patients' survival rate is urgently needed. Mefloquine (MQ) is an FDA-approved anti-malarial drug, which has been reported to inhibit cellular proliferation in several cancers. However, the anti-tumor activities of the drug have not yet been completely defined. In this study, mass spectrometry was employed to profile proteome changes in ESCC cells after MQ treatment. Sub-cellular localization and gene ontology term enrichment analysis suggested that MQ treatment mainly affect mitochondria. The KEGG pathway enrichment map of down-regulated pathways and Venn diagram indicated that all of the top five down regulated signaling pathways contain four key mitochondrial proteins (succinate dehydrogenase complex subunit C (SDHC), succinate dehydrogenase complex subunit D, mitochondrially encoded cytochrome c oxidase III and NADH: ubiquinone oxidoreductase subunit V3). Meanwhile, mitochondrial autophagy was observed in MQ-treated KYSE150 cells. More importantly, patient-derived xenograft mouse models of ESCC with SDHC high expression were more sensitive to MQ treatment than low SDHC-expressing xenografts. Taken together, mefloquine inhibits ESCC tumor growth by inducing mitochondrial autophagy and SDHC plays a vital role in MQ-induced anti-tumor effect on ESCC.
Collapse
Affiliation(s)
- Yifei Xie
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Jing Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Bingbing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Zhuo Bao
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Xianyu Lu
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Yaxing Wei
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Ke Yao
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Yanan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Qiang Yuan
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Xiaofan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Bo Li
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, China.,Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, China.,Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, China
| |
Collapse
|
19
|
Thomé MP, Borde C, Larsen AK, Henriques JAP, Lenz G, Escargueil AE, Maréchal V. Dipyridamole as a new drug to prevent Epstein-Barr virus reactivation. Antiviral Res 2019; 172:104615. [PMID: 31580916 DOI: 10.1016/j.antiviral.2019.104615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/03/2019] [Accepted: 09/26/2019] [Indexed: 12/29/2022]
Abstract
Epstein-Barr virus (EBV) is a widely distributed gamma-herpesvirus that has been associated with various cancers mainly from lymphocytic and epithelial origin. Although EBV-mediated oncogenesis has been associated with viral oncogenes expressed during latency, a growing set of evidence suggested that antiviral treatments directed against EBV lytic phase may contribute to prevent some forms of cancers, including EBV-positive Post-Transplant Lymphoproliferative Diseases. It is shown here that dipyridamole (DIP), a safe drug with favorable and broad pharmacological properties, inhibits EBV reactivation from B-cell lines. DIP repressed immediate early and early genes expression mostly through its ability to inhibit nucleoside uptake. Considering its wide clinical use, DIP repurposing could shortly be evaluated, alone or in combination with other antivirals, to treat EBV-related diseases where lytic replication plays a deleterious role.
Collapse
Affiliation(s)
- Marcos P Thomé
- Departamento de Biofísica/Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil; Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, F-75012, Paris, France.
| | - Chloé Borde
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, F-75012, Paris, France
| | - Annette K Larsen
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, F-75012, Paris, France
| | - Joao A P Henriques
- Departamento de Biofísica/Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil; Instituto de Biotecnologia, Universidade de Caxias Do Sul (UCS), Caxias Do Sul, RS, Brazil
| | - Guido Lenz
- Departamento de Biofísica/Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Vincent Maréchal
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, F-75012, Paris, France.
| |
Collapse
|